
Processes in real-time computer music

Miller Puckette
Department of Music

University of California, San Diego
msp@ucsd.edu

Abstract

The historical origin of currently used programming
models for doing real-time computer music is exam-
ined, with an eye toward a critical re-thinking given
today’s computing environment, which is much dif-
ferent from what prevailed when some major de-
sign decisions were made. In particular, why are
we tempted to use a process or thread model? We
can provide no simple answer, despite their wide use
in real-time software.

Keywords

real time, computer music, processes, parallelism

1 Introduction

The language of real-time computer music bor-
rows from three antecedents that were fairly
well in place by 1985, before the field of real-
time computer music took its current form.
Classical computer music models, starting with
Max Mathews’s MUSIC program (1957), were
well studied by that time. The field of computer
science, particularly operating system design,
was also taking shape; perhaps it may be said
to have matured by 1980 with the widespread
adoption of Unix. Meanwhile, a loosely con-
nected network of electronic music studios arose
in the 1950s whose design is directly reflected in
the patching paradigm that is nearly universal
in modern computer music environments.

Both computer science and music practice re-
lied on a notion of parallelism, albeit in very
different forms and terms. In computer science,
abstractions such as process and thread arose
from the desire to allocate computing resources
efficiently to users. In music, thousand-year old
terms like voice and instrument imply paral-
lelism, both on written scores as multi-part mu-
sic were notated for both practical and dogmatic
reasons, and in real time as live performers sang
or played the music in ensembles.

In both computer science and computer music
language, abstractions modeled on processes or

Figure 1: Submitting jobs to a computer circa
1960.

threads are used to try to describe the passage
of time and also to express, and/or take advan-
tage of, parallelism. But the aims in computer
science (efficiency) are different from those in
computer music (as an aid to organizing musi-
cal computation).

In the sections that follow I will try to trace
these developments historically to see why we
treat processes and related concepts in the way
that we now do in real-time computer music sys-
tems. I hope to help clarify why the current
practice is what it is, and perhaps contribute
to thinking about future computer music pro-
gramming environments..



Figure 2: Interactive jobs may stall in mid-
computation to ask the operator for more in-
formation.

2 Computer science terminology

In classical operating system design theory, the
tasks set before a computer were organized into
jobs. A prototypical computer (fig. 1) sat in a
room waiting for jobs to be submitted to it, per-
haps in the form of stacks of punched cards. The
computer would execute each job in turn, hope-
fully producing output which could also have
been stacks of punched cards. At least three
problems arise in this scenario:

• Idleness. The computer sometimes had
nothing to do and would be idle; idle time
reduced the total amount of computation
the computer could carry out.

• Latency. Sometimes a job would be sub-
mitted while another job was running (as
in job number 2 in the figure); in this case
the job would join a queue of waiting jobs.
This meant that the submitter of job 2 had
to wait longer to harvest the output.

• Unanticipated data needed. For many
types of jobs you might not be able to pre-
dict at the outset what data will be needed
during the computation. The “job” model
doesn’t offer a way for the computer to ask
the operator for additional information it
might need.

The first two of these only impact the effi-
ciency of computation, but the third requires
that we go back and amend the job model al-
together; so we will consider that first. Figure
2 shows an amended model of computation al-
lowing interactive jobs that may stop execution
part way through and ask the operator for more

information. When this happens the job is con-
sidered stalled and the computer sits idle.

Computer science’s answer to the problems
of idleness and latency have been to intro-
duce time-sharing and multiprocessing. Time-
sharing is the practice of keeping several jobs
in progress at the same time, so that when one
job stalls or finishes, the processor’s time can
then be devoted to some other job that needs
running. Perhaps this second job will later stall
or finish but meanwhile, too, the first job may
have become runnable again (having received a
new dose of data it had stalled waiting for). The
computer would then return to job 1. One could
also fill idle time by keeping low-priority jobs
waiting in the background (ones whose latency
requirements were less strict) that would run
whenever all higher-priority jobs were stalled.

The advent of multiprocessors made it possi-
ble to further improve throughput in the same
way that having several short-order cooks in
a diner can speed orders. As the number of
jobs and the number of available processors in-
creases, there should be fewer wild swings in
the availability of processing power to satisfy
the needs of submitted jobs.

The chief tool for time-sharing and multipro-
cessing is an abstraction called a process, which
can be thought of as a virtual computer. When
a job is submitted, one creates a brand new (vir-
tual) computer to carry it out, and once the job
is finished, the virtual computer, or process, is
scrapped. Each job may run in ignorance of all
other jobs on the system. Each process gets its
own memory and program to run, and its own
program counter, abbreviated PC, that records
where in the program the computer is now run-
ning. When the computer switches from run-
ning one process to another one, the memory
and PC (and other context) of the first pro-
cess are retained so that they are available again
when the first process is again run in the future.

Although at the outset we could consider all
processes to operate in complete ignorance of
each other, at some point the need will certainly
arise for processes to intercommunicate. Com-
puter science offers at least two paradigms that
we will want to consider: message passing and
shared memory (see fig. 3). Of these, the mes-
sage passing paradigm is less general but eas-
ier to analyze and make robust. In message
passing, one process can simply send another
a packet or a stream of data, that the second
one may read at any later time. This is similar



Figure 3: Process intercommunication using
messages and shared memory.

conceptually to how people intercommunicate.
The chief difficulty using this paradigm is that it
does not allow a process to interrogate another
directly, except by sending a message and then
stalling until a return message is received. This
might greatly increase the latency of computa-
tions, and worse yet, if we adopted this strategy
for interrogation, two processes could conceiv-
ably interrogate each other at the same time, so
that both end up deadlocked.

In the shared-memory paradigm two pro-
cesses communicate by reading and writing to
a shared area of memory. We can then arrange
for one process to be able to interrogate another
one simply by looking in the appropriate loca-
tion in its memory (which, by prior arrange-
ment, we had arranged to share). But now we
have to work hard to make sure that our two
processes will carry out their computations de-
terministically, because the order in which the
two access the shared memory is not controlled.
We would need to set up some convention to
manage this. (One such convention could be to
format the shared memory into message queues,
thus returning us to the situation described in
the previous paragraph.) In general, there is no
final answer here; any paradigm will either be
onerously restrictive or dangerously permissive,
or both, and to make good choices will require
careful attention to the particulars of the task
at hand.

3 Electronic music terminology

The first widely used model for computer music
performance was what is now called Music N,
developed over a series of programs written by
Max Mathews starting in 1957[Mathews, 1969];

Figure 4: The Music N paradigm

by 1959 his Music 3 program essentially put the
idea in its modern form, as exemplified in Barry
Vercoe’s Csound program. These programs all
act as “music compilers” or “renderers”, taking
a fixed text input and creating a soundfile as a
batch output. Although Csound has provisions
for using real-time inputs as part of its “render-
ing” process, in essence the programming model
is not interactive.

Music N input is in the form of an orchestra
and a score, as shown in fig. 4. The orchestra
can be thought of as emulating a 1950s-era elek-
tronischemusik studio, in which the hardware
is organized in metal boxes with audio inputs
and outputs, such as tape recorders, oscillators,
pulse generators, filters, ring modulators, and so
on. These would be connected by audio cables
into a patch. Furthermore, the boxes had knobs
and switches on them that allowed the user to
supply parameters such as the frequency of an
oscillator.

In the Music N paradigm, the studio and its
patch are represented by the orchestra. Al-
though the actual orchestra file is in a program-
ming language, when publishing algorithms it
has traditionally been represented as a block
diagram showing a collection of unit generators
and the audio connections between them.

The score is organized as a list of time-tagged
records that are (either nostalgically or depre-
catingly) called score cards. In addition to one
or two time tags (a “note” has two, one for its
start and one for its end), a score card has some
number of numerical parameters that may be
supplied to the unit generators. The score is like
a process in that it runs sequentially in time.



Unlike the computer science notion of a pro-
cess, however, the score advances and waits ac-
cording to timing information in the score cards.
Each score card has an associated logical time
at which it is run.

Things get interesting when we try to adapt
this paradigm to run in real time. We could
simply connect the Music N output to a real-
time audio output; but presumably our reason
for wanting to run in real time is to be able
to use live inputs to affect the sound output.
Taking the opposite direction, we could require
that the user or musician supply all the param-
eters in real time using knobs and switches, but
this quickly reveals itself to be unmanageable
for the human. We will need to make intel-
ligent decisions, probably different for any two
musical situations, as to how the live inputs will
affect the production of sound. More generally,
our problem is to design a software environment
that will give a musician the freedom to make
these choices.

In the early 1980s two influential real-time
synthesizers were designed, the Systems Con-
cepts Digital Synthesizer (or “Samson Box”)
at Stanford[Loy, 1981], and the 4C synthesizer
at IRCAM[Moorer et al., 1979][Abbott, 1981].
Both machines ran a fixed computation loop
with a fixed number of steps, with one loop fin-
ishing at each tick of the sample clock,

Each of these machine designs got some
things right for the first time. The Samson
box was the first working machine that could
do sample-accurate parameter updates in real
time. To do this, the fixed program contained
an update mechanism in which items were taken
off the head of a time-tagged parameter update
queue. This queue was filled by the Foonly con-
trolling computer some tenths of seconds, or
whole seconds, in advance, so that the Foonly
did not have to preform parameter updates syn-
chronously. This approach had one major lim-
itation: it did not take into account the possi-
bility of real-time interaction. It was physically
possible to jump the queue for “real-time” pa-
rameter updates, but then one lost any ability
to determine the timing of such updates accu-
rately.

The 4C machine and its controlling software
4CED were more explicitly designed with real-
time interaction in mind, although the timing
was less accurate than with the Samson Box.
In the 4C parameter updates were effected at
interrupt level from the controlling computer;

PDP11 4C

update queues

clocks memory bus

operators

memory map

interrupts

Figure 5: The 4C and the 4CED environment

the computer was interrupted by the 4C when
one of a bank of timers ran out.

The 4CED user conceptualized the 4C as a
collection of 32 independent processes (Abbott’s
simile was a collection of 32 music boxes that
the user could start at any time). The guiding
idea seems to have been that a performer could
play a keyboard with 32 keys on it, but each key,
rather than being restricted to playing a single
note, could in turn set off a whole sequence of
actions. This would seem to greatly magnify
what the keyboard player could do.

It seems also to have been on people’s minds
that the playing of sequences could usefully be
unified with the business of scheduling break-
points to a pitch or amplitude envelope consist-
ing of many segments. Both the sequencing of
collections of notes and the sequencing of en-
velope breakpoints led many computer music
researchers to think that a process model, as
would appear a time-sharing operating system,
was a perfect metaphor to reuse in the design
of real-time computer music control systems.

Both the Samson box and the 4C maintained
lists of parameter updates that resemble Mu-
sic N scores in that they have sequences of nu-
meric updates for synthesis parameters. In the
case of the 4C, the scheduling of the updates
could depend on real-time inputs. Both these
systems, but particularly 4CED, modeled musi-
cal sequences in ways that resembled processes
in the computer science sense.

4 Processes in modern computer
music environments

The four most widely-used computer music en-
vironments are probably Csound, Max, Super-



collider, and Pd. (Since this is a linux confer-
ence, we won’t consider Max here, but only the
closely related Pd.) Of all these, Supercollider
is unique in that it explicitly adopts a process-
like model, which offers at least two advantages.
First, it allows the user to “think” in processes
in order to express the parallelism that is desir-
able for polyphony, for instance in voice banks
or collections of sinusoids in additive synthesis.
Second, it allows parallelism in the signal pro-
cessing engine so that multiprocessors can be
exploited.

A newer environment, ChucK[Wang and
Cook, 2003], also uses a thread model and aims
in part to make the creation and destruction
of processes (named “shreds”) as lightweight as
possible. This language is still under active de-
velopment and may lead to new ideas for adapt-
ing the concept of process to interactive com-
puter music environments.

The process models in both Supercollider and
ChucK both lend themselves well to genera-
tive applications, where processes may need to
quickly and efficiently create new voices or in-
stances of computational algorithms. In both
environments the creation and destruction of
processes is highly optimized so that large num-
bers of them may be created and managed dy-
namically.

Pure data, on the other hand, offers no model
of a process and therefore is badly adapted
both to expressing polyphony (although this
is fixable using a voice bank management ob-
ject available in Pd extended but not yet in
“vanilla”). It is even less well adapted to ex-
pressing generative algorithms in which data
may fork and recombine in ways that Supercol-
lider and ChucK make easy. It is perhaps the
most distinguishing feature of Max and later Pd
that they both radically did away with the no-
tion of process altogether.

Pd offers no easy way to manage parallelism
either; the facility provided is the “pd~” ob-
ject which can be considered a throwback to
the Max/FTS solution from 1990. There are
advantages gained by this trade-off. Most im-
portantly (in my view at least), the fluency and
ease by which Pd patches can react to input
from the outside world is much greater. This
is partly because of the absence of a process
model, because one never has to consider how
different processes must be synchronized in or-
der to react consistently to new and possibly
unpredictable inputs.

5 Conclusion

The notions of “process” and “thread” seem
eternally attractive to designers of real-time
computer music programming environments
such as the ones discussed here. The attrac-
tion sees to be for both expressive reasons (as a
way to describe polyphony, particularly in gen-
erative situations) and for efficiency reasons (as
ways to efficiently exploit parallelism in general-
purpose processors). Yet the difficulties of man-
aging coordination between processes or threads
still make it appear impossible to adapt them
easily to an environment like Pd. This is a hard
problem that is worthy of future work.

Meanwhile, the most powerful arithmetic pro-
cessors in modern devices are their graphics
processors. We don’t yet have a good under-
standing of how to exploit these architectures
for computer audio, and indeed this seems so
far from today’s programming models that it is
hard to see where we could start on this.

It seems that the state of the art in program-
ming environments for doing interactive com-
puter music is out of sync with current devel-
opments in computing. Past efforts to make
music out of computer hardware and operating
systems that were often ill suited to the task
have often resulted in advances that had impli-
cations not only for computer musicians but for
computer science as well. Attacking the current
situation in a similar way might similarly give
rise to useful new ideas.

6 Acknowledgements

Thanks as always to the hard-working organiz-
ers of LAC for making this publication possible.
This paper is based in part on material from a
manuscript for a planned future book.

References

C. Abbott. 1981. The 4ced program. Com-
puter Music Journal, pages 13–33.

D. Gareth Loy. 1981. Notes on the implemen-
tation of musbox: A compiler for the systems
concepts digital synthesizer. pages 333–349.

Max V. Mathews. 1969. The Technology of
Computer Music. MIT Press, Cambridge,
Massachusetts.

J.A. Moorer, A. Chauveau, C. Abbott,
P. Eastty, and J. Lawson. 1979. The 4c ma-
chine. Computer Music Journal, pages 16–24.



Ge Wang and Perry R. Cook. 2003. Chuck:
A concurrent, on-the-fly audio programming
language. pages 217–225, Ann Arbor. Inter-
national Computer Music Association.


