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Figure 7.11: First fundamental building block for unitary delay networks: delay
lines in parallel.

To start with, we can put any number of delays in parallel, as shown in Figure
7.11. Whatever the total power of the inputs, the total power of the outputs
has to equal it.

A second family of power-preserving transformations is composed of rota-
tions and reflections of the signals x1[n], ... , xr[n], considering them, at each
fixed time point n, as the r coordinates of a point in r-dimensional space. The
rotation or reflection must be one that leaves the origin (0, . . . , 0) fixed.

For each sample number n, the total contribution to the average signal power
is proportional to

|x1|2 + · · · + |xr|2

This is just the Pythagorean distance from the origin to the point (x1, . . . , xr).
Since rotations and reflections are distance-preserving transformations, the dis-
tance from the origin before transforming must equal the distance from the
origin afterward. So the total power of a collection of signals must must be
preserved by rotation.

Figure 7.12 shows a rotation matrix operating on two signals. In part (a)
the transformation is shown explicitly. If the input signals are x1[n] and x2[n],
the outputs are:

y1[n] = cx1[n] − sx2[n]

y2[n] = sx1[n] + cx2[n]

where c, s are given by
c = cos(θ)

s = sin(θ)

for an angle of rotation θ. Considered as points on the Cartesian plane, the
point (y1, y2) is just the point (x1, x2) rotated counter-clockwise by the angle θ.
The two points are thus at the same distance from the origin:

|y1|2 + |y2|2 = |x1|2 + |x2|2

Power conservation

• If power of the input (IN) 
equals power of output (OUT) 
the system is unitary

• If a system is unitary then it 
has a flat frequency response

• This can be preserved even 
with rotations and reflections 
of the signal



Power conservation
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Figure 7.12: Second fundamental building block for unitary delay networks:
rotating two digital audio signals. Part (a) shows the transformation explicitly;
(b) shows it as a matrix operation.

and so the two output signals have the same total power as the two input signals.
For an alternative description of rotation in two dimensions, consider com-

plex numbers X = x1 + x2i and Y = y1 + y2i. The above transformation
amounts to setting

Y = XZ

where Z is a complex number with unit magnitude and argument θ. Since
|Z| = 1, it follows that |X| = |Y |.

If we perform a rotation on a pair of signals and then invert one (but not
the other) of them, the result is a reflection. This also preserves total signal
power, since we can invert any or all of a collection of signals without changing
the total power. In two dimensions, a reflection appears as a transformation of
the form

y1[n] = cx1[n] + sx2[n]

y2[n] = sx1[n] − cx2[n]

A special and useful rotation matrix is obtained by setting θ = π/4, so that
s = c =

√

1/2. This allows us to simplify the computation as shown in Figure
7.13 (part a) because each signal need only be multiplied by the one quantity
c = s.

More complicated rotations or reflections of more than two input signals may
be made by repeatedly rotating and/or reflecting them in pairs. For example,
in Figure 7.13 (part b), four signals are combined in pairs, in two successive

Rotation of two signals
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Figure 7.13: Details about rotation (and reflection) matrix operations: (a) ro-
tation by the angle θ = π/4, so that a = cos(θ) = sin(θ) =

√

1/2 ≈ 0.7071; (b)
combining two-dimensional rotations to make higher-dimensional ones.

stages, so that in the end every signal input feeds into all the outputs. We could
do the same with eight signals (using three stages) and so on. Furthermore, if
we use the special angle π/4, all the input signals will contribute equally to each
of the outputs.

Any combination of delays and rotation matrices, applied in succession to
a collection of audio signals, will result in a flat frequency response, since each
individual operation does. This already allows us to generate an infinitude of
flat-response delay networks, but so far, none of them are recirculating. A third
operation, shown in Figure 7.14, allows us to make recirculating networks that
still enjoy flat frequency responses.

Part (a) of the figure shows the general layout. The transformation R is
assumed to be any combination of delays and mixing matrices that preserves
total power. The signals x1, . . . xk go into a unitary delay network, and the
output signals y1, . . . yk emerge. Some other signals w1, . . . wj (where j is not
necessarily equal to k) appear at the output of the transformation R and are
fed back to its input.

If R is indeed power preserving, the total input power (the power of the
signals x1, . . . xk plus that of the signals w1, . . . wj) must equal the output power
(the power of the signals y1, . . . yk plus w1, . . . wj), and subtracting all the w from
the equality, we find that the total input and output power are equal.

If we let j = k = 1 so that there is one x, y, and w, and let the transformation
R be a rotation by θ followed by a delay of d samples on the W output, the result

Rotation by

c = cos(θ )
s = sin(θ )

c = s = 1 2

θ = π 4 Recirculating network
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Figure 7.14: Flat frequency response in recirculating networks: (a) in general,
using a rotation matrix R; (b) the “all-pass” configuration.

is the well-known all-pass filter. With some juggling, and letting c = cos(θ), we
can show it is equivalent to the network shown in part (b) of the figure. All-pass
filters have many applications, some of which we will visit later in this book.

7.6 Artificial reverberation

Artificial reverberation is widely used to improve the sound of recordings, but
has a wide range of other musical applications [DJ85, pp.289-340]. Reverbera-
tion in real, natural spaces arises from a complicated pattern of sound reflections
off the walls and other objects that define the space. It is a great oversim-
plification to imitate this process using recirculating, discrete delay networks.
Nonetheless, modeling reverberation using recirculating delay lines can, with
much work, be made to yield good results.

The central idea is to idealize any room (or other reverberant space) as
a collection of parallel delay lines that models the memory of the air inside
the room. At each point on the walls of the room, many straight-line paths
terminate, each carrying sound to that point; the sound then reflects into many
other paths, each one originating at that point, and leading eventually to some
other point on a wall.

Although the wall (and the air we passed through to get to the wall) absorbs
some of the sound, some portion of the incident power is reflected and makes it
to another wall. If most of the energy recirculates, the room reverberates for a
long time; if all of it does, the reverberation lasts forever. If at any frequency
the walls reflect more energy overall than they receive, the sound will feed back

c = cos(θ )

All-pass filter: the phase of 
frequencies around the cut-off 
frequency are modified

Useful for designing reverb



Artificial Reverberation

Adapted from: Roads, C. 1996. Computer Music Tutorial. MIT Press. 475

Direct

Reflections
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Figure 7.15: Reverberator design using power-preserving transformations and
recirculating delays.

Artificial Reverberation

• Things to watch out for

• Delay lines length

• coloration can occur if 
the lines are too short

• Echo density

• should be at least 
1000/second

g = Attenuation Factor
d = Delay Time
R = Rotation Matrix
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Artificial Reverberation
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Interpolation
• Non-integer delay times require interpolation

Image from Matlab ManualImage from Dagra Manual

• Minimum delay-time is higher with higher-order 
polynomials

Linear Interpolation Cubic Interpolation



vd~



Variable delays



0:00-0:04   Manual Double Tracking

0:07-0:11   Manual Double Tracking

0:14   Brief Automatic Double Tracking 
          on "Ele-a-"

0:14-0:31  No Double Tracking

0:31-0:44   Automatic Double Tracking

0:46-1:02   No Double Tracking

1:03-1:15   Automatic Double Tracking

1:17-1:28   Manual Double Tracking

1:31-2:02   No Double Tracking

Variable delays
0:00-0:04   Manual Double Tracking

0:07-0:11   Manual Double Tracking

0:14   Brief Automatic Double Tracking 
          on "Ele-a-"

0:14-0:31  No Double Tracking

0:31-0:44   Automatic Double Tracking

0:46-1:02   No Double Tracking

1:03-1:15   Automatic Double Tracking

1:17-1:28   Manual Double Tracking

1:31-2:02   No Double Tracking



Variable delays



Variable delays
“It’s Gonna Rain was composed in San 
Francisco in January 1965. The voice 
belongs to a young black Pentecostal 
preacher who called himself Brother 
Walter. I recorded him along with the 
pigeons and traffic one Sunday 
afternoon in Union Square in 
downtown San Francisco. Later at 
home I started playing with tape loops 

of his voice and, by accident, discovered the process of letting two 
identical loops go gradually out of phase with each other. In the 
first part of the piece the two loops are lined up in unison, 
gradually move out of phase with each other and then slowly 
move back into unison.” - Steve Reich



Variable delays



Variable delays

Image from Wikipedia



Doppler Effect

A delay line (defined and written elsewhere in the patch) is 
read using two vd~ objects. The delay times vary between a 

minimum delay (provided as the “delay” control) and the 
minimum plus a window size (the “window” control.)

The desired pitch shift in half-tones (h) is first converted 
into a transposition factor t = 2h/12 = elog(2)/12·h ≈ 

e0.05776h
(called “speed change” in the patch). The computation 
labeled “tape head rotation speed” is the same as the 

formula for f given on Page 206. Here the positive interval 
(seven half-steps) gives rise to a transposition factor 

greater than one, and therefore to a negative value for f.
Once f is calculated, the production of the two phased 

sawtooth signals and the corresponding envelopes parallels 
exactly that of the overlapping sam- ple looper (example 
B10.sampler.overlap.pd, Page 54). The minimum delay is 

added to each of the two sawtooth signals to make delay 
inputs for the vd~ ob- jects, whose outputs are multiplied 

by the corresponding envelopes and summed.

• Air can function as a delay line

• A sound will sound higher in pitch as an object approaches as its motion 
causes the sound waves to bunch together 

• It will sound lower in pitch as the object passes and moves further away 
because the sound waves become further apart





Doppler Effect - Leslie Speaker

Image from Wikipedia
Image from Wikipedia

• Treble Horn and Woofer Rotate Units move
• Treble Motor/Tuning Units and Woofer Motor/

Speaker Units are stationary
• Examples 
• organ tone with variable speaker settings
• vocal effect on “Tomorrow Never Knows”



Pitch shifting

• Need to stay within minimum and maximum 
allowed delay

• vibrato

• piecewise delay with enveloping

• overlaying two delay lines
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Figure 7.19: Vibrato using a variable delay line. Since the pitch shift alternates
between upward and downward, it is possible to maintain it without drifting
outside the strip of admissible delay.
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Figure 7.20: Piecewise linear delay functions to maintain a constant transpo-
sition (except at the points of discontinuity). The outputs are enveloped as
suggested by the bars above each point, to smooth the output at the points of
discontinuity in delay time.

This works, for example, if we wish to apply vibrato to a sound as shown in
Figure 7.19. Here the delay function is

d[n] = d0 + a cos(ωn)

where d0 is the average delay, a is the amplitude of variation about the average
delay, and ω is an angular frequency. The Momentary Transposition (Page 200),
is approximately

t = 1 + aω cos(ωn − π/2)

This ranges in value between 1 − aω and 1 + aω.
Suppose, on the other hand, that we wish to maintain a constant trans-

position over a longer interval of time. In this case we can’t maintain the
transposition forever, but it is still possible to maintain it over fixed intervals of
time broken by discontinuous changes, as shown in Figure 7.20. The delay time
is the output of a suitably normalized sawtooth function, and the output of the
variable delay line is enveloped as shown in the figure to avoid discontinuities.

This is accomplished as shown in Figure 7.21. The output of the sawtooth
generator is used in two ways. First it is adjusted to run between the bounds d0
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Figure 7.22: The pitch shifter’s delay reading pattern using two delay lines, so
that one is at maximum amplitude exactly when the other is switching.



Pitch shifting



Introduction to Filters

Images from: Burk, Polansky, Repetto, Roberts, and Rockmore. 2011. Music and Computers: A Theoretical and Historical Approach

Cut-off frequency - point above or below which frequencies are attenuated

low-pass filter high-pass filter

band-pass filter band-stop filter



Introduction to Filters
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Figure 8.2: Terminology for describing the frequency response of low-pass and
high-pass filters. The horizontal axis is frequency and the vertical axis is gain.
A low-pass filter is shown; a high-pass filter has the same features switched from
right to left.

Low-pass filter frequency response in more detail
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Introduction to Filters


