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Digital Filters

• Any medium through which a signal passes may be
regarded as a filter.

• Typically however, a filter is viewed as something
which modifies the signal in some way. Examples
include:

– audio speakers / headphones

– rooms / acoustic spaces

– musical instruments

• A digital filter is a formula for going from one digital
signal to another.
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Figure 1: A black box filter.
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Inside the Black Box—Pure Delay

• Time-domain implementations of digital filters involve
signal delay, that is, delayed versions of input and/or
output signals.

• What does it mean to delay an audio signal?

– move it later (or earlier) in time

– change the phase of signal, (the value at time=0)
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Figure 2: Timeshifting a signal will change the phase of the signal.
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Time shifting a signal

• Whenever a signal can be expressed in the form

y(n) = x(n−M),

y(n) is a delayed (time-shifted) version of x(n).
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Figure 3: Delay, a shift to the right. Advance, a shift to the left.

• If M is a positive number, y(n) = x(n−M),
and the shift on the time axis is to the right.

• If M is a negative number, y(n) = x(n +M),
the signal has been advanced in time and the shift on
the time axis is to the left.
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Time shift and addition

• Other than hearing a possible silence (for causal
signals) before the signal onset, there is no audible
effect of a pure delay.

Signals x(n) and x(n−M) sound the same

• What happens, however, when a signal x(n) is added
to a delayed version of itself x(n−M)?

y(n) = x(n) + x(n−M)

Delay and Digital Filters, Music 171, UCSD 5



A Running Averager

• Consider a simple case where M = 1.

y(n) = x(n) + x(n− 1).

• We are taking a running average of the input signal
x(n).

This filter takes the average of two adjacent
samples (with a gain of 2).
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Intuitive Analyis at Low Frequencies

• The running average of a signal with little or no
variation from sample to sample will be very close to
the input signal.

• At DC

x1(n) = [A,A,A, ...].

• The output of the filter is

y(n) = x1(n) + x1(n− 1)

= [A,A,A, ....]

+ [0, A, A,A, ...]

= [A, 2A, 2A, 2A, ...]

The output is effectively the same as the input,
but with a gain of 2.
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Intuitive Analyis at High Frequencies

• The running average of an input signal with
significant variation from sample to sample will be
very different from its input.

• At fs/2 (Nyquist limit)

x2(n) = [A,−A,A, ...].

• The output of the filter is

y(n) = x2(n) + x2(n− 1)

= [A,−A,A, ....]

+ [0, A,−A,A, ...]

= [A, 0, 0, 0, ...]

The output is different from the input—complete
attenuation.
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What about all the frequencies in
between?

• This filter boosts low frequencies while attenuating
higher frequencies. It is, therefore, a lowpass filter.

• We may find the frequency response of the filter by
checking the behaviour of the filter at every possible
frequency between 0 and fs/2 Hz (sinewave analysis).
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Figure 4: Sinewave analysis.
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Impulse Response

• Alternatively, we can use an input signal that contains
all frequency components, and then we only have to
do the “checking” operation once.

• An input signal with the broadest possible spectrum
would be an impulse.

• The response of a filter to an impulse is called an
impulse response.

Any filter in a large class known as linear,
time-invariant (LTI), is completely character-
ized by its impulse response.

• What is the impulse response of this filter?
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Frequency Response

• The spectrum of the impulse response gives us the
frequency response from which we may see how the
filter modifies the amplitude and phase of a signal’s
sinusoidal components.
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Figure 5: Magnitude of the Frequency Response shows a low-pass characteristic.
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Response at the Cutoff Frequency

• Look a little closer at the filter’s response to fs/4.
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Figure 6: Filter behaviour at f
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/4.
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Interpreting the Phase
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Figure 7: Filter behaviour at f
s
/4.

• This filter is delaying this frequency by half a sample.

• In fact, this filter delays all frequencies by half a
sample.
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Linear Phase Filters

• Filters that delay all frequencies by the same amount
are called linear phase filters.

• Linear phase filters have a symmetric impulse
response.

x(n)

x(n−1)

x(n) + x(n−1)

Figure 8: Filter impulse response.

• For this filter, the impulse response is symmetric
about sample 0.5, which corresponds to a waveform
delay of one-half sample at all frequencies.
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Phase Delay

• The value about which the impulse response is
symmetric is the phase delay of the filter.

A “simple waveform delay” means the waveform
will not change with a change in frequency.

• Linear phase is desirable because it delays all
frequencies by the same number of samples and that
means no phase distortion.
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Changing Filter Coefficients

• Consider the following variation on the two-point
averager (lowpass filter):

y(n) = x(n)− x(n− 1).

How does changing the addition to a subtraction
change the filter?

Changing the addition to a subtraction
changes the coefficients of the filter.

• At DC the output becomes

y(n) = x1(n)− x1(n− 1)

= [A,A,A, ....]

− [0, A, A,A, ...]

= [A, 0, 0, 0, ...]

• At the Nyquist limit the output becomes

y(n) = x2(n)− x2(n− 1)

= [A,−A,A, ....]

− [0, A,−A,A, ...]

= [A,−2A, 2A,−2A, ...]
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Notch and Bandpass Filters

• Consider next, changing the delay value of the second
term:

y(n) = x(n) + x(n− 2).

• This changes the filter order to 2 and effectively sets
the x(n− 1) term to zero.

The filter order is the value of its highest delay.

• This filter passes both DC and the Nyquist limit, but
attenuates fs/4. It is a notch filter.

• The filter given by

y(n) = x(n)− x(n− 2)

rejects DC and the Nyquist limit, and boosts fs/4. It
is a bandpass filter.
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Plots of simple filters
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.

Delay and Digital Filters, Music 171, UCSD 18



Increasing the Filter Order

• Let’s return now to the simple low-pass filter

y(n) = x(n) + x(n− 1)

• Increasing the order will increase the number of
samples averaged

y(n) = x(n) + x(n− 1) + x(n− 2),

and the waveform will be smoothed (with a more
gentle slope to zero) which corresponds to a lowered
cutoff frequency
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Figure 10: Lowpass filters of increasing order.

Delay and Digital Filters, Music 171, UCSD 19



Generalized FIR filter

• Several different (nonrecursive) filters can be made by
changing the delay and the coefficients of the filter
terms,

y(n) = b0x(n) + b1x(n− 1) + ...

b2x(n− 2) + ... + bMx(n−M),

where M is the maximum delay and thus the order of
the filter.

• A filter can be defined simply by a set of coefficients.
For example if

bk = {1, 3, 3, 1},

the filter is third order (has a maximum delay of
M = 3), and can be expanded into the difference
equation

y(n) = x(n) + 3x(n− 1) + 3x(n− 2) + x(n− 3)
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Increasing the phase delay

• Again returning to the simple low pass filter...

• What happens to the spectrum when the delay of the
second term is increased?

x(n)+x(n−1)

x(n)+x(n−2)

x(n)+x(n−4)

x(n)+x(n−6)

Figure 11: Increasing the filter order (the value of the delay in the second term), causes the
appearance of regularly apaced peaks and notches in the magnitude spectrum.
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Recursive (IIR) Filters

• Using FIR filters to reproduce a desired frequency
response often requires using a high order filter.

• A high order filter means a long impulse response, a
greater number of coefficients, and more
computation.

• It is often possible to reduce the number of
feedforward coefficients by introducing feedback

coefficients.

• A simple first-order recursive low-pass filter is given by

y(n) = x(n) + .9y(n− 1)
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First-Order Recursive Lowpass Filter
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Figure 12: The spectral magnitude of the first-order FIR and IIR (recursive) lowpass filters.

• The general difference equation for LTI filters
therefore, includes feedback terms, and is given by

y(n) = b0x(n) + b1x(n− 1) + · · · + bMx(n−m)

− a1y(n− 1)− · · · − aNy(n−N)
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The Delay Line

• The delay line is an elementary functional unit which
models acoustic propagation delay.

• It is a fundamental building block of both digital
waveguide models and delay effects processors.

x(n) y(n)z−M

Figure 13: The M-sample delay line.

• The function of a delay line is to introduce a time
delay, corresponding to M samples between its input
and output

y(n) = x(n−M), n = 0, 1, 2, . . .

• It is linear phase, with a phase delay of M samples (it
delays all frequencies by this amount).

• This can be seen by the symmetry of the impulse
response about the M th sample.
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The Simple Comb Filter

• What happens when we multiply the output of a delay
line by a gain factor g then feed it back to the input?

x(n) y(n)

g

z−M

Figure 14: The signal flow diagram of a comb filter.

• The difference equation for this filter is

y(n) = x(n) + gy(n−M),

• If the input to the filter is an impulse

x(n) = {1, 0, 0, . . .}

the output (impulse response) will be ...
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Figure 15: Impulse response for filter y(n) = x(n) + gy(n−M).
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A Simple Comb Filter

• Since the pulses are equally spaced in time at an
interval equal to the loop time τ = M/fs seconds, it
is periodic and will sound at the frequency f0 = 1/τ .
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Figure 16: Impulse and magnitude response of a comb filter with feedback g = 0.8.

• The comb filter is so called because its amplitude
response resembles the teeth of a comb.

• The spacing between the maxima of the “teeth” is
equal to the natural frequency.
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Effect of the Feedback coefficient

• The depth of the minima and height of the maxima
are set by the choice of g, where values closer to 1
yield more extreme maxima and minima.
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Figure 17: Impulse and Magnitude Response with increasing feedback coefficient.
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Comb Filter Decay Rate

• The response decays exponentially as determined by
the loop time and gain factor g.

• Values of g nearest 1 yield the longest decay times.

• To obtain a desired decay time, g may be
approximated by

g = 0.001τ/T

where

τ = the loop time

T60 = the time to decay by 60dB

and 0.001 is the level of the signal at 60dB down.
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Figure 18: Comb filter impulse responses with a changing the decay rate.
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General Comb Filter

• Consider now, adding to the filter a delay element
which delays the input by M1 samples, with some
gain g1.

• The general comb filter is given by the difference
equation

y(n) = x(n) + g1x(n−M1)− g2y(n−M2)

where g1 and g2 are the feedforward and feedback
coefficients, respectively.

g1

g2

y(n)x(n)

z−M1

z−M2

Figure 19: Signal flow diagram for digital comb filters.
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A very simple string model

• A very simple string model can be implemented using
a single delay line and our simple first-order low pass
filter to model frequency-dependent loss.

H(z)

z−N
y(n−N)y(n)

Figure 20: A very simple model of a rigidly terminated string.

• All losses have been lumped to a single observation
point in the delay line, and approximated with our
first-order simple low-pass filter

y(n) = x(n) + x(n− 1)

• Different sounds can be created by changing this
filter.

• The Karplus-Strong Algorithm may be interpreted as
a feedback comb filter (with lowpassed feedback)
or a simplified digital waveguide model.

• How do you pluck the string? (Start off with a noise
burst.)
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