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Abstract

Electronic music constantly uses transformations of
functions of time. Some frequently-used mathemat-
ical operations are described, with an eye to their
effects on sound spectra and possible musical appli-
cations.

1 Introduction

Music, like any art form, defies scientific analysis:
the scientific method seeks traits common to a given
species, whereas a piece of music is significant pre-
cisely because of its differences from other pieces of
music. But even if we aren’t able to find many reli-
able scientific laws about music, we can sometimes
create interesting new tools for making it. Doing
So requires a combination of intuition about music
and mathematical understanding of the underlying
medium, sound. Here I'll discuss one point of view
on sound as a medium, which emphasizes its depen-
dence on time.

More than any other art form, music concerns it-
self with time. A piece of music takes us on a path
from its beginning to its end. A work of visual art,
reflected from right to left, might still be recognizably
the same work. But a piece of music turned from back
to front is garbage. Time is the independent coordi-
nate of music on which the dependent ones (pitch,
loudness, ...) depend. Musical phrases are functions
of time in the same way that a gesture in a painting
is a function of two spatial dimensions.

This time-orientation may derive partly from the
fact that music is usually transmitted using sound.
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When we perceive a sound, we can detect extraor-
dinarily small changes in timing, easily down to a
millisecond; but our acoustical perception of spatial
location, even in the best of conditions, is limited to
about one degree of resolution and is usually much
worse. Visually, we can sometimes resolve images to
about 1/60 of a degree, both horizontally and ver-
tically, but our eyes usually can’t perceive time to
better than 50 milliseconds or so of accuracy.

This is reflected in the common digital formats
for storing sounds and moving images. Sounds are
usually stored at between 40,000 and 50,000 frames
per second, but with only between 2 and 6 spatial
channels. Video normally requires only 30 frames
per second but even low-quality video typically needs
500,000 or more spatial channels (pixels).

Since music is made of sound, and since sound,
in our perception at least, can approximately be re-
duced to one or a few real-valued functions of time,
we can get some insight into the workings of music by
thinking about the real-valued functions of time and
our perception of them. This will never lead to any-
thing like a theory of music, but can shed light on the
reasons music is what it is in certain respects—and
can help us greatly in our attempts to make music.

1.1 Time symmetry

The space of real-valued functions is symmetric with
respect to translations in time: f(t) — f(t+7). This
is a linear operator whose eigenfunctions are sinu-
soids:

£l = Ac®

where A is an amplitude and « an angular frequency.
They behave under translations like this:

flt+7)=e"Tf()



spectral
envel ope

e

Figure 1: Spectrum of a periodic signal.

To our great fortune, our ears perform (very approx-
imately) a sort of eigenvalue expansion of an incom-
ing sound. This feature may have evolved in order to
help us distinguish individual sound sources from the
unruly mixture of sounds that reaches our ears. Our
hearing systems appear to search for additive, ap-
proximately periodic components in complex sounds.

1.2 Periodicity

Both natural sounds and the sound of the human
voice abound with signals (real-valued functions of
time) that are approximately periodic. Since period-
icity is a time symmetry, it is natural to look at the
eigenvalue expansion of a periodic function of time.
A signal f(t) with period 7 (and hence with frequency
27 /7 radians per unit of time) can be expanded as:

f(t) — ...+A,16_iat+A0+A1€iat+A2€2iat+...

which is the well-known Fourier series for f(t). Since
periodic sounds occupy only a discrete subset of all
available frequencies, it is possible to imagine con-
fronting a spectrum of unknown origin and analyzing
it as a sum of periodic functions.

Spectra of periodic functions (their Fourier series)
can be graphed as in Figure 1. The amplitude of
the ith harmonic is |A;|. The timbre of the periodic
sound is thought to depend mostly on a (not well-
defined) curve called the spectral envelope, shown in
the figure; if the fundamental frequency is changed
but the spectral envelope kept the same, the resulting
sound often has a similar timbre.

Combining two or more periodic signals whose fun-
damental frequencies have simple ratios (fractions
with integers less than about 7 in the numerator and
denominator) gives rise to spectra with many shared
frequencies; this is the basis for the Helmholtz the-
ory of harmony [1], which depends on the fact that

Figure 2: Interference pattern between two time-
shifted signals. Top: spectrum of the original signal.
Bottom: the result.

the Fourier series, considered as a spectrum, occupies
frequencies at integer multiples of the fundamental
frequency.

2 Operations on signals

With this simple spectral model of sounds in mind,
we can now develop some of the fundamental tech-
niques for operating on sounds. These techniques
recur constantly in efforts to synthesize and pro-
cess musical sounds electronically, for example with
a computer.

2.1 Interference patterns (filtering)

Adding a sound to a time-delayed copy of itself sets
up an interference pattern in the spectrum of the
sound. This is the acoustic analog of a diffraction
grating in optics. If the delay between two copies is
7, the two will interfere constructively at frequencies
0, 27 /7, 47 /7, ... and destructively halfway between
these points. Figure 2 shows a spectrum of an input
signal, and the resulting spectrum from adding two
copies, one delayed in time compared to the other.
Linear combinations of many differently delayed
copies of a signal give rise to more complicated in-
terference patterns in the spectrum. A huge field
of study is concerned with choosing particular lin-
ear combinations so that the interference pattern has
desired properties, such as enhancing one frequency
range compared to another [2]. Electrical engineers
and electronic musicians call this technique filtering.



Filters arise in the natural world whenever sound
encounters a cavity or barrier; for instance, the hu-
man vocal tract can be thought of as filtering the raw
output of the glottis (vocal fold). To see why this is
so, imagine the sound of the glottis scattering, sepa-
rately, off each point of the surface of the vocal cavity.
At the output (the mouth and nose) you get the su-
perposition of all the scattered (and hence delayed)
copies: a filter. This is essentially the same picture
as Feynman used to describe quantum scattering as
a superposition of all possible paths of the particles
in a system.

2.2 Frequency shifting (modulation)

Returning to our complex sinusoid, f(t) = A -
exp(iat), we try multiplying it by another one, say
g(t) = exp(ift). We get a third one,

Ft)g(t) = Ae'e+0)

of frequency a+ 3. Since in the real world we usually
have access only to the real part of an incoming signal
and can only send real-valued signals to our speakers,
a more frequently encountered scenario is:

f(t) = Acos(at), g(t) = cos(Bt)

F(9)gtt) = 5 leos((a+ 1) + cosl(a — )

If the function f(¢) has many sinusoidal components,
by the distributive law, multiplying by g(¢) = cos(5t)
acts individually on each one. Figure 3 shows a possi-
ble spectrum of a periodic function f(¢) and the result
of multiplying it by a real-valued sinusoid. Engineers
and electronic musicians call this modulation.

The resulting spectrum can again be that of a peri-
odic signal (if the ratio of the frequency of the mod-
ulating signal g(t) to the original fundamental fre-
quency is a fraction with small numerator and de-
nominator), or otherwise it might have no audible
fundamental. Both possibilities can be musically use-
ful, depending on the context.

The spectral envelope of the result resembles that
of the original, unmodulated signal as long as the
modulating frequency is small compared to the orig-
inal fundamental; otherwise it can be greatly dis-
torted. So the one operation can affect both tuning
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Figure 3: Modulating a periodic signal. Top: Spec-
trum of the original signal; Bottom: the result of
multiplying it by a real-valued sinusoid.

and spectral envelope with some degree of indepen-
dent control.

2.3 Nonlinear transfer functions

(waveshaping)

A technique familiarized in Rock and Roll music of
the sixties, but with antecedents in electronic music,
is simply to distort sounds to change their timbres. If
f(t) is an incoming signal, we compose it with a non-
linear transfer function h(t), and listen to the result,
h(f(t)). In the R&R tradition, f(¢) is the electric
guitar signal and h(t) is the transfer function of the
overdriven amplifier.

For example, let f(¢) be a real-valued “sinusoid”
with time-varying amplitude:

f(t) = A(t) cos(at)
and choose h(t) = t? as a transfer function, giving:

n(f () = 20

[cos(2at) 4 1]

Possible input and output functions are graphed
in Figure 4. If h(t) is chosen to be a polynomial or
a convergent power series, the actions of the mono-
mials in h(t) will be mixed in ratios depending on
A(t): changing amplitude in the input changes tim-
bre in the output. Skillfully chosen input and transfer
functions can give rise to “nice” spectra; for instance,
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Figure 4: Waveshaping a sinusoid. Top: the incoming
sound as a function of time. Bottom: the result of
applying a simple non-linear function.

turns a sinusoid into a spectrum with exponentially
dropping partials, with the rate of rolloff determined
by A [3].

Using primarily these three fundamental tech-
niques, electronic musicians operate on a starting
palette of sinusoids, white noise, and/or recorded
sounds, to produce a huge variety of electronic sounds
for use as raw materials in making new forms of mu-
sic.

3 Analysis

It is frequently desirable, in dealing with sounds
electronically, to analyze the frequency content of a
sound. In the simplest situation we assume the sound
is a finite sum of sinusoids and we would like to know
their frequencies and (complex) amplitudes. This
would be easy except for the fact that the frequen-
cies and amplitudes in question are usually changing,
sometimes quite rapidly. Very few sounds in nature
or of electronic origin are well modeled as a sum of
eternally unchanging sinusoids.

The most frequently taken approach to this prob-
lem is to extract a short segment of the signal to
be analyzed, hoping that whatever components are
present haven’t had time to vary much within the
segment. For example, if the function to analyze is
f(t), one could first multiply it by a windowing func-
tion such as:

w(t) = { é[cos(Qﬂ-t/S) 41

[t] < S/2
otherwise
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Figure 5: A (complex-valued) sinusoidal wave packet
as a function of time.

where S is the length of the segment to analyze. Sup-
pose that f is a complex sinusoid:

£l = Aet

so that the product w(t)f(t) is as shown in Figure
5. The Fourier transform of the product (as an L?
function [4, p. 168]) is:

FT{w®)f (1)} (w) = FT {w(t)} (w - a)

or, in words, it is just the Fourier transform of the
windowing function w(t) shifted in frequency by «,
as shown in Figure 6.

The main peak of Figure 6 is 87/S in width, cen-
tered about «. The shorter we make the time seg-
ment S, the more spread-out the frequency-domain
peak will appear. This is the Heisenberg uncertainty
principle in action [5, p. 126].

Since the Fourier transform is linear, a superposi-
tion of sinusoids would give a superposition of peaks
on the frequency axis. To fully resolve them we would
need the peaks to be separated by the peak width,
8w /S. If the sound is periodic, the analysis should
be done over a length of time containing at least four
periods of the sound. (In practice we can often allow
some overlap, reducing this to about three).

Looking at a sound’s Fourier transform, we can
determine the frequencies and amplitudes of its sinu-
soidal components by fitting the observed peaks with
their known theoretical shape. The spectral envelope
can be estimated as well.

Furthermore, a given audio signal can be modi-
fied in interesting ways by taking its Fourier trans-
form (using a sequence of overlapping analysis seg-
ments called windows), performing some operation,
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Figure 6: Fourier transform of the wave packet.

and then taking the inverse Fourier transforms to re-
construct a modified signal. For example, the spec-
tral envelope of one signal can be “stamped” on
another by modifying the magnitude of the latter’s
Fourier transform non-uniformly.

Many details have been glossed over in this very
brief introduction; moreover, only that part of elec-
tronic music which deals with realization of pieces of
music has been treated. Present-day research also
touches on the design of real-time software systems
and human-friendly controls for music making; com-
puter understanding of musical form and computer-
aided composition; music perception; and music in
multimedia applications. Within the narrower field
described here, many problems remain open and
improvements are constantly sought in our existing
repertoire of techniques. Mathematicians can find
excellent work here.
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