Music 170: Formulas for week 6

Recall that a semitone (or "half-step") is $1 / 12$ of an octave:

$$
h=2^{1 / 12}=\sqrt[12]{2} \approx 1.05946
$$

and a cent is one hundredth of a semitone:

$$
2^{1 / 1200}=\sqrt[1200]{2} \approx 1.000578
$$

Suppose for example you have an interval such as a perfect minor third, which is the ratio $6: 5$. The number of semitones is then:

$$
\log _{h}(6 / 5)
$$

i.e., the power you must raise the half-step h to to reach the ratio 6:5. Using the master logarithm formula you get:

$$
\log _{h}(6 / 5)=\log (6) / \log (h)-\log (5) / \log (h) .
$$

Here, "log", without a specified base, could mean "log to the base 10 " or "log to any other base you wish".

Since $h=\sqrt[12]{2}$, or in other words, $h^{12}=2$, we get:

$$
\log (h)=\frac{\log (2)}{12}
$$

Continuing with the example of the perfect minor third, the first term $\log (6) / \log (h)$ comes to 31.0195 semitones (about two octaves, 24 semitones, plus seven more) minus 27.8631 semitones (about two octaves and four semitones), which comes to 3.1562 semitones.

