
Computing While Composing

Miller Puckette
∗

The field of computer music can be thought of
as having two fundamental branches, one concerned
with the manipulation of musical sounds, and the
other concerned with symbolic representations of mu-
sic. The two are iconized by Max Mathews’s MU-
SIC program and Lejaren Hiller’s ILIAC Suite, both
of 1957, although both have important antecedents.
The two branches might provisionally be given the
names “Computer Generated Music” (Denis Baggi’s
term for it) and “Computer Aided Composition”—
or CGM and CAC for short. (In France the latter
is called “Composition Aidée par Ordinateur”. The
corresponding English acronym, “CAC”, is less than
mellifluous and someday we should settle on a better
one.)

As a field, CAC has flown a very different tra-
jectory from CGM. While in the United States the
great strides between 1957 and 1980 were on the
CGM side, in Europe during the same period we saw
work by Xenakis (starting as early as 1962), Koenig
(Project 1, 1964), and many others that, taken to-
gether, can be seen as the first proof that CAC could
be widely useful in creating new music. Meanwhile
in the United States, many people, myself included,
thought of CAC as a topic of computer science re-
search, not likely ever to give rise to tools useful to
musicians. Interest in CAC has grown in the USA in
the intervening years, but excepting the brilliant ex-
ample of David Cope, work in the USA on this topic
has lagged behind that in Europe.

Today CGM is ubiquitous and CAC appears futur-
istic. An entire generation of composers and other
musicians has learned to use the computer to synthe-

∗CRCA, Cal(it)2, UCSD. This article appears as the preface
to Carlos Agon et al., Eds., the OM Composer’s book, Editions
Delatour France / IRCAM, 2006.)

size and process musical sound. It can be argued that
the computer has been the one addition to the clas-
sical orchestra since the advent of percussion early
in the twentieth century. This is a great achieve-
ment. CGM is now generally accepted, and the sta-
tus of a musician in the Mathews tradition essen-
tially depends on how good his or her output sounds,
in the same way as that of an orchestral string or
wind player. CGM has become a normal, respectable,
middle-class occupation.

The development of CAC, on the other hand, has
seen a deepening realization that the problems of the
field are much more difficult than they may have ap-
peared at first. In hindsight, this should have been
obvious to everyone all along: CGM is in effect build-
ing instruments (which were previously made of wood
and the like), but CAC is in effect making the com-
puter carry out thought processes previously carried
out in human brains. Clearly, a piece of wood is
easier to understand than even a small portion of a
human brain. Ultimately, CAC researchers will have
to settle for much less than a full understanding of
even a single musical phenomenon. The best that
can be hoped for is partial solutions to oversimplified
versions of the real problems.

Computational Complexity

From my point of view, having come to computer
music in the year 1979, the comparative situations of
the two branches in the year 2006 come as a surprise.
To the user of a 16-bit DEC PDP-11 computer, the
manipulation of musical symbols looked trivial com-
pared to the hard practical problems posed by the
sheer size of the problem of sound synthesis. A five-
second, one-channel soundfile was a large object in
1979, and the realization of a piece of computer mu-
sic lasting ten minutes could easily require a solid

1



week of computer time. Back then I was exceedingly
lucky even to have that possibility. Now, in 2006,
three IRCAM pieces from the 1980s can be run si-
multaneously in real time on a computer small and
light enough that it could easily be thrown several
rows into the audience.

The symbol manipulators, on the other hand,
whose programs once only took a few thousand arith-
metic operations and a one- or two-inch stack of
punched cards to run, now take their place as the
heaviest computer users in all of music. The growth
in complexity of CAC algorithms appears to have
outrun the ability of computers to run them. The
Markov chains of the early days (a few hundred arith-
metic operations per note, say) have given way to
combinatorial search and optimization problems re-
quiring as many trillions of calculations as the user
can afford to wait for. The imagination of composers
and researchers in CAC far outstrips the supply of
available computation power.

In general, the cost of CGM per audio sample has
not remained constant, but has not grown quickly.
The best CGM of the seventies, thirty years ago say,
probably cost less than ten thousand arithmetic op-
erations per sample of output. The speedup in com-
puting in the intervening years has allowed us the
luxury of running the classic CGM algorithms in real
time, thus changing the nature of the pursuit fun-
damentally. The algorithms themselves have grown
somewhat more complex as well, but the universal
preference for real-time synthesis and processing has
put a lid on that growth.

CAC has not become real-time at all. Since it ap-
peals to the composer in us (whereas CGM appeals
to the performer in us), it seems reasonable to expect
that CAC software will continue to absorb all the
computing resources that can possibly be brought to
bear on it. Anything allowed to grow will naturally
do so.

Programmers and users

About 1970, when I started using the computer—
there was only one in my town—there was no dis-
tinction between computer users and computer pro-
grammers. It only occasionally happened that some-

one used a program that someone else had written.
For the most part, each program was written for its
own particular, special purpose. Over the following
decade, however, this began to change for two rea-
sons. First, people learned to write large, flexible
programs (troff being my favorite example) powerful
enough that different users could turn a given pro-
gram to very different purposes.

Second, and more subtly, the possibilities for com-
bining different bits of software together began to
multiply. An important step was the invention of the
Unix operating system, which unified all I/O through
one very simple and clean abstraction. This permit-
ted users to direct one program’s output to another
program’s input, frequently without the need even to
choose a name for the data passing between the pro-
grams. This made it possible for a relatively simple
program such as “tr” to be put to all sorts of different
uses. Try it on a headerless soundfile, for instance, to
put a classical music lover’s teeth on edge, in a way I
doubt the program’s original designer had imagined.

A parallel development was underway in the com-
puter music community. Here the roots of the idea
reach all the way back to about 1958 when Max
Mathews’s MUSIC N programs began to offer recon-
figurable unit generators, which the user configured
in a network to generate musical sounds, predating
and anticipating the modular synthesizers built by
Moog and others in the 1960s. By the mid 1980s
many researchers were thinking about trying to turn
this notion of reconfigurability to use in passing data
of other formats than audio signals.

Programs themselves (such as MUSIC, Max/MSP,
or OpenMusic) have become complicated and diffi-
cult to develop, but once the paradigm for making
interconnections has been worked out, they are com-
paratively easy to extend. Users can contribute ex-
tensions and benefit from each other’s work, without
having to worry about the tricky stuff such as GUIs
or file formats.

In another sense, however, a patch is itself a pro-
gram, and the job of connecting simple functions to-
gether to make larger ones can be thought of as pro-
gramming. In this sense, the trend toward patch-
based software can be seen as shifting the level on
which the user programs the computer away from

2



the C or Lisp code itself and into the “language” of
patches. It may be that this is fundamentally a bet-
ter level at which to operate a computer, than either
that of code or that of the user of a large, monolithic
program such as a database application.

Art music and the computer

In Europe and its former colonies such as the U.S.,
composers, since early in the twentieth century, have
paid much attention to problems of symbol manipu-
lation and combinatorics. This idea found an early
expression in Shoenberg’s 12-tone harmony, contin-
ued through the serialism typified by Webern and
later Boulez, and may have culminated in the various
mathematics-inspired approaches of Xenakis. The
affinity of composers such as Xenakis and Koenig
for computers seems to grow naturally from their
symbol-based and/or quantitative approaches to mu-
sical composition.

It is no accident that computers were used in
experimental classical composition, whereas more
tradition-bound musics such as Jazz stayed far away
from the computer room. And researchers in CAC re-
paid the compliment by paying close attention to sets
and permutations, and less so to melodic contour, for
example. To this day, the field of CAC looks primar-
ily to the classical ‘art music’ tradition as a source of
working assumptions and problems.

Since computers are well adapted to symbolic and
quantitative manipulation, it is not surprising that
‘art’ composers have often turned to the computer,
sometimes merely for assistance, and sometimes for
inspiration. The strange field called ‘computer sci-
ence’ (which has little to do with writing or using
computer programs) is often invoked as well. Cer-
tain metaphors from computer science, such as hier-
archies and networks, machine learning, and database
operations, often can be explicitly mapped to musi-
cal processes, and this is useful to some of the more
formally procedural composers.

I think these formalistic tendencies are now giving
way to a more intuitive approach among ‘art’ com-
posers. Whether or not that is true, there is cer-
tainly more crosstalk today between ‘art’ composers
and musicians of other idioms. This is reflected in

a general movement in CAC away from formal and
mathematical tools, in favor of more intimate modes
of interaction with the computer, even up to direct
manipulation of data structures by composers. So for
instance when early CAC researchers wrote computer
programs whose output might be an entire piece of
music, today we see developments such as Open Mu-
sic which, in their graphical orientation and patch-
ing metaphor, encourage the composer to proceed by
experimentation and intuition instead of by formal
planning and specification.

The field of CAC in general is moving away from
mathematical and computer science constructs, and
toward a more useful and powerful working relation-
ship with the rest of the composition process. A
greater fluidity of interchange between the problem-
solving or material-generating functionality of a pro-
gram such as OM, and the higher-level, partly intu-
itive thought processes that must reside in the human
brain makes the entire field of CAC more accessible
and more widely useful than ever before.

Software and Computer Aided Composition

In CAC, the variety of approaches and the flexibil-
ity of applications have grown as time has passed.
Back when computer programs used stacks of cards
as input and output, it was natural to think of “com-
position” as an atomic computer job: in go the pro-
gram and some parameters, and out comes music. As
computing became interactive, a much more power-
ful mode of working emerged, in which the computer
might be called on hundreds or thousands of times
to solve specific problems, such as voicing a chord or
quantizing a rhythm.

Lisp, which is widely used in AI circles, was an
early favorite among CAC researchers. In return, the
AI community, especially around MIT and Stanford,
has long taken a strong interest in music. The history
of CAC software is dominated by large Lisp-based
systems. Perhaps the most important advance in
the field of CAC was Patchwork by Mikhael Laurson,
a direct ancestor of OM. Patchwork (which Laurson
still develops) presents the user with a patching GUI,
in which the semantic is that each object, to produce
its output, asks the objects upstream of it to com-

3



pute their outputs, recursively. This demand-driven
dataflow model is also used in OM, although the na-
ture of the function calls has been greatly generalized
compared to those of Patchwork.

Central to the success of both Patchwork and OM
is the presence in each of tightly integrated music
notation display packages. A transparent connection
is maintained between the displayed score and the
(user-accessible) data underneath, allowing for easy
transitions between the two media. This greatly en-
hances the ability of the user to tightly integrate the
algorithmic part of the work (on the data structures)
with the intuitive aspect (in the composer’s mind,
transmitted via the notation). Initially, the notation
GUI functions as an invitation to composers to try
the software. After the composer is attracted, the
notation package serves as his or her personal inter-
preter to the language of Lisp.

That the developers of Patchwork and OM have
actively sought to involve composers in the earliest
stages of the design of the software is itself another
decisive reason for their success. Few centers, any-
where in the world, have ever managed to match
IRCAM’s simultaneous ability to attract world-class
music production projects and to support researchers
in the field of computer music. Even though state
support for IRCAM has eroded since the golden age
of the 4X and the ISPW, the creators of OM maintain
this spirit, of which the present book is an important
manifestation.

OM is almost certainly now the world’s dominant
platform for doing CAC research and practice, de-
spite the presence of several other approaches (includ-
ing one, by Karlheinz Essl, that runs within Max).
Is this because OM’s design is the best, or is it that
OM has benefitted from the presence at IRCAM of
so many willing composers, such as the ones repre-
sented in this book? The two rival explanations are
impossible to extricate from one another.

This doesn’t imply that all interesting research in
CAC is being done in OM. David Cope’s work seems
to me the most interesting CAC research from a the-
oretical standpoint. His particular software solutions
belong to the class of “automatic composition” pro-
grams and are hence less adaptable to the needs of
the main body of composers today than systems such

as OM. I hope someday to see his ideas brought out
in more modular form.

Promising areas of current and future research

An excellent trend is underway, and has been for at
least several years, in that composers of computer
music today no longer immerse themselves in one pri-
mary software package to realize works. The possibil-
ity of passing between one world and another (such as
Max and OM, for example) would not have occurred
to many researchers or composers in the days when
mastery of any one idiom could take years of study
and work. But as computer music software in general
has become more open and more modular, the oppor-
tunities for interchange of data have increased, and
at the same time the initial cost (primarily in time) of
using a new software package has gone down. Many
new and interesting sparks should fly from the colli-
sions between the vastly different software packages
that now can be brought together.

Related to this, perhaps even a case of the trend
toward interoperation, is the growing involvement of
CAC in manipulating sounds directly (not through
the mediation of a score). Such work lies simulta-
neously within CGM and CAC, and in one possible
future the distinction between the two will simply
disappear. This is in high contrast to the early days
of CAC in which the output was a stack of punched
cards, or even to the situation only ten years ago,
in which Patchwork users needed MIDI hardware to
hear their musical ideas. (CGM people like me scoff
at the practice of using MIDI to synthesize music.)
The world of sounds is much richer than the world of
musical note heads and stems. The latter will always
be a useful organizing and mnemonic device, but the
former is what actual music is made of.

In more general terms, I look forward to an in-
creased concern in CAC about continuously variable
quantities, such as parameters of analysis or specifi-
cation of sound (as well as the function of time that
represents a recorded sound itself). In the future,
computer music in general will have to deal with high-
dimensional objects such as would specify a timbre.
The dimensionality of a set such as the “set of all pos-
sible sounds” is probably not even well defined. New

4



techniques will be needed to describe and manipulate
such quantities.

I’m also very excited about the recent work in
OM on generalizing constraint problems to optimiza-
tion problems. The cool thing about treating com-
positional problems as optimizations instead of con-
straints is that you can juggle the weights of the terms
of the function and watch, incrementally, as the ma-
chine tries to optimize the ever-changing function.
This can be used to find solutions to standard con-
straint problems, by adding and dropping component
constraints and watching how the solution changes.
It’s almost never interesting to see ALL the solutions
of a constraint problem anyway; most of the time
there’s either no solution or else there are lots that
you’d be equally happy with.

Next, I would like to see some of the techniques now
only available in OM become usable some day within
real-time environments. This is clearly a huge under-
taking, since the style of programming currently used
in real-time applications is so different from that in
OM. But there would be much gained if this became
possible. In the meantime it’s possible to send mes-
sages back and forth between OM and some lower-
latency process that takes care of real-time perfor-
mance. But in the ideal, the connection between the
real-time and the compositional environments would
be much more based on sharing data and functions,
rather than just communication protocols.

Another word for real-time composition is “impro-
visation”, and in this view George Lewis was do-
ing CAC research when he developed Voyager in the
1980s, and Salvatore Martirano was apparently also
doing CAC with the SalMar in the 1970s. Improvisa-
tion is not only important in its own right, but also as
the primary means by which composers and perform-
ers have extended instrumental language, probably
long before music wes ever written down. Improvis-
ing with computers will lead us to a greater mastery
of the computer as a musical instrument in composed
settings as well as improvised ones, and I think CAC
will play an important role in this development.

One more area. I’ve mentioned David Cope’s au-
tomatic composition project, and although I can’t
say I understand his methods very well, it’s clear
that his use of natural language recognition tools (in

particular, “augmented networks” has somehow cap-
tured something essential in the way classical musi-
cal forms work. No other research I’m aware of has
ever gained any real purchase on the questions of how
musical motion, tension and resolution, and musical
themes work; and no other software algorithms I have
seen can make music that develops (in the classical
sense) over the time scale of an entire piece in the
way Cope’s can. There is clearly something vitally
important in this work, and other researchers (my-
self not excepted) should be making a greater effort
to learn its lessons.

Read this book

Perhaps I have named the frontiers well and perhaps
not (only time will tell), but at least as far as the
present is concerned, this volume contains the best
summary of current work in the field that I know of.
That each chapter of the book concerns the compo-
sition of a real piece of music reassures us that the
methods described here can indeed be brought to mu-
sical fruition. And while, by the design of the book,
composers using software other than OM aren’t rep-
resented here, perhaps two thirds or three quarters
of the entire field creeps in at one spot or another.
OM has established itself as the most important locus
of convergence of researchers and composers working
on, or in, CAC; and, well, here they are.

This book should prove useful not only to those
wishing to learn how to use OM in its present state
(at least at the moment before OM develops further
or is replaced by something else) but also in the longer
term as a repository of ideas, many of them having
roots in the past, even in non-computer-music, and
many of which will reappear in different musical and
software contexts in the future. This is how music
works, after all—a musical idea is important in the
way it speaks to the rest of the world of musical ideas.
It’s not the individual notes that count: it’s their
interrelationships.

5


