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Abstract

FFT-based filters find wide use in both live and ‘tape’ elec-
tronic music. Here an attempt is made to develop straightfor-
ward guidelines for choosing parameters such as window size
and overlap in order to obtain desired time and frequency res-
olution and minimize artifacts. As an application, filters de-
rived from other sound sources (“FFT vocoders” or “timbre
stamps”) are discussed in detail.

1 Introduction

On the frequent occasions when one reaches for one or
another sort of filter, one can choose either a time-domain
“classical” filter or an FFT-based one. Typically, time-domain
ones can achieve very sharp frequency definition and low time
latency, and are often cheaper to implement than FFT-based
ones. But FFT-based ones have other graces such as explicit
phase control and greater ease of varying the filter character-
istics in time. Furthermore, certain applications lend them-
selves naturally to FFT filtering: for example, frequency-
band-variable spatialization (Torchia and Lippe 2003) or de-
lay (Kim-Boyle 2004), or “vocoders” or “timbre stamps” in
which the spectrum of one sound is used to derive a filter for
another (Settel and Lippe 1998) (Puckette 2007).

Here we will consider some issues that arise in FFT-based
filtering, particularly for timbre stamping. The followingsec-
tion sets a framework and defines parameters used. Next, we
consider whether, and when, FFT filtering really works cor-
rectly with arbitrary time-varying filter gains.

In Sections 5 and 6 we turn our attention to the the tim-
bre stamping algorithm. Several possible variations are de-
veloped. All of them boil down to computations of various
time-varying FFT channel gains, thus fitting into the frame-
work developed and analyzed in Sections 1 through 4.

2 Setup

Using variable names and conventions as in (Puckette 2007),
the filters under discussion take an input signalX[n], possi-

∗CRCA,Cal(it)2, UCSD. To appear inProceedings, ICMC 2007.

bly complex-valued, and compute short-time spectra

S[m, k] = FT {wa[n]X[n + mH]} (1)

≡
N−1∑

n=0

e−2πink/Nwa[n]X[n + mH]

whereN is the window size,H is a hop size,i2 = −1, k is
the frequency in bins,m is the frame number, andwa[n] is the
analysis windowing function. In general the spectraS[m, k]
are complex valued.

We will use “linear-phase” filters in which we multiply
the spectra by real-valued gainsg[m, k], which may depend
both on frequencyk and frame numberm. (For a non-time-
varying filter there is nom dependence so that we may write
the gain asg[k].)

The output is then computed by windowing and overlap-
adding the inverse Fourier transform:

Y [n] =
∑

m

ws[n−mH]
(
FT −1{g[m, k]S[m, k]}

)
[n−mH]

(2)
HereFT −1 denotes the inverse of the discrete Fourier trans-
form FT andws[n] is a resynthesis windowing function.

It is reasonable to ask that the signalX[n] be correctly
reconstructed when the filter gains are all 1, which implies:

∑

m

wa[n − mH]ws[n − mH] = 1 (3)

for all n (tacitly puttingwa = ws = 0 outside the window).
A possible choice for the analysis and resynthesis window

function is the Hann window:

h[n] =
1

2
(1 − cos(2πn/N)) (4)

We will also consider the “squeezed” version:

hp[n] =

{
h( (1−p)N

2 + pn) 0 ≤ (1−p)N
2 + pn < N

0 otherwise
(5)

where0 < p < 1. This is just the Hann window function
rescaled to occupy a segment of lengthpN in the middle of
the window0, .., N − 1, and zero padded elsewhere. The
Fourier transform is

Ĥp = FT {hp[n]} ≈ (6)



e−πik

{
N

2
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k

p
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N

4
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p
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N

4
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p
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}

where sinc(k) = sin(k)/k and sinc(0) = 1. (The phase
term comes in because the window function is centered at
n = N/2 but the Fourier analysis phase is zero atn = 0).
The “main lobe” ofĤp extends over−2/p ≤ k ≤ 2/p for a
total bandwidth of4/p.

The filter is completely specified by the gainsg, the win-
dow sizeN , the analysis and resynthesis window functions
(including “squeeze factors”p), and theoverlap, defined as
N/H.

3 Simplest low-pass filter

Our analysis will loosely follow that given in (Allen 1977)
and appendix B of (Laroche and Dolson 1999). Assuming the
filter is time-invariant (i.e., the gaing does not depend on the
frame numberm), we can predict its behavior from that of the
low-pass filter withg[0] = 1 andg[k] = 0 for k 6= 0. This is
possible because, first, the filter’s output is a linear function
of g, and second, passing a signal through a filter admitting
only thekth bin gives the same results as for the zeroth bin,
except with a frequency shift.

Suppose we introduce the sinusoidX[n] = Zn with an-
gular frequencyω0 and whose frequency in bins isk0 =
2πω0/N . The Fourier transform at DC is

S[m, 0] = ZN/2+mHeπik0Ŵ (k0) (7)

Here the first phase term is that of the incoming signal at the
middle of themth analysis window; the rest is the Fourier-
transformed window function evaluated at the point−k0.

We now take the inverse FT and overlap-add using the
resynthesis window function. Viewed in the time domain, this
convolves the resynthesis window function with the signal:

ZN/2, 0, . . . , 0︸ ︷︷ ︸
H−1 times

, ZN/2+H , 0, . . . , 0︸ ︷︷ ︸
H−1 times

, ZN/2+2H , . . . (8)

This pulse train contains the bin frequencies:

. . . , k0 − N/H, k0, k0 + N/H, . . . (9)

and the result of convolving it with the resynthesis windowing
function is to apply a low-pass filter with transfer function
Ŵs. For the “correct” result we should filter out all but thek0

term; this works providedN/H > |k0| + cs wherecs is the
cutoff frequency of the windowing function. Given that we
do not wish to have to control the range of frequencies in the
incoming signal, the only factor that controls the magnitude

of k0 is the bandwidth of the analysis window function (call
it ca). Then the condition for not aliasing is:

ca + cs ≤
N

H
(10)

If we are using Hann windows with squeeze factorspa and
ps, we get:

2

pa
+

2

ps
≤

N

H
(11)

For an overlap of four, we barely get away with it atpa =
ps = 1; no squeezing is allowed.

The signal is attenuated at the analysis stage byŴa(k0),
and again at the resynthesis stage bŷWs(k0), so the fre-
quency response is the product of the magnitudes of the two.
If we use Hann windows with no squeezing, we get 12 dB re-
duction atk0 = 1 and 2.84 atk0 = 0.5; so the bandwidth can
reasonably be stated as one bin. But if, for example, we wish
to place a filter at a center frequency ofk = 0.5, we have to
superpose filters atk = 0 andk = 1. The gain then only falls
off 1.9 dB one half bin off peak and 5.7 dB one bin off (at
k = 1.5, e.g.). If desired, the uniformity of bandwidth can be
improved by zero-padding the Fourier transforms, effectively
doublingN and using squeeze factors of 0.5 so that the filter
may be expressed at a resolution of1/2 bin instead of 1.

4 Time-varying filters

The low-pass filter (from which we may understand the
behavior of any other filter) may be made time-varying by
specifying that the gaing[m, k] be zero except whenk = 0,
but varying withm. Since the filter output is a linear function
of the gaing, it suffices to know the behavior of a sinusoidally
varying filter:

g[m, k] =

{
e2πimHkf /N k = 0
0 otherwise

(12)

This oscillates at the frequencykf in bins. (The factormH
appears because themth frame starts at samplemH.)

Everything goes as before and out come the frequencies:

. . . , k0 + kf − N/H, k0 + kf , k0 + kf + N/H, . . . (13)

For the result not to alias, we must limit the frequencykf so
that

|kf | + ca + cs ≤
N

H
(14)

Using Hann windows with an overlap of four does not allow
any time variation bandwidth at all, the Convolution Broth-
ers’ well-known practices notwithstanding.

As before, the transfer function is the product of the two
window functions, but the resynthesis window function acts
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Figure 1: FFT vocoder (timbre stamp) block diagram.

at the aliased frequency; the frequency response is equal to
|Wa(k0)| · |Ws(k0 + kf )|. If we wish, therefore, for the fre-
quency response to behave “properly”, that is, as a function
of k0 alone, we should squeeze the resynthesis window so
that its larger bandwidth makes the frequency response less
dependent onkf . This can be done only at the expense of
raising the minimum attainable bandwidth.

5 The timbre stamp

Figure 1 shows an overall block diagram for the timbre
stamp. The three operations at left are the analysis/resynthesis
chain of Section 1, with the input now renamed “FILTER IN-
PUT” to distinguish it from a new, second input that alters
the filter. The filter input passes first through a windowed
short-time Fourier transform (WSTFT), whose outputs are
complex-valued. These are multiplied by a real-valued gain
(i.e., their magnitudes are changed but their phases main-
tained). Then the output is computed using a windowed short-
time inverse Fourier transform (WSTIFT).

The gain is a function of the magnitudes of two spectra:
that of the original input and that of a second, “control” in-
put. In the simplest procedure we would simply compute the
ratio of the control amplitude to the original amplitude (indi-
vidually for each bin) so that the gain multiplication replaces
the original amplitude with the new one; but there are many
possible refinements as discussed below.

In light of the previous discussion of allowable bandwidth
of the filter coefficients, we can now make preliminary bounds
on overlap and squeeze factors. We’ll continue to assume

squeezed Hann windows so that the windowing bandwidth
is 2/p bins. If we consider the gain computation as being
approximated by a polynomial function of the two spectra
(the complex amplitudes and their conjugates, say, so that
the square magnitude is of degree two), then terms of de-
green will yield at most frequencies of2n/p wherep is the
minimum (i.e., worse case) of the squeeze factors of the two
analysis windows. To control terms up to degreed, we must
choose an overlap factorN/H of at least

2d

p
+

2

pa
+

2

ps
(15)

or, for unsqueezed windows,2d + 4. An overlap of eight will
cover us up to quadratic terms.

6 Computing suitable gain functions

Figure 2 shows a block diagram for computing an appro-
priate gain for the timbre stamp, including several possible
variations that are useful at times. The main idea is simply to
divide the two spectra bin by bin, returning the quotient in lin-
ear amplitude units. The two inputs are assumed to be in units
of power (squared amplitude). The operations labeled “con-
volve” and “squelch”, and the division, may be carried out
in those units. The next operation (“depth” control) is best
carried out in so-called Sones (Rossing, Moore, and Wheeler
2002, p. 108), which we here approximate as square root of
amplitude (fourth root of power). Finally, if needed, a low-
pass filter may be added to control foldover; it should be ap-
plied to the gain expressed in linear amplitude units.

The first, “convolve” operation in effect averages neigh-
boring power measurements in order to prevent peaks arising
from the filter input from falling between neighboring, rele-
vant peaks in the control signal (Penrose 2001). This may also
help in averaging out interference patterns between peaks of
the incoming signals.

At frequency bands in which the filtering signal has very
low level, it might give unfortunate results to divide by its
power spectrum. For this reason it is usually wise to put some
sort of limit on the gain that will be applied when filtering it.
There are two places in the chain where this might be done.
The most logical-sounding spot is after computing the gain as
a quotient of the two power spectra. This control appears as
“max gain” in the block diagram. Gains greater than a fixed
threshold are simply limited to that threshold.

An alternative viewpoint is to regard the filter as having
two stages, the first in which the filtering signal is “whitened”
by dividing by its own amplitude (so that the resulting spec-
trum has equal energy at all frequencies), and then applying
the spectrum of the control signal as a further stage. It often
yields good results to limit the gain of the “whitening” stage



instead of limiting the quotient of the two gains. This control
appears as “squelch” in the block diagram. Squelching effec-
tively sets a minimum strength below which the filter input
is considered silent, by limiting it below before dividing by
it. It is often useful to set squelch to decrease as a function
of frequency. (All these controls may vary with time and/or
frequency as desired).

Another possible control is the “depth” of the effect. If
we consider the identity filter (with unit gain) as one extreme,
and fully applying the timbre stamp as the other extreme, then
a continuum of mixtures is available between the two. Cross-
fading between the two is best done in units of Sones. One
can even choose “depth” values outside the range from zero
to one to generate deeper than 100% filtering, or to filter the
original input “away” from the timbre of the control input.

It is possible to morph one sound into another using two
timbre stamps applied in opposing directions, with one “depth”
ramped from 0 to 1 and the other from 1 to 0. One then cross-
fades from the first timbre stamp to the second one over a
suitably chosen sub-interval of the ramping period.

Finally, either to control foldover or as an effect in its
own right, one can low-pass filter the filter gains. This can
be brought about naturally by increasing the analysis win-
dow size (or making the squeeze factor of the control input
analysis greater than that of the filtering input), but this also
would have the effect of narrowing the analysis bandwidth. If
a higher bandwidth is desired one can return to a smaller win-
dow size and, in compensation, low-pass filter the filter gains.
This is an alternative to the strategy of convolving a suitable
kernel into the power spectra at the top of the diagram; each
has its own advantages and drawbacks.
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