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Abstract

An algorithm is presented that is capable of gener-
ating sequences of tokens having specified frequen-
cies of individual elements or subsequences, in a
maximally uniform way. As special cases the algo-
rithm can generate Euclidean rhythms and the orig-
inal (“algae”) Lindenmayer system. Secondary se-
quences constructed from these primary ones show
features on a wide range of time scales. A recently
completed piece by the composer Kerry Hagan suc-
cessfully builds these low-level features into a musi-
cal idiom.
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1 Introduction

Composers have used randomness, either real
or simulated, for hundreds of years; prototypi-
cal aims might be to create open musical forms
or to control statistical properties of large col-
lections of musical events. The purpose of this
paper is to argue, by example, that probability
theory can be used in other, deterministic ways
to generate musical structures. The approach
taken here will be use a probability space to
control statistical behavior in a maximally uni-
form way, giving results that are much different
from the highly non-uniform outputs of simula-
tions or random processes.

The mathematical theory of probability in its
modern form was formalized by Kolmogorov,
who defined a probability space as a triple
(Ω,F , P ) in which Ω, the sample space, is the
set of all possible outcomes; F is a set of al-
lowable subsets of Ω, called events, to which
we will assign probabilities; and the probabil-
ity measure P assigns probabilities (numbers
between 0 and 1) to sets in F . For example,
in the Bernoulli (coin-tossing) space, the sam-
ple space consists of all infinite sequences of 0s
and 1s. One possible event in F is “the set of
all sequences in which the fifth coin toss comes
up heads”, and applying P to that set gives its

probability, p. P is called a probability measure

because we can think of the probability of a set
as its size or measure.

It is very significant that probability theory
eschews any mention of “randomness”, which
properly belongs to the spooky realm of meta-
physics. Philosophers have been arguing about
the meaning of randomness for hundreds of
years with no resolution in sight; we will not
stop even to sketch the difficulties raised by the
notion. Nonetheless, there are well understood
algorithms that simulate randomness, and these
are frequently used in musical algorithms of all
sorts.

Taking as an example the Bernoulli process,
this simulation is done as follows. First we de-
fine random variables X1,X2, . . ., each of which
takes the value 0 or 1. (The name “random
variable” is a misnomer; there is nothing ran-
dom about them. A random variable is for-
mally defined as a measurable function whose
domain is Ω. For example, the function X5 has
value 1 on all the points of Ω for which the fifth
coin toss comes out heads.) These random vari-
ables serve us notationally; we can write down
the events we’re interested in in terms of them.
For instance, the probability that the fifth coin
comes up heads is P ({ω ∈ Ω|X5(ω) = 1}). In
the Bernoulli process in its simplest form, we
take the probability of heads to be a number
0 < p < 1, and assign P ({Xn = 1}) to equal p
for n = 1, 2, . . ..

With the random variables so defined, we
simulate randomness by generating a pseudo-
random sample point, a sequence of 0s and
1s, as follows. Generate a pseudo-random real
number from 0 to 1. If it’s below the proba-
bility p, set x1 = 1, and otherwise set x1 = 0.
Continue this way indefinitely, generating an in-
definite sequence x1, x2, . . ., which is the desired
sample point.

Pseudo-random number generators usually
depend on an initial seed, and one can gener-



ate any desired number of simulations of the
Bernoulli (or other) process by supplying differ-
ent seeds.

2 Maximally uniform Bernoulli
sequences

We now use the same probability space, the
Bernoulli process, to generate what we will call
a maximally uniform sequence. The idea is to
generate a sequence of 0s and 1s which has the
property that, at any point in the sequence, the
number of 1s is as nearly as possible exactly p
times the total number of items so far.

At each point in the output sequence, we de-
cide which token from the set {0, 1} has the
greatest dearth, i.e., the greatest shortfall in its
numbers, Let dij denote the dearth of the ith to-
ken at the jth step. For each step j we compute
the two dearth values d0j and d1j :

dij =
j∑

k=1

P ({Xk = i}) −
j−1∑

k=1

δ(xk, i)

The first sum counts the mean number of times
the token i occurs in the first j steps, and the
second counts the actual number of times the
token i has occurred before (but not including)
the jth step.

At each jth step we then choose xj to be the
state whose computed dearth is the highest. In
the case of a tie, we take the lower-numbered
state.

Setting p = 5/12, for instance, gives a repeat-
ing sequence:

( 0 1 0 1 0 1 0 0 1 0 1 0 )

This is recognizable as the disposition of nat-
urals (0s) and accidentals (1s) in the 12-tone
chromatic scale starting at F natural. It is also
an example of a Euclidean rhythm[Toussaint
and others, 2005]. In general, any Euclidean
rhythm can be generated this way.

Formally, the construction may be described
(in slightly more general form than before) as
follows. Let the random variables X1, X2, ...,
take on A possible values, numbered between 0
and A-1. Start with a seed vector (an initial
dearth vector) d10, . . . , dA−1,0. (The first index
is the outcome, and the second one is the step
number.) Next, for each step j >= 0 in turn,
we compute the conditional probability of the
outcome i at step j, given all previous outcomes:

pij = P ({Xk = i|X0 = x0, . . . Xj−1 = xj−1})
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Figure 1: A pure data patch fragment to calcu-
late maximally uniform sequences for indepen-
dent random variables with probabilities stored
in the array probs.

(If the random variables are independent and
identically distributed, as with the Bernoulli
process, we can just take pij = pi to be a con-
stant vector with A elements). The outcome for
step j is then:

xj = argmaxi(dij + pij)

In words, we choose the one whose dearth would
be highest at step i if it were not chosen. We
then update the dearth vector for step j + 1:

di,j+1 = dij + pij − δ(xj , i)

Here we subtracted one from the dearth for the
outcome xj to mark the fact that we have just
output it.

Figure 1 shows an implementation of the al-
gorithm in Pure Data. It requires an array
“probs” giving the probabilities of up to 12 pos-
sible outcomes, and an array “dearth” in which
the dearths are maintained. The patch can be
seeded with a starting dearth vector if desired.
Sending a bang to the inlet causes the patch
to compute each successive outcome. In be-
tween calculations the probability table may be
changed, allowing the different Xi each to have
its own probability distribution if desired and
to allow dependencies between the random vari-
ables by computing the conditional probabilities
given the history of past outcomes.

In the figure, at step (1) we normalize the set
of probabilities so that they sum to one; at step
(2) we add the normalized probabilities to the



dearth array and temporarily store the result in
the same array; then (3) we choose the outcome
as the argmax of the resulting array, and finally
(4) we subtract one from the dearth array at the
location corresponding to the chosen outcome.

3 Bernoulli process with irrational
probabilities

Non-repeating sequences result if we start with
irrational values of p. For example, if r = (1 +√
2)/2 is the golden ratio, we set p = 1/r ≈

0.618 so that it and 1−p = 1/r2 are in the ratio
r. The maximally uniform sequence generated
is then

( 0 1 0 1 0 1 0 0 1 0 1 0 )

with the interesting property that all its finite-
length subsequences are found in the Linden-
mayer algae sequence[Lindenmayer, 1968]:

( 0 1 0 0 1 0 1 0 0 1 0 0 1 ... )

We can get the original Lindenmayer sequence
if we start with a seed dearth vector of

(r−3, 0)

4 Statistics

Compared to a pseudo-random sequence, a
maximally uniform one exhibits entirely differ-
ent statistical behavior, as exemplified in Figure
2. The maximally uniform process stays within
a strip one unit high about a line with slope
p. The pseudo-random one diverges gradually
away from that line, although slowly enough
that the average proportion of 1s tends toward
p.

Although the frequencies of the individual
outputs of the maximally uniform process hew
closely to their probabilities, the frequency of
occurrence of successive pairs does not. In par-
ticular, if p < 1/2 as it is in the above example,
there will never be two outcomes of 1 in succes-
sion. We can obtain correct frequencies of pairs
of outcomes by modeling a first-order Markov
process whose outcomes are pairs of successive
Bernoulli process outcomes.

5 Distributions of ordered triples

The sequences generated so far do not exhibit
behavior on a variety of time scales in a way
that might make interesting musical structures.
This can be achieved in a simple and surprising
way: if a process has more than three output
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Figure 2: Cumulative sums of outputs from a
Bernoulli process with p = r2, comparing a
pseudo-random process with a maximally uni-
form one.

Figure 3: Result of testing for permutation
(210) in a golden-section-derived, four-output
maximally uniform process.

values, say 0, 1, 2, and 3, then we can ask, at
any output stage, in what order the most recent
occurrences of 0, 1, and 2 appeared. The six
possibilities can be regarded as six outcomes for
a secondary, derived process.

If we did this for a pseudo-random sequence
we would merely have a Markov chain. For in-
stance the order (012) would transition, at any
step, to (120) or (021) if a 0 or 1 appeared, re-
spectively, and remain the same otherwise.

But applying this same transformation to a
maximally uniform process can give much more
interesting results. For example, suppose we al-
low four output states, letting the random vari-
ables be independent with probabilities

r−2, r−3, r−4, r−3

seeding with the vector (0.3, 0, 0, 0), and report-
ing at each stage a 1 if the first three outputs
last appeared in the order (201). The first 300
states are shown in Figure 3.

Although at first glance this seems to be a
mere bar code image, on closer examination the
golden section appears on many time scales in
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Figure 4: Result of testing for permutation
(210) in a golden-section-derived, four-output
maximally uniform process.

the distribution of zeros and ones. This simple
example does not make a convincing case for
musical utility but at least shows the presence
of structure on multiple time scales inherited
from the generating probability vector.

The most direct way to use this musically
is by granular synthesis, starting identical or
slowly changing grains at each audio sample cor-
responding to an outcome of 1. To do this, we
choose a probability distribution (possibly with
a dozen or so states), and then a particular per-
mutation desired for the most recent appear-
ance of three of the twelve states, and generate
an audio signal that is 1 when the chosen per-
mutation occurs and 0 if a different one does;
this gives an audio signal resembling the output
shown in figure 3.

Figure 4 shows how this can be done in Pure
Data. The metro object outputs a bang for ev-
ery audio sample (sample-synchronous tempos
for metronomes and other such objects require
Pd 0.45 or later). The vline~ objects are able
to convert messages to signals with sample accu-
racy. The “z12” object is an abstraction whose
heart is the patch fragment shown in figure 1.

Once this has been computed, we convolve
with whatever grain we desire, either using an
FIR filter or a filterbank with desired resonant
frequencies.

6 Conclusion

As with any such technique, it is up to the
composer to make it make music, and up to
the listener to judge the result. This technique
was the basis for a new, 124-channel piece, Cu-
bic Zirconia, presented by Kerry Hagan at the

Moss Center for the Arts during this confer-
ence. In this piece, fifteen separate processes
are run simultaneously, each controlling eight
different grain shapes, all with the same gener-
ating probabilities (but different seeds) to gen-
erate a maximally rich sound field. If this were
collapsed to stereo it would be difficult or im-
possible to hear the structures; the piece re-
lies on the very high channel count to convey
an exceedingly complex but highly non-uniform
sound field, whose structure at multiple time
scales reflects the properties of the chosen prob-
ability vector.

So far, the choice of probability vector, seeds,
and the selected permutation pattern (i.e., the
three particular outcomes and the order in
which they must occur to trigger a grain of
sound) are all made by a combination of intu-
ition and trial and error. The results can be
quite surprising, which is encouraging in a way,
but we would like to know more about how the
choices affect the heard output.

Nonetheless, even in this early stage of experi-
mentation we can quickly come up with outputs
that simultaneously exhibit audible structures
both on the micro level (pitches; rhythms) and
also over spans of time on the order of 10 min-
utes. This will be an interesting direction for
future exploration.
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