Interprocess Communication and
Timing in Real-time
Computer Music Performance

Miller Puckette
MIT, IRCAM

More and more frequently we hear that real-time
computer music performers would like to be able to do
“high-level” real-time programming. What this means, I
think, {8 that they want to be able to run algorithms
which might require so much CPU time that they can't
be run uninterruptibly; higher-priority things need to be
able to steal the processor. Just doing these things in
hardware interrupt routines is not sufficient; that polar-
izes the world into the “urgent” and the "not urgent”,
whereas the latency/CPU-time combinations of tasks in
a real application often cover a much wider spectrum.
Moreover, few computer musicians want to debug inter-
rupt routines. 1 dom't.

An important limitation in real-time systems in
general has been the lack of effective ways to combine
small systems into larger ones reliably. The problem of
resource allocation becomes hard when there are con-
flicting real-time constraints on the objects requesting
the resources. The need for intercommunication places
yet other restrictions on the execution of tasks. Large
real-time systems which require a high level of interac-
tion among tasks, especially through communication or
resource-sharing, are hard to develop and verify. And
this is just the sort of system that computer musicians
now want to build

It is time to build a general real-time scheduler
which mekes these things easy to do. In fact, several
systems exist which solve some of the problems; the
main missing link now is context-switching. The smar-
test systems are machine-independently written (i.e.
they make no reference to clocks, system calls,
memory segments, and the like) and are based on
message-passing to allow the most complete modularity
we know how to put in a software system so far.

Central to current efforts to support more highty
developed real-time software environments is to find an
interobject real-tlme protocol to handle communication
and resource contention, in a way which allows confi-
dence that software will act as specified without
unpleasant surprises in situations the designers did not
forsee. The challenge ia to find a set of intercommuni-
cation and scheduling primitives simple enough to make
the verification problem tractable, yet powerful enough
not to place great restrictions on the range of possible
applications.

I would regard anything else, for example an
overall script describing the performance, or a score
language, as being optional and selectable by the user.
Naturally we ought to provide such things and even
make them capable of doing complicated things; but
this complexity must never appear in the dealings
between objects, only within them. Three other
features currently in vogue seem unnecessary, First,
there is no point in having a built-in notion of hierar-
chy; it is usually a hindrance. Second, 1 would drop

43

the idea of continuously-running processes; they create
overhead and anything they do can be done better
through 1/0 - related timing. Third, there should be
few defaults. Rather than hide complexity 1 would keep
it visible as an incentive to avoid it altogether.

The MAX real-time system.

Research on real-time systems is ongoing at many com-
puter music centers and a new real-time system is no
longer a rarity, but nontheless I would like to mention
another one which has been in development, under vari-
ous names, for about five years and is nearly stable
now. MAX (named for Max Mathews) is designed for
real-time computer music performances involving many
simultaneous digital signal-processing control tasks. It
is currently a soft real-time system, making no hard
guarantees about rmeeting its deadlines; there are
nonetheless hooks in it which might someday allow
making it a "hard” real-time system. It currently runs
on the 4X at IRCAM and with MID! equipment at MIT.

In MAX the tasks are cerried out by active objects
which communicate through message-passing. 1/0 is
also carried out through message-passing. hence real
sensors and actuators appear as other active objects.
A message sent from one object to another has an
associated start time and deadline. The message
causes its destination object to carry out some calcula-
tion; this calculation is stipulated to occur no sooner
than the start time and no later than the deadline.
This calculation is called the receiving object's method
for the message. It may in turn pass messages to
other objects, which have their own start times and
deadlines. A message is not required to be delivered
immediately when it is sent, but only when the
scheduler decides to deliver it, subject to its time con-
straints. Objects are allowed to have any amount of
internal state, but not to share it with other objccts.

MAX allows no context-switching from one method
to another, whether within the same object or from one
to another. Nonetheless, it could easily allow
interobject context switching since no resources are
shared between objects. This is seen to form the basis
of a simple exclusion system: an object can only be
doing one thing at a time but there are no exclusion
restrictions between objects. We will develop Lhis idea
further below; for now, we observe that this is a simple
paradigm for describing exclusion constraints which
allows a reasonable amount of flexibility.

Objects in MAX are reminiscent of the well-known
“monitor” abstraction. The main diffcrence is Llhal
instead of walting for access to a rmmonitor, with its
implications for process synchronization, objects send
each other messages entirely asynchronously. Later we
will gee that in certain cases we can allow synchronous
message-passing, but not to the level of generality

ICMC 86 Proceedings

SCHELNELD oPILCTS

STACK

RUMNVAELL - ME T34 BL GUEUS

(7roun'n5 Vpwe rJ)

FOR MESS AGE

OF LATEMY dy "\

(ACTIVE)

OFJECT COF
LATENCY J

LATency dz

MESS AGE ‘-’I /\[>

OBJECT CF
LATEMCY dy

C
/

STACK FRAME
FOR MESSAGE
OF LATENCY d2

LATENCY dz

T

'\,{

(suspended)
UNRUWNABLE -MESSAGE PooL
pom e 4
START-TInE DeADLINE
H
~NOw U L)
:’_v “ . 4 4+ 4.t -'
TiME
FIGURE.

offered through monitors. This asynchrony is crucial
for the design and verification of feasible real-time
schedulers.

The power of the MAX paradigm is in its ability to
specify more complicated actions from simpler ones.
In musical applications, long streams of actions are
required which can not oanly start and stop on com-
mand but adjust their tempo and other properties as a
result of other stimuli. This kind of scheduling is
beyond the scope of stateless graph-based models for
real-time computation, and yet process-based implemen-
tations of them quickly become very hard to schedule
reliably because of the ezxclusion problem, which is that
processes which share resources must be able to lock
each other out, creating an often intractable system of
constraints on the scheduler. 1 see in MAX a demons-
tration that the message-passing model offers a good
way to approach the exclusion problem in real-time
applications.

What a real-time system should be.

MAX in its current state has one major limitation
in its ability to carry out tasks according to real-time
constraints, which s its lack of context switching.
Every time we send a message to an object in MAX the
method for that message is carried out from beginning
to end, regardless of whether more urgent tasks appear
in the meantime. Thus any task, no matter how
urgent, faces a possible latency equal to the longest
any message could take to be handled. This can be
fixed In a way described in the following paragraphs; 1
will present the ideas in the form of a loose specifica-
tion for a proposed real-time system 1 call "X".

Like MAX, the X real-time system would consist of
a kernel and a collection of objects which carry out
specific real-time tasks. The kernel does nothing but

ICMC 86 Proceedings

44

handle 1/0 requests from objects (sending messages to
them on 1/0 completion) and schedule deferred
message-passing between them.

The user starts up X by allocating all the objects
he wants (which in turn might allocate others.) At
startup the objects do as much memeory allocation and
file 1/0 as can be forseen. Whatever 1/0 requests an
object will make of the kermel should be known to the
kernel in advance, since they will probably require
memory allocation.

A deferred message in X would have a start-time
and a deadline as in MAX, but only the start-time would
be specified by the sending process; the deadiine would
be obtained by adding the lafency of the recciving pro-
cess. This is in order to ensure that all messages sent
to an object have the same latency; why we want this
to be true is explained in the next paragraph.

Suppose a method is running whose associated
deadline is a second away, when 1/0 completes and
generates a message whose deadline is 1 msec from
now. We need to suspend the slow method while the
urgent one runs. This urgent method might send other
deferred messages in turn, causing a whole tree of
method routine calls all of higher urgency than that of
the original method. We can do all these context-
switches without fear as long as we necver pass a mies-
sage to the original object; its data may be in an
inconsistent state since it is already busy with another
method. But {{ we hold to the constant-latency rule
any message sent to that object will have a deadline
later than the deadline it already has; so we will never
want to carry out the method for that method before
finishing the suspended processing.

It would be desirable to pass some messages
directly, without pooling and scheduling them. This
would not only reduce overhead but would allow the

receiving object to return information to the sending
one. This can be done without violating the mutual
exclusion constraint as long as an object never passes
a message to another object of higher latency (because
such an object might be in the middle of another
method which has been interrupted, and passing a new
message to it would violate the exclusion constraint),
and as long as the scheduler is informed so that it can
maintain a software priority which would prevent 1/0
from causing rmessages to be delivered to the lower-
latency object to which we are sending the “direct"
message. We expect that this will be a worthwhile pro-
vision, since many messages can be treated in this way,
and verification of real-time operation is not compli-
cated much by it.

An implemented system should contain some form
of input logging in order to recreate situations in which
applications do something unexpected. Input logging is
simplified by the discreteness of this scheduler; we
need only keep a count of the number of messages the
scheduler has delivered before a new input arrives in
order to be able to recreate the sequence of events
exactly. This and the ease of examining the single
stack should make applications easier to debug.

Example.
The “schedule” object would replace the “play” CP

in MAX. It takes a stream of "tempo” messages to
convert ‘“score-time” to “real-time” to decide when to
send the desired messages. It is presented here in
non- language.

definition of "schedule” object
instance variables:
score gettable-settable list of beat-tagged "notes”;
de tesks to carry out. These tasks are general
HJunction calls and thus are capable of anything.
notes-left-to-play
painter to next item in score
score-time, real-time, scare-per-real
;current relationship of score-time to real-time
;a8 the equation of a line in point-slope form
is-playing
flag to indicate that playback is turned on
method: start (beat-to-start-at score-per-real-to-start-at)
set notes-left-to-play according to given beat
set tempo (i.e. score-time, etc)
turn on is-playing
wend self a “timeout” message.
method: timeout ()
if in-playing is off ignore the timeout, otherwise:
play all notes whose play-times {aa estimated via
cwrent tempo) have arrived (i.e. send
the associated message given in the acore.)
send self a deferred “limer” message to arrive at
the earlier of 50 milliseconds and the
calculated play-time of the next note
method: stop 0
: turn off is-playing
method: set-tempo (new-score-time, new-real-time,
new-score-per-real)
sel the appropriate instance variables.

We could get the object above to play midi-style scores
as follows. In the score we write,

45

{(4 2 send-message piano-pleyer note-on 74 50)
(5.5 2.75 send-message piano-player note-off 74)
(5.5 2.75 send-messege piano-player note-on 74 50)
)

where the first number is beat, the second is score-
time (ie. a beat value which has been warped to
reflect any tempo and micro-timing information which
might be available before the performance). The
remainder of the message is what to do. The simplest
way to manage this would be to apply a function to a
list of arguments, in this case "send-message” to the
object “pianc-player.”

Obviously, there is no restriction to sending the
equivalent of “midi" messages; the score could be a
bunch of parameter updates or messages to 4x-
instrument-driving “unit generators.” If you want the
utmost generality, just use “eval” and you can do any-
thing you want.

Example at the user level.

Suppose a “user” of X wanted to play a score with
an instrument called “piano-player’ as above. His
instructions might look like:

(setq bag (allocate-object play))
;allocate a play object
(setq piano-player (allocate-object ...)
;met up a piano-player, which converts MD! messages
to sound
(send-message 'bag 'set-score {read 'pianc-file))
;read score into play object
(send-memsage ‘bag ‘start 0 1)
wtart playback at beat 0, default tempo

Note that there is no “go” instruction as in 4xy. oor a
“startup” and "run” phase differentiation as in MAX. We
are in fact running in real-time during the whole ses-
sion; while "bag" is playing along we would be able to
allocate and start other playback object, although there
would be a gap in the first one while the second was
reading its score in from disk. The more forsightful
user would do all the allocations first and then start
the music. To implement a real-time lisp reader inter-
face as in the example above, we need a read-eval-print
loop running during the performance. In fact this
would be an object which gets messages when tty 1/0
completes, whereupon it sends data to the reader.

Graphics.

Obviously it would be nice to have graphical
representations of objects, with mouse-driven configura-
tion and message-passing. This could get complicated
fast. 1 think it is possible to segment this off into a
object itself, whose job is to display other object which
it knows about. The window manager object would opcn
the mouse and the tty keyboard (through the kerncl)
eand the other objects, when they opened their tty con-
nections, would somehow get pointed at the window
manager instead of the kernel. Then whenever tty
input comes to the window manager, the manager
would send it on to whichever object is ‘“current”
(selected via the mouse.)

Objects which wish to have tty or graphical output
also send it to the window manager which puts it at
the right place in the screen. In the case of graphical
output, the object might just see a bitmap which is

ICMC 86 Proceedings

invisibly transformed to the right place and size. It is
important that the graphics NOT be considered an
integral part of a system, since it is doubtful that such
graphics can be made easily portable to future sys-
tems. Nonetheless the graphics will be a powerful tool
and are worth developing well.

Implementation_

It is of obvious importance to limit the computa-
tion overhead associated with the real-time scheduler
itself. This overhead generally consists of the costs of
computation devoted to making scheduling decisions,
context-switching between processes, and communication
between processes. In this section we describe a pro-
posed implementation of an earliest-deadline scheduler
for a message-passing real-time system; it will be seen
that the major cost associated with the scheduler
comes from interprocess communication, a situation
which suggests that algorithms which work well under
this scheduler will also work well in distributed systems.

Deferred messages can appear when another object
creates one (while it itself is handling a message) or as
a result of 1/0 completion. They may or may not be
immediately runnable, depending on their start-times.
The scheduler thus stores the runnable ones and the
nonrunnable ones in separate pools; at clock ticks mes-
sages in the nonrunnable-message pool may become
runnable and are moved to the runnable-message pool,
either at interrupt time or as a scheduled task itseif.

Suppose the latencies which arise in the system
are d;<de< - - - d,. A runnable task at latency d
appears as a message which is to be passed to an
object of that latency; hence the scheduler keeps a
pool of deliverable messages, which we organize accord-
ing to latency as shown in the figure. A message is
passed to an object by creating a stack frame for the
object’s method for that message and then executing
the method as a subroutine.

The scheduler keeps the runnable-message pool in
the form of a separate queue for each latency. The
scheduler always sends the first message in the lowest-
latency nonempty queue. When the associated method
returne the scheduler sends another message and so
on. The only situation in which we need to interrupt a
method before it is done is when 1/0 (including the
clock) causes a lower-latency message to appear. The
figure shows the situation in which a message of
latency d, has appeared while a method of latency dp
was running. In this case the scheduler causes a
Software interrupt to occur by pushing a new stack
frame onto the stack and executing the lower-latency
method. When this method returns (and after all other
messages resulting from it whose latencies are less
than d; have been serviced) we pop the stack back to
the prior frame at latency dy and resume the associ-
ated method.

Note that we do not have the bother and expense
of maintaining several stacks. This will keep context-
switching overhead lower and greatly ease debugging.
The major cost associated with this implementation will
be allocating space for messages and copying them to
the runnable-message pool; the scheduling decisions
themselves are quite inexpensive, especlally if the
number of difterent latencies required is small.

At the lowest level possible 1/0 should be handled
inside the kernel; but we would like to work inter-
changeably with “true” 1/0 and with the result of some
other processing. For instance, if the object "KXB8" is
parsing MIDI from a KXBB and you want switch number
5 being pressed to result in a message being sent to
object "bob“ containing the data “bang”, one could say,
(send-mess 'KXB8 ‘get-I0 ‘switchdown 5 ‘bob 'bang) and
when the switch was hit bob would get the message
(switch-I0-done bang). The reason for the “bang” is so

ICMC 86 Proceedings

46

that “bob" can tell which among all the switches bob

ht have opened was the one that fired. In the case
of other 1/0 (pot motion, for instance) the message is
sent with the pertinent data, as in {pot-l0-done bang
318) to indicate that the pot's value has changed to
319.

1t is interesting to notice the number of ideas in
common between this presentation and that of [Boyn-
ton]. 1 would like to thank Lee Boynton and David
Wessel for their part in many animated and illuminating
conversations, to which this paper owes much.

Reference.

Boynton, et al, “Adding a Graphical User Interface to
FORMES", these Proceedings.

