
Patch for guitar

Miller Puckette ∗

August 13, 2007

Abstract

Now that it’s easy to get multiple channels of sound
into and out of a computer with pretty low through-
put latency (thanks partly to the well-designed linux
operating system), an obvious and attractive applica-
tion is signal-processing an electric guitar separately
string by string. This permits a wide variety of non-
linear processes which, if properly designed, preserve
the periodicity of the individual string while mak-
ing possible a wide variety of new sounds. Pitch-
synchronous algorithms also become available. It
is also possible to separate the effect of amplitude
change from that of changing harmonics, thus pre-
serving the playability of the instrument.

1 Introductory polemic

Although computer music overall has seen great ad-
vances in the past fifty years, in one area, using com-
puters in live instrumental music performance, our
understanding is still crude. The main advances in
live computer music performance have largely con-
sisted of building an infrastructure, so that now a
musician can combine a computer, audio and control
hardware, and software (Pd being one possibility) to
make a live interactive computer music application.
But visits to a club or concert hall reveal that the
computer is mostly used as a recording and/or se-
quencing device, rather than as a musical instrument.
The main payoff of computing in music performance
has been to reduce and replace the role of musician-
ship.

∗CRCA, Cal(it)2, UCSD. To Appear in Proceedings, PD
Convention 2007, Montreal

If playing a musical instrument and/or singing were
pure drudgery this would be all to the good, but
it seems likely that much of musical knowledge is
built up through the physical act of making music
in time. Musical cultures, at least up to now, have
been at least partly maintained in a performance tra-
dition, and even composers (all but the most theoret-
ically inclined) rely on the sort of musicianship that is
learned and transmitted through music making. And
even though there is clearly much music to be made
using studio techniques and/or sequencers, there is
also much to be made instrumentally. The computer
is very handy for the former, but is still only with
difficulty applied to the latter.

2 Guitar project

With these thoughts in mind, I’ve been at work on
a long-term project to design a rather personalized
computer music instrument to try to bring out and
confront some of the difficulties encountered by mu-
sicians trying to use computers in live performance.
The instrument is based on a compact electric guitar
(Steinberger/Gibson) with an added six-string sepa-
rated pickup (Roland). Not finding an inexpensive
and compact 6-channel preamp on the market, I de-
signed and built a very crude one. This is interfaced
to a computer using a multichannel PCI interface
(Midiman). A Pd patch, running in linux, then per-
forms a variety of interesting transformations on the
six audio signals, and mixes them to stereo for out-
put.

This is entirely different from standard “guitar syn-
thesizers” which pitch track the strings to drive syn-
thesizers. Such instruments make lots of audible mis-

1

IN

fiddle
bonk &

lopass

bypass

wave-
shaper

octave
up/down

filters

delays

declick

OUT

Figure 1: Block diagram.

takes, and they also suffer from the added latency the
comes from the pitch tracker. In the instrument de-
scribed here, the latency of the whole affair is only
that of Pd itself, about 10 milliseconds (it’s probably
not hard to reduce it to 5 or 6 using real-time kernel
patches but I preferred to use off-the-shelf linux).

The rest of this paper describes the design of the
patch as it now stands, starting with the overall block
diagram and control strategies, then describing some
novel waveshaping tactics used.

3 Organization and control

strategy

Figure 1 shows a block diagram of the audio chain
(with each individual string going through a sepa-
rate copy of it). Individual strings are analyzed both
to estimate their individual fundamental frequencies
(using the sigmund~ object) and to detect attacks
(using bonk~). The current version of bonk~ uses
a 256-sample window; to improve robustness this is
run at half sample rate—22050Hz if the patch runs at
44100—giving an analysis window of about 11.6 msec
instead of the usual 5.8, at the expense of slightly
more delay. The analysis delay only affects the up-
dating of control parameters; the signal path itself is
not delayed by the analyses.

The signal processing chain has one novelty, a
waveshaping algorithm designed to allow: (1) decou-
pling of amplitude effects from the amplitude of the

original signal; (2) replacing a sinusoid with a stored
wavetable; and (3) specification of formants in the
same way as in the PAF synthesis technique.

The signal processing chain has about fifty parame-
ters per string, 9 of which are controlled by ADSR en-
velopes triggered by the string via the bonk~ object.
The ADSR parameters, as well as the remaining pro-
cessing parameters, are organized into presets. Each
string may have a different preset. The presets may
be chosen statically or may change during play as a
function of the timing and order of detected attacks
on the various strings. If attacks are used to trigger
the recall of presets, the presets are changed as early
as possible during the attack, making it necessary for
presets to be recalled very quickly.

To manage this, and to deal with the fact that cer-
tain parameter changes (such as delay times) cause
discontinuities in the signal anyway, a switch-and-
ramp unit [2, Section 4.3.2] is placed at the end of the
signal processing chain, activated whenever a “click-
ing” parameter is changed, and thus a fortiori when
a preset is recalled.

4 Waveshaping algorithm

Waveshaping has been around for many years [1], but
it proves difficult to use on real signals for two rea-
sons: first, the timbre of the output depends on the
amplitude of the input. (Although such a depen-
dency is sometimes desirable, it should be a matter
of choice, not a given). Second, the amplitude of the
output can vary capriciously with the input ampli-
tude. These problems can both be partly circum-
vented by treating signals in the complex plane [3],
replacing the incoming signal by a pair of signals in
90-degree phase quadrature. In this paper we take
this idea one step further by treating the amplitude
and phase of the complex-valued signal separately.

Suppose we’re given a signal,

x[n] = a · cos(ωn)

and we wish to process it to result in the third har-
monic, cos(3ωn). If we happen to know the ampli-
tude a (suppose it’s a = 1) we can use waveshaping

2

(nonlinear distortion):

z[n] = f(x[n])

with the waveshaping function f equal to:

f(r) = 4r3
− 3r

and using elementary trigonometry we end up with:

f(1 · cos(ωn)) = cos(3ωn)

So we get the third harmonic as desired. Further-
more, f is essentially the only function that will do
the job. But now consider the effect if a is differ-
ent from 1. For higher values the leading r3 term
dominates, so that if a = 10 the output has peak
amplitude 1000. And for lower ones the leading term
quickly disappears, so that when a = 0.1 we end up
with f(r) ≈ −3r so we mostly hear the fundamental
instead of the desired third harmonic.

The fix is to start by replacing the incoming signal
by a pair of signals in 90-degree phase quadrature
(using the hilbert~ abstraction):

x[n] = a · cos(ωn)

y[n] = a · sin(ωn)

from which we can extract time-varying estimates for
the amplitude and phase:

a[n] =
√

x2[n] + y2[n]

φ[n] = Arctan(y[n]/x[n])

To generate an output with the “correct” amplitude
but any desired waveform t(φ/(2π)) for 0 ≤ φ/(2π) ≤
1, we can just output computed values of the expres-
sion:

z[n] = a[n]t(φ[n]/(2π))

as shown in block diagram in Figure 2.
Figure 3 shows one example of a suitable waveform

family to use with this technique. The parameters s,
t are the slopes of the rising and falling segments
and the parameter d controls the duty cycle of the
waveform. With suitable values of the parameters
this can give triangle, sawtooth, or rectangle waves.

IN

Hilbert

cos sin

Arctan Mag-
nitude

OUT

Figure 2: The waveshaping technique in its simplest
form.

s t

0 1 d

Figure 3: Waveform for use as output of waveshaping
technique.

Another possibility is to build formants using the
PAF generator [2, Section 6.4], for which the function
t(φ) is given by:

t(φ) = c(φ)m(φ)

where the carrier function c(φ), given by

c(φ) = (1 − q) cos(kφ) + q cos((k + 1)φ)

sets a center frequency equal to the fundamental
times k+q, with k an integer and q a fraction between
0 and 1. The modulator function is set to

m(φ) = e−(g sin(φ/2)2

sets a bandwidth approximately g times the funda-
mental. In both the PAF and the line-segment wave-
forms, the parameters may be attached either to en-
velope generators triggered by note onsets, or they
may be functions of the measured amplitude a.

Alternatively, one can simply make a series of sep-
arate wavetables for the first several harmonics and
control their amplitudes explicitly as in additive syn-
thesis.

3

4.1 Harmonics in the input signal

The input signal in reality is not a sinusoid, so it is
worth considering what happens when the waveshap-
ing techniques above are used on other signals. If the
signal is periodic (roughly true here since the strings
are picked up separately), we can assume its output
is a sum of sinusoids of frequency ω and its harmon-
ics. Since the “Hilbert” filter pair is linear, its output
is a sum of sinusoids, in phase quadrature, with the
same amplitudes and frequencies as the input.

If for any reason one of the sinusoids has much
greater amplitude than the others (for example, more
than twice the sum of the others), then we can ap-
proximate the extra signal as a perturbation. For
example, suppose the input signal, after the Hilbert
filter, is:

x[n] = cos(ωn) + a cos(ξn)

y[n] = sin(ωn) + a sin(ξn)

with a << 1. Then we get,

a[n] ≈ 1 + a · cos((ξ − φ)n)

φ[n] ≈ 2πk + ωn + a · sin((ξ − φ)n)

(The integer k is an arbitrary phase wrap number
that drops out on applying the wavetable.) In-
specting the result we conclude that summed-in,
low-amplitude sinusoids simultaneously modulate the
amplitude and phase of the process.

Highly motivated readers might want to check that,
if we use the lookup table

t(φ/(2π)) = cos(φ)

so that in theory we reconstruct the signal x[n] per-
fectly, then to order a there are two sidebands, one at
which the phase modulation and amplitude modula-
tion effects cancel each other, and the other of which
reconstructs the perturbing sinusoid.

As a rough estimate, if the summed amplitudes of
all the overtones is less than half the strength of the
fundamental, the above approximation will hold rea-
sonably well. At the other extreme, if the overtones
actually exceed the fundamental, one sometimes sees
the phase slip forward one or more extra cycles for

a single cycle of the fundamental, with quite unpre-
dictable results. Geometrically, this happens when
the complex samples wind more than once around
the origin of the complex plane.

In practice, it turns out to be most effective to fil-
ter the guitar strings individually, using a low-pass
Butterworth filter, whose cutoff frequency for each
string is chosen somewhere between the seventh and
the fifteenth fret. For example, a fifth-order filter set
to the seventh fret should attenuate the octave of the
open string by about 15 dB, so that notes played any-
where up to the twelfth fret remain audible but the
first harmonic should usually predominate. Bleed-
through from the other harmonics then sounds as co-
herent modulation, so that timbral variation in the
guitar playing comes through clearly in the final re-
sult. Of course, the filter cutoffs may be set higher
instead; in this case many interesting sounds come
out but they are not so easily controlled or analyzed.

4.2 More waveshaping ideas

Two interesting details about the waveshaping algo-
rithm. First, although most of the time in practice it
is more interesting to process the strings separately,
it is sometimes desirable to combine the signals of
more than one string to produce intermodulation ef-
fects. A control in the patch allows to “bleed” the
sounds of adjacent strings into each other. Nonad-
jacent strings are not allowed to intermodulate, in
the spirit of keeping the result as predictable and as
controllable as possible.

Second, the stage where the signal is in phase
quadrature is a good occasion to apply any desired
frequency shifting. Because the strings are pitch
tracked, the frequency shift may be chosen as a mul-
tiple of the fundamental, in addition to a constant
frequency offset in Hertz.

Except for frequency shifting, the waveshaping al-
gorithms shown here have mostly been stateless, in
the sense that each phase leads functionally to a
(phase, amplitude) pair. A much larger class of po-
tentially interesting algorithms opens up when we al-
low state (memory) to be part of the transforma-
tion. For example, although multiplying the fre-
quency by an integer (doubling it, for example) is

4

PHASE IN

-1
1-Z

k

wrap

PHASE OUT

Figure 4: A phase manipulation requiring stored
state: frequency multiplication by nonintegral k.

done by multiplying the phase by an integer, making
fractional phase multiplication requires unwrapping,
for instance as shown in Figure 4. Here we must take
the first difference of the phase, “wrap” the resulting
phase increment to lie between -1/2 and 1/2, multi-
ply by the desired factor k, and then sum to recreate
the new phase.

Another possible extension, not yet explored, is
to allow the instantaneous amplitude to parametrize
the waveshaping function. Doing this would not re-
introduce the problem of unpredictable amplitudes
cited earlier since we would still only be operating on
the phase of the resulting signal, not its amplitude
which would still be that of the input. As a sim-
ple example, one could have progressively higher am-
plitudes tune in higher partials using an amplitude-
controlled formant generator.

5 Audio post-processing

Next, the waveshaped sound is raised or lowered from
-2 to +1 octaves, using the techniques of [2, Sections
5.2 and 7.10]. A continuous control effectively cross-
fades between the four octaves available. Next, two
“peaking” and one band-pass filter are applied in se-
ries; the three center frequencies and the two atten-
uation factors are controlled by envelope generators.
Finally, a delay network is provided for pitch shifting,
chorusing, or flanging.

6 Conclusion and further work

This instrument has only been used once in pub-
lic, with the Convolution Brothers at Metronom in
Barcelona, for off-ICMC 2005. Since then, several
enhancements have been made and the new system
is overdue for another public trial.

Much more work needs to be done in finding in-
telligent ways to vary the processing parameters as a
function of instrumental phrasing. For example, one
could imitate wind-instrument tongueing patterns as
a function of the timing of repeated attacks; or one
could loop through a small sequence of presets to al-
low phasing between note and timbre cycles; or one
could enhance or suppress individual harmonics to
enhance consonances or dissonances within chords,
to name only three relatively simple ideas.

Improvement is needed in two areas. First, it
is hard to keep the amplitudes of harmonics well-
behavedly low and simultaneously allow notes high
on the neck of the guitar to sound loudly; this is a
tradeoff in the design of the lowpass filter. Second,
the bonk~ object, which was designed for percussion
instruments, should be tweaked in order to make it
work better for non-percussion instruments such as
this one.

References

[1] M. Lebrun. A derivation of the spectrum of FM
with a complex modulating wave. Computer Mu-

sic Journal, 1(4):51–52, 1977.

[2] M. S. Puckette. The Theory and Tech-

nique of Electronic Music. World
Scientific Press, Singapore, 2007.
crca.ucsd.edu/~msp/techniques.htm

[3] T. Schouten. Complex wave shap-
ing. In PD Convention, 2004.
puredata.org/community/projects/convention04/

lectures/tk-Schouten/ComplexWaveshaping.pdf/

5

