
48

fivE iNCiTEMENTs
fOR ElECTRONiC MusiC MakERs

MiLLER PUCKEttE
University of California, San Diego

msp@ucsd.edu

ABStrACt

omputers enable the musician to rethink any and
all aspects of the way we create and enjoy music.

Rather than simply use the computer as a cheaper recrea-
tion of pre-digital technologies, to take full advantage of
its power we should seek music-making approaches that
take specific advantages of what computers offer that the
traditional music-making environment doesn’t. in this pa-
per I offer five examples of uses of computer technology
that came of my own search for new musical ideas that
are specifically afforded by computers. These are offered
in the spirit of inciting the reader to explore them further.

As far as we can tell, “computer music" was first made
in a spirit of fun, not as an attempt to make high art. in
an interview with Park (2009), Max Mathews suggests that
John Pierce put him up to writing MUSiC, if not exactly
as a lark, then not exactly along the lines of Bell Labs’s
serious endeavors either. Even earlier than that, CSiRAC’s
musical output was clearly intended as play, not work. Se-
rious computer work, the sort that created output on line
printers and punched cards, was generated in the service
of science and technology (often warlike), and a bit later,
for handling financial ledgers and transactions. It is doub-
tful that many people in the 1940s and 1950s foresaw that
computers would be primarily used today as media de-
vices, replacing land-line telephones, tVs, kitchen timers,
and automobile speedometers. it would be particularly
urprising to a computer programmer of 1950 to learn
that most computers after about 1995 would have audio
inputs and outputs.

that there is almost always a computer, and perhaps
hundreds of them, involved whenever we make or listen to
music implies that all music is now computer music, so that
the term “computer music" itself has lost all meaning. this
also implies that the heroic period of electronic music,
which reached roughly from the time of the telharmonium
until sometime around 2000, is now over and it’s time we
electronic musicians think of ourselves as normal. it’s sad
to lose the outsiderness we used to enjoy, but on the other
hand it’s a comfort to consider that an electronic musician
today, unlike, say, Mathews in 1957, can reasonably hope
for gainful employment making music.

that heroic period essentially saw the maturation of a pla-
tform for music making, including digital preparation of sco-
res, recording, mixing and mastering, audio analysis, proces-
sing, and synthesis, and the design of interactive electronic
musical instruments. With the one very important exception
of recording, this music-making is all done in the same pro-
duction model as it was in the tenth century. the main thing
we seem to have accomplished by digitizing the process is
to make it far more flexible and powerful, and more open
to participation by people outside the old power structures.

And yet the computer also brings a vast collection
of new possibilities for music production, that are novel
precisely because they lie outside the performance-spa-
ce- and recording-studio-centric model. What follows is a
description of five ideas, none of them well fleshed out,
that serve as examples of what i mean by this. these are all
things i’ve personally tried or am in the process of trying.
I mean the following descriptions as incitements: perhaps

C

To appear in IDEAS SONICAS, Morelia, Mx. Sept. 2020

49

you, the reader, will figure out how to twist or alter one of
them to your own musical ends.

INCItEMENt 1: rElINqUISH CoNtrol

Suppose you build an oscillator out of an unstable reso-
nant filter, by pushing its feedback gain to the point of
oscillation (and applying a saturation function here or the-
re in the feedback path so that its state stays within set
limits.) It being a filter, you can also apply an input signal,
perhaps a sinusoid at a frequency different from the reso-
nant frequency. The circuit is as shown in figure 1. To get
a resonant frequency of ω radians per sample, we can set
x = r cos ω, y = r sin ω, with r, the feedback gain, set to
slightly more than one.

this circuit can oscillate either at its own resonant
frequency or at the frequency of the input signal, depen-
ding on several factors. it can even output more than one
possible stable behavior from the same input values de-
pending on the path by which those values have taken
previously over time. this is one form of “soft synchroniza-
tion" of an oscillator, and it was a feature of Buchla’s dual
oscillator module 258.

now suppose we make three (or more) of these, and
feed their outputs back into their inputs, as in figure 2.
now, in addition to the parameters belonging to the indi-
vidual oscillators (two apiece), we have to specify a matrix
with nine elements, one for every possible feedback path.
(if this is an uncomfortably large number of parameters,
we could stay within a lower-dimensional subset of the
possible parameter combinations).

the result is essentially that the three oscillators are
each soft-synchronized to mixtures of all three of their
outputs. Depending on the 15 parameters values at any
time, the oscillators may eventually stabilize to one or two
or three resultant frequencies, or may behave chaotically.

now consider this as a possible musical instrument,
to be played using a physical controller. the result could
be similar to what happens when I try to play a violin: we
definitely can tell that what I put in is causing the sound
output, but on the other hand, imperceptible to the au-
dience is the fact that i actually don’t know (and certainly
can’t control) what kind of sound will come out.

the composer Kerry Hagan and i have used an instru-
ment of this type in a duet we call “Who was that timbre i
saw you with?" first presented at NIME 2018 (Blacksburg,
Virginia, USA). We map LEAP controller hand skeleton
location data (which comes in roughly every 10 msec) to
various feedback parameters to make a highly unstable,
yet expressive, instrument. A short video excerpt can be
found on the web page of our duo oscillators can be
inserted in many points in a classical voltage-controlled
synthesis network (either real or in a patchable compu-
ter environment), on either an audio or control time-scale
(i.e., as waveform or control voltage generators). there is a
vast tradition of making semi-autonomous synthesis algo-
rithms that run in real time and are only partially controlled
by humans; early examples include the work of Morton
Subotnik and Salvatore Martirano. the incitement here
is to note that such behaviors can come out of extremely
simple networks that are highly pluggable and recombi-
nable.

An earlier version of this idea appears in Puckette
(2017) with supporting patches on

msp.ucsd.edu/ideas/icmc15/ .

INCItEMENt 2: SAyING No to rANDoMNESS

When you’ve been working on a patch that generates a
sound palette you’re happy with, but when the results co-
ming out of the speaker seem a bit too static, it’s a temp-
tation to throw in a pseudo-random number generator or
six to create some what Buchla called “uncertainty". John
Cage took this a step further, asserting that throws of the
i Ching or star charts could be used as streams of infor-
mation (in the information-theoretic sense) from an unk-
nowable source that might contain mystical properties
that would somehow be more authentic than pseudo-ran-
domness. this sort of mysticism hearkens back to pre-enli-
ghtenment ideas about music.

one could instead go in the opposite direction and ex-
ploit the determinism of the pseudo-random number ge-
neration process to imbue the “random" sequences with
discernible patterns. if they are too readily discernible the
results might become predictable. But there is a spectrum

IN + ()x y

-y x

saturatedelay

z -1

out

()a b c
d e f
g h i

z -1

out~~~

oscs

figure 1. A saturating filter considered
as a forced oscillator.

figure 2.

50

of discernibility on which we can seek points where there
is a perceptible signal but not a predictable one. this is
what we hear when we listen to very well-crafted classical
music: we hear the logic, to the point that we couldn’t ea-
sily change any individual note to a better one, but none-
theless each new musical moment brings a surprise, even
when we’ve heard the music before.

A pseudo-random process starts with a seed and, at each
of a sequence of steps, applies a highly irregular function
to the seed to generate a new one. the sequence of seeds
probably contains far more bits than we need, so we usually
just take a few bits out at each step. the more irregular the
function is, the “better" we consider the generator.

So here’s a truly bad one: our state is the numbers from
0 to 12, and the function is “add 8 mod 13". Starting with
an initial seed of 2, for example, we get the sequence

2,10,5,0,8,3,11,6,1,9,4,12,7,2,after which it repeats.

Despite the obvious inadequacy of this as a random
number generator, with a few simple transformations we
can make things much more interesting. to start with we
could just take 1 for numbers 9 or greater, 0 otherwise: 0,
1,0,0,0,0,1,0,0,1,0,1,0,0,.... now pick out, say, even num-
bers, and you have a sort of contrapuntal response: 0,0,1,
0,0,1,1,0,1,1,0,0,1,0,....

For more “bunchiness", if you want it, take the oR of
the two binary sequences above, or a 1 if the second se-
quence has output 1 more recently than the first one has.
now change the three generating numbers 8, 13, 9 and
the initial seed 2 and you can sprout a whole patch’s worth
of not-very-nonuniform sequences that can supply all the
parameters you need to fill your parameter space.

For slightly higher complexity, if you find the above too
repetitive or guessable, consider that the initial sequence
above is just the linear function x[n]=(8n+2) mod13,
and try a quadratic one of the form y[n]=(an2+bn+c)
modd. For best results,start out with d a prime number.
incidentally, these are the sequences that control the phy-
sical dimensions of Schroeder (1979) diffusers.

now you’ll never have to use a pseudo-random number
generator again. And your music might sound less random.

INCItEMENt 3: HIDING PItCHES
IN INHArMoNIC SPECtrA

i don’t know if anyone besides me has tried to make a nice
bell sound by writing down an arbitrary collection of fre-
quencies for partials (or using a pseudo-random number
generator; see above), but i can tell you that the results will
not sound like a nice bell, but perhaps more like a sauce-
pan lid. Most people will agree that saucepan lids don’t
sound as sweet as well-crafted bells or chimes. But a close
look at the spectrum of a real proper bell or two doesn’t

reward us with an understanding of how to lay out partial
frequencies (and decay times, and strike-dependent ran-
ges of likely initial amplitudes) for our own bespoke bell
sounds. And more generally, if you want to make a series
of inharmonic spectra for purposes other than making a
collections of bell sounds, the same question, how to or-
ganize the frequencies of the partials, comes up.

Philippe Manoury, in his piece Jupiter for flute and live
electronics (1987), came up with an idea: take two genera-
ting frequencies f and g, and pretend that we’re making an
FM tone with modulation frequency f and carrier frequency
g. the frequencies of our spectrum are just those that FM
would give us: |af + g|, where a ranges, for instance, from
-14 to +14, skipping a=0, and taking absolute value to yield
nonnegative frequencies. the result contains neither of the
generating frequencies f or g (unlike true FM in which the
carrier would usually be present). the time-varying amplitu-
des of the partials are determined in an unrelated way, and
the result does not resemble FM except in that its harmo-
nicity or inharmonicity reflects the relationship between the
generating frequencies f and g. this class of spectra has two
unfortunate characteristics: first, there aren’t many different
ones; and second, the frequencies are rather uniformly laid
out, whereas it might sound more natural to have more irre-
gularly bunched frequencies.

the value g appears many times as the difference be-
tween frequencies in the spectrum. taking note of this, we
can consider making other subsets of values |af + bg + ch|,
in which a, b, and c are small integers and f, g, and h are
three generating frequencies. if we merely allow a, b, c to
range freely between fixed limits, the result will again be
too regular, and moreover it will also be much more den-
sely clustered than any natural spectrum. But if we then
apply a sieve, allowing perhaps 1/6 of the values through,
then we would still expect many pairs of remaining fre-
quencies separated by either f, g, or h.

the result is an algorithm Philippe calls “3f", and uses of-
ten in his new compositions. the resulting sounds somehow
obliquely reflect the three generating frequencies without
being perceived as containing them directly. And depen-
ding on the ranges of coefficients a, b, c and the type of sieve
employed (see previous incitement for some ideas), there is
an inexhaustible variety of sounds available.

A realization of the 3F algorithm is available on
msp.ucsd.edu/ideas/bell-designer/ .

INCItEMENt 4: ANtAGoNIStIC MArkov CHAINS

in some way, for music to function it cannot simply remain
at rest. So, for instance, you can’t just figure out which of all
notes is the sweetest one and play that one over and over.
You need, instead, some source of tension or incomplete-
ness to propel the music forward (whatever that means).
this is perhaps yet another sense in which randomness

51

has limited musical power—it can bring about perplexity,
but not true tension or expectation of resolution.

one idea that might address these concerns is to formu-
late the process of music composition as a process of optimi-
zation, as described in truchet et al. (2001). instead of seeing
music composition as an attempt to fit into a set of hard cons-
traints (often with either no solutions or lots of them to choo-
se among), we set ourselves the problem of finding a time
sequence that optimizes among a suitably thorny collection
of soft (that is, breakable) constraints. one way to do this mi-
ght be by setting Markov chains in conflict with each other.

Markov chains are usually thought of as random proces-
ses, but one way to use them deterministically is to consider
them as hidden and to use the Viterbi algorithm to find the
sequence of Markov chain states that is most likely given a
sequence of observations about the states. the observations
should contain some information about the states but be in-
complete enough to allow for many “solutions" of which the
Viterbi algorithm finds us the best one. All we then have to
figure out is how to generate the observations.

Now for the incitement: one way to get an interesting
sequence of observations could be to set two or more
Markov chains the problem of generating the same ou-
tputs among them all. there can be probabilistic depen-
dencies between the chains as well as between them and
the output sequence. For example, if we are making a to-
nal melody, one chain could be harmony (i, iV, V, etc) and
another one keeping track of our location in the measure.
the observable could be pitches, and one rule might be
that we’re more likely to output a pitch belonging to the
current chord if we’re on a downbeat (figure 3).

We can imagine having chains controlling many as-
pects of pitch, rhythm, and other less note-oriented mu-
sical properties, all negotiating among themselves under
the constraint that they have to somehow agree on a se-
quence of output tokens. We then take whatever “solu-
tion" has the highest probability as our output.

i have tried this in some test situations involving up to
5 Markov chains, with various kinds of interdependencies,

and managed to output non-repeating sequences up to
about 100 tokens long (being a finite-state process, the
thing is doomed to repeat sooner or later). My guess is
that things will start to get interesting when the size of the
state space (the product of the state spaces of all of the
chains) reaches a million or so, at which point we should
be able to output sequences that take more than a thou-
sand tokens to repeat. (this also happens to be the point
at which the computation time might start to become one-
rous). i plan to keep working on this idea; it’s too early to
know whether or not it will pan out.

INCItEMENt 5: SCorE AS vISUAlIzAtIoN of DAtA

My last incitement is the most ambitious and least certain of
yielding useful results. it is an old idea, traceable to the SSSP
project of Buxton et al. (1985) via Animal by Lindemann and
de Cecco (1991). it’s also my original aim in writing Pure Data.

Although more people think of Pd as a Max/MSP clo-
ne, that aspect of it is only incidental - the Max/MSP pa-
radigm, somewhat simplified, seemed the most sensible
way i could offer real-time interactive audio and other
media to what is essentially a different idea. that idea is
reflected in the “4.data.structures" examples in the Pd do-
cumentation, but is still largely unrealized. it is, essentially,
to make an environment for writing scores on a computer
that would not be inert documents like classical scores,
but instead would be active data structures, capable of
updating themselves, communicating with real-time envi-
ronments during performance, and of being viewed and
edited in multiple ways. one example from a help window
is shown in figure 4.

the data being visualized can be read and written by
Pd objects. this would seem to be a very powerful way to
make electronic music scores, but many problems remain.
For example, classical musical valuse such as pitches and
rhythms are much harder to show and/or edit in this sort of
representation than they would be in a common practice no-
tation editor; and, like it or not, these two aspects of a musical
sound are often the most salient ones. Second, things tend
to collide in this representation since the position of objects

figure 3. Hidden
Markov chains with
interdependencies.

figure 4. Visualized data structures in Pd. This is
from the help window for Pd’s “plot" object.

I

IV V

re

do mi

4

1 2

3

interaction

52

is part of their numerical data—to move them out
of the way to look underneath would be to change
them. third, a graphical programming environment
such as Pd is badly adapted to scouring heaps of
data. Reading and writing the data from Pd, via the
“pointer" object and its relatives, is an unwieldy and
sometimes baffling process.

This idea could use some fresh
thinking.

refereNces

Buxton, W., et al. 1985. “The evolution of the SSSP score-editing tools.” In
C. Roads and J. Strawn, eds. Foundations of Computer Music. Cambridge:
MIT Press, pp. 376–402.

Lindemann, E., and M. de Cecco. 1991. “ANIMAL—a Rapid Prototyping
Environment for Computer Music Systems.” Computer Music Journal
15(3):78–100.

Park, T. H. 2009. “An Interview with Max Mathews.” Computer Music Jour-
nal 33(3):9–22. Puckette, M. 2017. “The Sampling Theorem and its discon-
tents.” ICMC Keynote talk,

reprinted in Array Magazine .

Schroeder, M. R. 1979. “Binaural dissimilarity and optimum ceilings for con-
cert halls: More lateral sound diffusion.” The Journal of the Acoustical Socie-
ty of America 65(4):958–963.

Truchet, C., C. Agon, and P. Codognet. 2001. “A Constraint Programming
System for Music Composition, Preliminary Results.” In Seventh Internatio-
nal Conference on Principles and Practice of Constraint Programming (Pa-
phos).

