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Abstract

A unified framework is developed in which to compare
several techniques for synthesizing sounds with de-
sired spectra, using AM, FM, waveshaping, and pulse
width modulation.

1 Introduction

Of the many approaches to specifying and synthe-
sizing musical sounds, one of the oldest and best is
to specify the sound’s partial frequencies and spec-
tral envelope. The frequencies of the partials might
be chosen to lie on the harmonics of a desired fun-
damental frequency, and this gives a way of control-
ling the sound’s (possibly time-varying) pitch. The
spectral envelope is used to determine the amplitude
of the individual partials, as a function of their fre-
quencies, and is thought of as controlling the sound’s
(possibly time-varying) timbre. A simple example
of this is synthesizing a plucked string as a sound
with harmonically spaced partials in which the spec-
tral envelope starts out rich but then dies away ex-
ponentially with higher frequencies decaying faster
than lower ones, so that the timbre mellows over
time. In a similar vein, [Risset] and [Grey] proposed
spectral-evolution models for various acoustic instru-
ments. A more complicated example is the spoken
or sung voice, in which vowels appear as spectral en-
velopes, dipthongs and many consonants appear as
time variations in the spectral envelopes, and other
consonants appear as spectrally shaped noise.
Partly because of the intrinsic interest of the hu-
man voice and partly because of Bell Laboratories’s
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strong influence on the early development of com-
puter music, synthetic vocal sounds are perennial
features of both early and modern computer music
repertory. The palette of synthesis techniques has of-
fered much variety within the framework described
above. Starting with Mathews’s Daisy, and soon af-
terward in Dodge’s Speech Songs, subtractive syn-
thesis has been used. At first the filters were usu-
ally designed using analyses of recorded voices (first
via vocoder as in these two examples, and later us-
ing LPC as in Lansky’s Siz Fantasies on a Poem by
Thomas Campion).

The other main historical approach to vocal syn-
thesis (and also to synthesis of other time-varying
spectra) has been the direct computation of formants,
or more exactly, sounds containing a single formant
that could be combined to create multi-formant spec-
tra. In this class fall Konig’s VOSIM generator
[Templaars], Bennett and Rodet’s FOF [Rodet] and
Chowning’s synthesis of formants using FM. A rep-
resentative musical example of FOF synthesis is Bar-
riere’s Chreode I, and of Chowning’s technique, his
own piece, Phoné.

In these direct synthesis techniques, analyzed time-
varying spectral envelopes have mostly given way to
what Bennett and Rodet call “synthesis by rule,” in
which formantic placement is codified as a function of
desired phonemes. (For that matter, synthesis by rule
has also been applied to subtractive synthesis. On the
other hand, analyses of continuous speech have not
often been used to drive formant generators.)

Especially in Phoné, the listener is struck by a
much greater sophistication of timbral control offered
by the rule-based approach to speech synthesis. In
addition, the direct synthesis of formants has, at least
in the past, reached higher levels of sound quality



than has subtractive synthesis, which tends to sound
machine-like and “buzzy,” especially when compared
to the FM approach.

In light of this, it is important to point out an
important practical difficulty in Chowning’s method,
which is that there is no obvious way to cause the
formants to slide upward or downward in frequency
as they do in real speech and singing. This limitation,
and some techniques for overcoming it, are considered
in the sections that follow.

2 Carrier/modulator model

The FM algorithm is to calculate time-dependent val-
ues of the function,

z(t) = cos(wat + 7 cos(wit))

where wo is the carrier frequency (in appropriate
units), wy is the modulating frequency, and r is the
index of modulation. This formula only holds when
the frequencies are not time-varying, but we can use
it to derive or specify steady-state spectra which will
still appear in the time-varying case.

To analyse the resulting spectrum we can write,

x(t) = cos(wat) * cos(r cos(wit))+

+(another similar term),

so, following [Lebrun] we can consider it as a sum
of two waveshaping generators each essentially of the
form,

m(t) = cos(r cos(wit))

each ring modulated by a “carrier” signal of the form,
c(t) = cos(wat).

In Chowning’s scheme for synthesizing formants,
wo becomes the formant center frequency and the
modulator m(t), which is aliased to a point in the
spectrum centered at ws, determines the formant
bandwidth and the placement of partial frequencies
around the formant frequency. In particular, to get
harmonically spaced partials we set the modulating

frequency w; to the fundamental and the carrier fre-
quency to the multiple of w; closest to the desired
center frequency.

The bandwidth can then be controlled by chang-
ing the index of modulation. The center frequency
wo can’t be changed continuously however, since for
harmonicity it must be an integer multiple of wy.

The next section will describe two alternative forms
of the carrier signal ¢(t), each of which allow changing
center frequency without losing harmonicity. In the
following section we will consider alternative forms
of the modulator m(t) which in some situations are
preferable to the classic FM formulation.

3 The carrier signal

Two workable strategies for producing “glissable”
carrier signals have emerged, one simple, the other
more complex but better at handling the case of very
small bandwidths. In both cases, we start by syn-
thesizing a low-bandwidth carrier signal with com-
ponents clustered around the desired formant center
frequency. The spectrum can then be fattened to
a desired bandwidth by using a suitable modulator.
We will now let wo denote a desired center frequency,
no longer necessarily an integer multiple of the fun-
damental frequency w;. We will denote the desired
waveform period by
2
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The first technique is to let
¢(t) = w(t — ROUND(¢)) cos(ws(t — ROUND(?)))

where ROUND(t) denotes the nearest multiple of 7
to t, and w(t) is a windowing function such as the
Hanning window:
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In words, the signal ¢(¢) is simply a sample of a cosine
wave at the desired center frequency, repeated at the
(unrelated in general) desired period, and windowed

to take out the discontinuities at period boundaries.



Here the full 6-DB bandwidth of the signal ¢(t) will
be 2xwy, which is reasonably small but not negligible.
(It is tempting to try to reduce bandwidth further by
lengthening the “samples” and overlapping them, but
this leads to seemingly insoluble phase cancellation
problems.)

This method leads to an interesting generalization,
which is to take a sequence of samples of length 7,
align all their component phases to those of cosines,
and use them in place of the cosine function in the
formula for ¢(t) above. The phase alignment is neces-
sary to allow coherent cross-fading between samples
so that the spectral envelope can change smoothly.
If, for example, we use successive snippets of a vocal
sample as input, we get a strikingly effective vocoder.

The second technique, first described in [Puckette],
is to synthesize a carrier signal,

c(t) = acos(nwit) + beos((n + 1)wit)

where a + b =1 and n is an integer, all three chosen
so that

(n+0b) x w1 = wa,

so that the spectral center of mass of the two cosines
is placed at wy. (Note that we make the amplitudes
of the two cosines add to one instead of setting the
total power to one; we do this because the modulator
will operate phase-coherently on them.)

However, it is not appropriate simply to change
a, b, and n as smooth control signals. The trick is
to note that ¢(t) = 1 whenever ¢ is a multiple of
7, regardless of the choice of a, b, and n as long as
a+b = 1. Hence, we may make discontinuous changes
in a, b, and n once each period without causing dis-
continuities in ¢(t).

In the specific case of FM, if we wish we can now
go back and modify the original formulation:

a cos(nwat + 1 cos(wit))+

+bcos((n + 1)wat + 7 cos(wit)).

This is how to add glissandi to Chowning’s original
FM voices.

4 The modulator

In the waveshaping formulation the shape of the for-
mantic peak is determined by the modulator term
m(t). In the case of FM this gives the famous Bessel
“J” functions. At indices of modulation less than
about 1.43 radians we get a proper bell-shaped spec-
trum, with bandwidths ranging from 0 to about 4w,
(full width at -6 dB height.) Further increases in in-
dex give rise to the well-known sidelobes in the FM
spectrum.

Although we might desire the sidelobe effect, we
needn’t be tied to it; other possibilities abound. The
formula for the general modulation signal is:

m(t) = cos(r x F(cos(wit))).
We have so far found two functions:
Fi(z) =1/(1+a%)

and
Fy(x) = exp(—2?)

which give rise to bell shaped formants at any in-
dex, without any sidelobes and also producing phase-
coherent partials without changes in sign of the am-
plitudes of the components. In the case of F} the
resulting spectra are particularly simple to describe;
the component amplitudes drop off linearly in dB
with distance from the center frequency. F5 gives rise
to “I” Bessel functions, which unlike FM’s “J” func-
tions do not give rise to sidelobes, and whose tails
drop off more quickly than for Fj.

Since both of these are even functions, we set w;
to be half of the fundamental frequency, unlike the
FM case where we set w; to the fundamental; this
accounts for there being only one term to calculate
here instead of the two in our analysis of FM.

Yet another approach is pulse width modulation,
for instance:

m(t) = w(rt) +w(r-Et—71))+w(r-(E—27)) + ...
where w(t) is the Hanning window defined above.
This gives in effect a train of Hanning window func-
tions, whose duty cycle is 1/r. If we don’t wish the
windows to overlap we require r to be at least 1,



and so the full 6-dB bandwidth is limited below by
twice the fundamental frequency. If desired, we can
allow double overlap (by dedicating one oscillator to
the odd-numbered pulses and a second to the even
ones); then the minimum bandwidth effectively drops
to zero.

The spectrum is simply the Fourier transform of
the Hanning window, which is approximately band-
limited (actually only good to about -34 dB), as com-
pared to the waveshaping solutions which are non-
band-limited. If we desire better stop-band rejection
than -34 dB we can pass to Blackman-Harris win-
dows; in this case we must allow overlap 3 before we
can attain zero bandwidth.

5 Noise

Up to now we have only synthesized discrete spectra.
It is also sometimes desirable to synthesize “noisy”
sounds with desired spectral envelopes. One tech-
nique for doing this is described in [Puckette]. The
idea is to multiply a discrete spectrum (perhaps com-
puted in one of the ways described above) with a noise
signal with bandwidth w;. Each sinusoid is then mod-
ulated into a narrow noise band, and the overlapping
noise bands fill out a continuous noisy spectrum.
However, the fact that each sinusoid is modulated
by the same noise is problematic. To fix this we mod-
ulate four copies of the original signal, delayed vary-
ing amounts up to 10 milliseconds, by four indepen-
dent band-limited noise streams. Each partial thus
gets a different linear combination of the four noise
signals and thus the partials “move” independently.

6 Implementation

These techniques have been gradually refined over the
last fourteen years, using IRCAM’s 4X and ISPW,
and later the standard real-time interactive graphi-
cal synthesis environments Max/MSP, jMax, and Pd.
The community of active users of the techniques has,
however, remained quite small, at least partly since
nothing has so far been published in computer music
venues about it. Implementations in the form of ex-

ternal objects for Pd and Max/MSP are available,
with sources, from http://crca.ucsd.edu/ msp
and http://crca.ucsd.edu/ "tapel.
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