A divide between ‘compositional’” and
‘performative’ aspects of Pd *

Miller Puckette
November 10, 2004

In the ecology of human culture, unsolved problems play a role that is even
more essential than that of solutions. Although the solutions found give a field
its legitimacy, it is the problems that give it life. With this in mind, I’ll describe
what I think of as the central problem I'm struggling with today, which has
perhaps been the main motivating force in my work on Pd, among other things.
If Pd’s fundamental design reflects my attack on this problem, perhaps others
working on or in Pd will benefit if I try to articulate the problem clearly.

In its most succinct form, the problem is that, while we have good paradigms
for describing processes (such as in the Max or Pd programs as they stand
today), and while much work has been done on representations of musical data
(ranging from searchable databases of sound to Patchwork and OpenMusic, and
including Pd’s unfinished “data” editor), we lack a fluid mechanism for the two
worlds to interoperate.

1 Examples

Three examples, programs that combine data storage and retrieval with real-
time actions, will serve to demonstrate this division. Taking them as represen-
tative of the current state of the art, the rest of this paper will describe the
attempts I'm now making to bridge the separation between the two realms.

1.1 Csound

In Csound [Bou00] , the database is called a score (this usage was widespread
among software synthesis packages at the time Csound was under development).
Scores in Csound consist mostly of ‘notes’, which are commands for a synthe-

*Reprinted from the first Pd convention, Graz, 2004:
http://puredata.info/community/projects/convention04/



sizer. The ‘score’ is essentially a timed sequence. A possible score might be as
shown:

i1 0 1 440
i1 1 1 660
i1 2 1 1100
e

A Csound performance works as shown in Figure 1. Part (a) shows the “clas-
sical” performance configuration, in which parameters in the notes update syn-
thesis control values, each note acting at an effective time also calculated from
the note’s parameters.

Part (b) of the figure shows how to use real-time inputs (here from MIDI mes-
sages) in a Csound performance. The real-time inputs are simply merged with
the (pre-scheduled) notes. In effect, there is no facility for intercommunication
between the two control streams; they simply affect different variables in the
orchestra, and the orchestra’s audio output is controlled by the union of the two
sets of variables.

1.2 Patchwork and OpenMusic

Michael Laursen’s Patchwork program [LD89] and its descendant, OpenMusic,
by Carlos Agon and Gérard Assayag [A199], offer a much tighter integration of
data. Figure 2 shows a simple OpenMusic patch.

The semantic of OpenMusic (and Patchwork) is one of demand-driven dataflow.
Each object is essentially a function call, which recursively evaluates its inputs,
precisely as a Lisp form is evaluated. Compared to Pd, the relationship between
data and process is reversed. There is no notion of real-time events or even of
real time itself; rather, the contents of a patch are static data. The paradigm
gets its richness from the fact that the data types (which in the pictured example
are just numbers) can in general be any lisp data structure, and so can easily
describe whole sequences such as a Csound score.

OpenMusic supplies a sequencing function which, given a sequence as an argu-
ment, plays the result out the machine’s MIDI port or sends it to a software
synthesizer. The data managed in the patch itself are all entirely out-of-time;
the sequencer’s function of putting the data in time is a primitive operation.
The lisp object or objects which hold rhythms, pitches, and even timbres are
queried by the sequencer which does the data mining as a black box.

This is ideal from the composer’s point of view, since the creation of a musical
score is essentially an out-of-time activity. But performers will have little use
for OpenMusic since, in live performance, the instrument doesn’t query the



(a)

orchestra

not es

score . f\\

.

(b)

orchestra

score /\_\

M D \,

Figure 1: A Csound performance: (a) score and orchestra; (b) using real-time
control via MIDL.

~N




SO0 200

Figure 2: An OpenMusic patch (borrowed from TRCAM’s documentation).

performer, but rather, the performer sends messages to the instrument. This is
the Pd (and Max) organization, the reverse of that of OpenMusic.

1.3 Max and Pd

In Pd (the third example), the fundamental transaction goes in the direction
favored by the performer. This idea goes back to Max, and that orientation
might have been the most important single reason that Max and Pd are in wide
use today. But as noted before [DH93] [Puc02a], the message-sending paradigm
does not fundamentally lend itself well to storing and retrieving data. One
is almost forced to set data aside in containers—databases, essentially—and
to use a coterie of accessor objects to store and retrieve data under real-time,
message-passing control.

Max’s approach to data is both simple and evasive: special data-container ob-
jects such as table, qlist, etc. are provided; the data are essentially hoarded
inside the container objects, and for each kind of container object a particular
ad-hoc approach is taken to its storage, its editing, and its interfacing with the
rest of the patch.

Retrieval (the great majority of database transactions!) is the worst fit with
Max because messages don’t have return values; the retrieved data must be
sent as a separate return message. This leads to much misery for Max users.

Pd faithfully recreates the data-storage paradigms of Max, but in addition the
design of Pd includes a more advanced paradigm that might eventually replace



r 1 ndex

Eabr ead arrayl | "

arrayl -

[t'abwrlte arrayl

Figure 3: Incrementing an array element. The receive object can be sent integers
to specify which element to increment.

the Max one.

The original, defining idea behind Pd was to remove the barrier between event-
driven real-time computation (as in Max-style message passing) and data (as in
points of an array or notes in a score). In Pd the two (object boxes and data
structures) can easily coexist in a single window. This promiscuity, however,
does not in itself make the functional objects and the data intimately connected.
In fact, in the present design, data access still has to be done through a suite of
accessor objects. It is far from certain that Pd will, in the end, relieve the Max
user’s misery.

2 Data-plus-accessor-object design model

An example of Pd’s data-plus-accessor arrangement is that maintained by floating-
point arrays (either graphical or via the table object), and the suite of objects
tabread, tabwrite, and all their relatives. For example, Figure 3 shows how
to use accessor objects to increment a variable element of an array (you would
do this to make a histogram of incoming indices, for example.) Here the task
is straightforward, and the separation of the storage functionality of the actual
“arrayl” from the accessor objects is not particularly troublesome.

Moving to a more interesting case, we now build a patch to do something cor-
responding to this using the (still experimental) “data” feature of Pd [Puc02b].
For completeness we give a short summary here, which will serve also to intro-
duce the central example of this paper.



\Y

Figure 4: Two data structures in Pd.

class |1 2 1
next _f) —/-) 0
X X X
y y y

Figure 5: Possible structure for the objects in Figure 4.

Pd’s “data” are objects that have a screen appearance; many such objects can
be held in one Pd canvas. The canvas holds a linked list of data. A datum
belongs to some data structure, which is defined by a patch called a template.
The template also defines how the data will look on the page. Lists of data are
heterogeneous; a canvas in Pd can hold data with many different structures.
Figure 4 shows a canvas with three data objects. They belong to two types:
two triangles and one rectangle.

As data structures, this list could appear as shown in Figure 5. The elements of
the list need not all have the same structure, but they have a “class” field that
determines which of the several possible data structures the element actually
belongs to.

The data structures are defined by struct objects. Figure 6 shows the struct
object corresponding to the triangles in Figure 4. The canvas containing the
struct object may also contain drawing instructions such as the drawpolygon
object. This object takes three creation arguments to set the interior and border



|struct structl float x float y float h |

Fllledpolygon 999 0 2 00 20 h 40 0 |

Figure 6: C definitions of the data structure for the triangles in Figure 4.

colors and the border width (999, 0, and 2), and then any number of (x, y) pairs
to give vertices of the polygon to draw; in this example there are three points
and the structure element h gives the altitude of the triangle.

For clarity, and for the sake of comparison, we’ll consider C and Pd approaches
to defining and accessing the data in parallel. In C, the definitions of the two
data structures might be as shown in Figure 7. In order to be able to mix
the two structures in a single linked list, a common structure sits at the head
of each. This common structure holds a whichclass field to indicate which
structure we’re actually looking at, and a next field for holding a collection of
these structures in a linked list.

Now we define a task that might correspond to that of Figure 3. Suppose,
given an integer n and a linked list of data structures, we wanted to find the
nth occurrence of structl in the list and increment its h slot. (Note that
incrementing the h slot of an instance of class2 wouldn’t make sense.) A C
function to do this is shown in Figure 8. This is an inherently more complicated
problem than that of Figure 3; there, a corresponding piece of C code might
simply be:

array[n] += 1;

Instead, we have to make a loop to search through the heterogeneous list, check-
ing each one if it belongs to structl, maintaining a count, and when all condi-
tions line up, incrementing the h field.

An equivalent Pd patch is shown in Figure 9. The loop is managed by the until
object. The top trigger initializes the f and pointer objects (corresponding to
“count” and “ptr” in the C code.) The messages, “traverse pd-list” and “next”,
correspond to the initialization and update steps in the C loop; the two possible
exit conditions of the loop (the check on “ptr” and the break in the middle) are
the two patchcords reaching back to the right inlet of the until object.

The pointer structl object only outputs the pointer if it matches “structl”



struct anyclass
{
#define CLASS1 1
#define CLASS2 2
int c_whichclass;
struct anyclass *c_next;

};
struct classli
{
struct anyclass cl_header;
float cl_x;
float cl_y;
float ci_h;
};
struct class?2
{
struct anyclass c2_header;
float c2_x;
float c2_y;
float c2_z;
float c2_w;
};

/*

/%
/*

/%

/*
/*

/*

common header in both structs below */

whether CLASS1 or CLASS2 */
next in linked list */

first one */

common part */
part that is specific to class #1 */

second one */

Figure 7: A C equivalent for the data structures of Figure 4.



extern struct anyclass *thelist; /* externally defined head of linked list */

void incrementclassl(int n) /* increments the nth "classl1" in list */

{
struct anyclass *ptr;
int count;
/* search the list, stopping when pass
for (count = 0, ptr = thelist; ptr; ptr = ptr->c_next)
{

n" or run out of items */

*/

*/

if (ptr->c_whichclass == CLASS1) /* check class of this item
{
if (count == n) /* if it’s the nth one:
{
((struct classl *)ptr)->cl_h += 1; /* increment "h" field */
break; /* and we’re done */
}
count++; /* increment count */

Figure 8: A C function to increment "h” for the nth occurrence of classl.

(corresponding to the first if in the C code.) The sel object in the patch
corresponds to the check whether “count” and “n” are equal in the C code. The
remainder, below the second pointer object, is much the same as in Figure 3.

3 Discussion

The Pd patch looks more complex than the C code. One possible reason for
the complexity is the difficulty of sequencing actions in Pd patches, which lack
the natural sequentiality of a text programming language like C. Another is
the relative lack of names; only three names (other than Pd class and message
names) appear in the patch (“n”, “structl”, and “h”), compared to eight in the
C code (“thelist”, “n”, “ptr”, “count”, “c_next”, “c_whichclass”, “CLASS1”,
and “cl_h”). Of these, two of the Pd names (“n”, and “pd-list”) might be
considered to act as variables, compared to four of the C names.

The complexity of the patch needed to accomplish this task might be reduced
somewhat if either the value and/or expr objects were extended to deal with
pointers. For instance, a “value ptr” object (unsupported in the current version
of Pd) could hold the output of the first pointer object in readiness for the
incrementing step at bottom. So far, though, mockups using features such as



™ n index of itemto find

5T 5 b: initialize the |oop;
f: store index in "sel" bel ow
d: start loop by banging "until"

d-T1 st "traverse" to rewind the pointer
"next" to nove pointer forward and out put

Er\%erse
Eoi nter s\{ruct 1\—_|

D "t b p" first saves pointer, then

l bangs a counter
z*ﬂ the counter

se check the counter against the stored index

if they match, recall the pointer again

this is to disanbiguate the order in which the

"set" object bel ow receives the two nmessages
Eet structl h get the "h" val ue
E_q add one to it
|§et structl h set it again

Figure 9: Pd patch to search for the nth instance of classl and increment its
value of h.

10



this have not been observed to reduce the number of objects and lines in patches
equivalent to the one shown here.

The expr object could conceivably handle data structures and slots with the
addition of a few C-like constructs, and could also be fixed to set and retrieve
the contents of value-style variables. This would cause the Pd and Max ver-
sions of expr to deviate from one another (they currently share the same code,
maintained by Shahrokh Yadegari [Yad03]). In general, it seems problematic
to lean in too fundamental a way on expr as the fundamental mechanism for
getting and retrieving data.

On a more general plane, the relationship between the data and the code that
accesses it is the same in Pd as it is in C. One wishes that the functionality
could somehow reference the look and feel of the data themselves, or possibly
even be built into the template patch (as methods go with class definitions in
C++.) So far no model has emerged that accomplishes this smoothly.

Another aspect of the question, not touched on in this paper, is the utility of
somehow catching user operation (with mouse and keyboard, perhaps among
other ways) with the graphical data. There should be a way to provide hooks to
data when certain operations are carried out on them. Perhaps this should be
realized as a way of fielding Pd messages (via pointer objects?) sent to objects
to get or set their state.

The data structure accessor objects could easily be back-compatibly replaced
or augmented with others if a clean design can be found for getting and setting
the data. This “data” feature was the original motivating force behind Pd’s
design; it is interesting that it now appears likely to be the last aspect of Pd to
be defined.

References

[AT99]  Gerard Assayag et al. Computer assisted composition at ircam: From
patchwork to openmusic. Computer Music Journal, 23(3):59-72, 1999.

[Bou00] Richard Boulanger, editor. The Csound book. MIT Press, Cambridge,
Massachusetts, 2000.

[DH93] P. Desain and H Honig. Letter to the editor: the mins of max. Com-
puter Music Journal, 17(2):3-11, 1993.

[LD89] Mikael Laurson and Jacques Duthen. Patchwork, a graphical lan-
guage in preform. In Proceedings of the International Computer Music
Conference, pages 172-175, Ann Arbor, 1989. International Computer
Music Association.

[Puc02a] Miller S. Puckette. Max at 17. 26(4):31-43, 2002.

11



[Puc02b] Miller S. Puckette. Using pd as a score language. pages 184-187, 2002.

[Yad03]

Shahrokh Yadegari. A general filter design language with real-time
parameter control in pd, max/msp, and jmax. In Proceedings of the
International Computer Music Conference, pages 345-348, Ann Ar-
bor, 2003. International Computer Music Association.

12



