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The computer science and electronic music con-
text

The language of real-time computer music borrows from two antecedents that
were fairly well in place over the period during which the field of real-time com-
puter music took its current form (roughly between 1957 and 2000.) Over much
the same period of time the field of computer science, perticularly operating sys-
tems, was also coming into maturity; perhaps it may be said to have matured
by 1980 with the widespread adoption of Unix. Meanwhile, a loosely connected
network of electronic music studios arose in the 1950s whose design is directly
reflected in the patching paradigm that is nearly universal in modern computer
music environments.

Both computer science and music practice relied on a notion of parallelism,
albeit in very different forms and languages. In computer science, abstractions
such as process and thread arose from the desire to allcate computing resources
efficiently to users. In music, thousand-year old terms like voice and instrument
imply parallelism, both on written scores as multi-part music were notated for
both practical and dogmatic reasons, and in real time as live performers sang
or played the music in ensembles.

Computer science terminology

The most fundamental abstraction in computer science is the computer, and a
subsidiary abstraction is the job. An early prototypical computer (fig. 1) sat
in a room waiting for jobs to be submitted to it, perhaps in the form of stacks
of punched cards. The computer would execute each job in turn, hopefully
producing output which could also have been stacks of punched cards. At least
three problems arise in this scenario:

• Idleness. The computer sometimes had nothing to do and would be idle;
idel time reduced the total amount of computation the computer could
carry out.
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Figure 1: Submitting jobs to a computer circa 1960.
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Figure 2: Interactive jobs may stall in mid-computation to ask the operator for
more information.

• Latency. Sometimes a jobwould be submitted while another job was
running (as in job number 2 in the figure); in this case the job would join
a queue of waiting jobs. This meant that the submitter of job 2 had to
wait longer to harvest the output.

• Unanticipated data needed. For many types of jobs you might not
be able to predict at the outset what data will be needed during the
computation. The “job” model doesn’t offer a way for the computer to
ask the operator for additional information it might need.

The first two of these only impact the efficiency of computation, but the third
requires that we go back and amend the job model altogether; so we will con-
sider that first. Figure 2 shows an amended model of computation allowing
interactive jobs that may stop executaion part way through and ask the oper-
ator for more information. When this happened the job was considered stalled
and the computer sat idle, so now only the first two problems remain.

Computer science’s answer to the problems of idleness and latency have been
to introduce time-sharing and multiprocessing. Time-sharing is the practice of
keeping several jobs in progress at teh same time, so that when one job stalls or
finishes, the processor’s time can then be devoted to some other job that needs
running. Perhaps this second job will later stall or finish but meanhile, too,
the first job may have become runnable again (having received a new dose of
data it had stalled waiting for). The computer would then return to job 1. One
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Figure 3: Process intercommunication using messages and shared memory.

could also fill idle time by keeping low-priority jobs waiting in the background
(ones whose latency requirements were less strict) that would run whenever all
higher-priority jobs were stalled.

The advent of multiprocessors made it possible to further improve throughput in
the same way that having several short-order cooks in a diner can speed orders.
As the number of jobs and the number of available processors increases, there
should be fewer wild swings in the availability of processing power to satisfy the
needs of submitted jobs.

The chief tool for time-sharing and multiprocesing is an abstraction calle a pro-
cess, which can be thought of as a virtual computer. When a job is submitted,
one creates a brand new (virtual) computer to carry it out, and once the job
is finished, the virtual computer, or process, is scrapped. Each job may run
in ignorance of all other jobs on the system. Each process gets its own mem-
ory and program to run, and its own program counter, abbreviated PC, that
records where in the program the computer is now running. When the computer
switches from running one process to another one, the memory and PC (and
other context) of the first rocess are retained so that they are available again
when the first process is again run in the future.

Although at the outset we could consider all processes to operate in complete
ignorance of each other, at some point the need will certainly arise for processes
to intercommunicate. Computer science offers at least two paradigms that we
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will want to consider: pessage passing and shared memory (see fig. 3). Of
these, the message passing paradigm is less general but easier to analyze and
make robust. In message passing, one process can simply send another a packet
or a stream of data, that the second one may read at any later time. This
is similar conceptually to how people intercommunicate. The chief difficulty
using this paradigm is that it does not allow a process to interrogate another
directly, except by sending a message and then stalling until a return message
is received. This might greatly increase the latency of computations, and worse
yet, if we adopted this strategy for interrogation, two processes could conceivably
interrogate each other at the same time, so that both end up deadlocked.

In the shared-memory paradigm two processes communicate by reading and
writing to a shared area of memory. We can then arrange for one process to be
able to interrogate another one simply by looking in the appropriate location in
its memory (which, by prior arrangement, we had arranged to share). But now
we have to work hard to make sure that our two processes will carry out their
computations deterministically, because the order in which the two access the
shared memory is not controlled. We would need to set up some convention to
manage this. (One such convention could be to format the shared memory into
message queues, thus returning us to the situation described in the previous
paragraph.) In general, there is no final answer here; any paradigm will either
be onerously restricitve or dangerously permissive, or both, and to make good
choices will require careful attention to the particulars of the task at hand.

Electronic music terminology

The first widely used model for computer music performance was what is now
called music N, developed over a series of programs written by Max Mathews
starting in 1957[Mat69]; by 1959 his Music 3 program essentially put the idea
in its modern form, as exemplified in Barry Vercoe’s Csound program. These
programs all act as “music compilers” or “renderers”, taking a fixed text input
and creating a soundfile as a batch output. Although Csound has provisions
for using real-time inputs as part of its “rendering” process, in essence the
programming model is not interactive.

The Music N input is in the form of an prchestra and a score, as depicted in fig.
4. The orchestra can be thought of as emulating a 1950s-era elektronischemusik
studio, in which the hardware is organized in metal boxes with audio inputs
and outputs, such as tape recorders, oscillators, pulse generators, filters, ring
modulators, and so on. These would be connected by audio cables into a patch.
Furthermore, the boxes had knobs and switches on them that allowed the user
to supply parameters such as the frequency of an oscillator.
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Figure 4: The Music N paradigm
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In the music N paradigm, the studio and its patch are represented by the or-
chestra. Although the actual orchestra file is in a programming language, when
publishing algorithms it has traditionally been represented as a block diagram
showing a collection of unit generators and the audio connections between them.

The score is organized as a list of time-tagged lines that are (either nostagically
or deprecatingly) called score cards. In additon to one or two time tags (a ”note”
has two, one for its start and one for its end), a score card has some number of
numerical parameters that may be supplied to the unit generators.

The fun begins when we try to adapt this paradigm to run in real time. We
could simply connect the Music N output to a real-time audio output; but
presumably our reason fro wanting to run in real time was to be able to use
live inputs to affect the sound output. Taking the opposite direction, we could
require that the user or musician supply all the parameters in real time using
knobs and switches, but this quickly revels itself to be unmanageable for the
human. We will need to make intelligent decisions, probably different for any
two musical situations, as to how the live inputs will affect the production of
sound. More generally, our problem is to design a software environment that
will give a musician the freedom to make these choices.

In the early 1980s two influential real-time synthesizers were designed, the ys-
tems Concepts Digital Synthesizer (or ”Samson Box”) at Stanford[Loy], and
the 4C synthesizer at IRCAM[MCA+79][Abb81]. Both machines ran a fixed
computation loop with a fixed number of steps, with one loop finishing at each
tick of the sample clock,

Each of these machine designs got some things right for the first time. The Sam-
son box was the first working machine that could do sample-accurate parameter
updates in real time. To do this, the fixed program contained an update period
during which items were taken off the head of a time-tagged parameter update
queue. This queue was filled by the Foonly controlling computer some tenths of
seconds, or whole seconds, in advance, so that the Foonley did not have to react
at low latencies to the condition of the queue. This approach had one major
limitation: it did not take into account the possibility of real-time interaction.
It was physicaly possible to jump the queue for “real-time” parameter updates,
but then one lost any ability to determine the timing of such updates accurately.

The 4C machine and its controlling software 4CED were more explicitly designed
with real-time interaction in mind, although the timing was less accurate than
with the Samson Box. In the 4C parameter updates were effected at interrupt
level from the controlling computer; the computer was interrupted by the 4C
when one of a bank of timers ran out.
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Figure 5: The Samson Box DSP loop and update structure

The 4CED user conceptualized the 4C as a collection of 32 indepndent processes
(Abbott’s simile was a collection of 32 music boxes that the user could start at
any time). The guiding idea seems to have been that a performer could play a
keyboard with 32 eys on it, but each key, rather than being restricted to playing
a single note, could in turn set off a whole sequence of actions. This would seem
to greatly magnify what the keyboard player could do.

It seems also to have been on people’s minds that the playing of sequences could
usefully be unified with the business of scheduling breakpoints to a pitch or am-
plitude envelope consisting of many segments. Both the sequencing of collections
of notes and the sequencing of emvelope breakpoints led many computer mu-
sic researchers to think that a process model, as would appear a time-sharing
operating system, was a perfect metaphor to reuse in the design of real-time
computer music control systems.
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Figure 6: The 4C and the 4CED environment
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The dum language and interpreter

For what follows we will first develop a small, malleable programming envi-
ronment named dum1 that we can then implement in a variety of ways to test
different possible ways to deal with the scheduling problems that come up, par-
ticularly when we wish to interleave several real-time tesks that may want to
intercommunicate. First we introduce the dum language itself and then we go
into the different possible ways of implementing dum.

The intention is not to propose dum as a potentially viable real-time environment;
it is kept simple in order to lay bare the underlying problems and approaches
to solving them that one hits in a much more complicated way in more “real”
situations.

Definition of the language

In the 1980s the forth computer language was widely adopted by music hackers
working on personal computers. Here we describe a new environment based
very loosely on forth, called dum. I regard this activity not so much as a
demonstration of a computer science principle, but more as a way to smooth
out any irregularities forth might have.

An dum program is a sequence of words (with no more structure than that
implied by “sequence”). Each word can be either:

• a number;

• the name of a built-in function; or

• an open or close parenthesis.

A sequence of words is called a list.

A dum program can access data in the form of a stack and a collection of memory
locations. The stack and each memory location contain lists, exactly like the
program, but unlike the program (which is simply read and executed sequen-
tially), the stack and memory can be both read and written.

The “hello, world” program in dum is as shown:
1dum is an acronym for “Don’t use me”.
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( 104 101 108 108 111 44 32 119 111 114 108 100 10 ) print

--->
104 101 108 108 111 44 32 119 111 114 108 100 10

The dum interpreter executes this (or any) program by sequentially reading items
from beginning to end. The items are lists of one or more words. In the above
example there are two items: a list of 13 numbers, and the function print.

Each item the dum interpreter encounters is pushed onto a stack, except func-
tions; these are executed. Functions may pop (take off) arguments from the
stack, and may return one or more values by pushing the return values back on
the stack. So in the above example, the list of numbers is pushed onto the stack
and the function print, which takes one argument, gets it by popping the list
back off the stack and prints it to the output. At this point we have reached
the end of the program and execution stops.

The print function is special in that it might have some effect on the real world
outside of the dum environment itself. Depending on implementation this could
cause a teletype machine to print characters onto a roll pf paper or a Pd message
to appear. Functions that aren’t considered system functions may be described
as pure.

The stack

Consider the following dum program:

2 3 + 4 * print

--->
20

The items (three numbers and two functions) are evaluated in order; first the
numbers 2 and 3 are pushed onto the stack. If you want to see stack at this point
you could use the dump function which shows the entire state of the interpreter
(on whatever device debugging output should go to):

2 3 dump
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--->
stack: 2 3
thank you.

The + function is next. It pops the top number off the stack (3) and then the
top one left after that (2). Althought the stack is now empty there could easily
have been other items on it below those two and if so they would still be there.
The + function then adds the two numbers and pushes the result, 5, on the
stack. The next two items in the program, 4 and *, then push the number 4,
then pop the numbers 4 and 5 and multiply them, giving 20. This goes back
onto the stack and is then popped again and output by print.

Memory

Memory is addressed by numbers starting at zero. Each memory location may
contain zero or more items in a list. Often a memory location will contain a
single number. Memory may be written and read by the functions w and r,
respectively:

1 0 w ( 1 2 3 4 ) 1 w dump

--->
stack:
0: 1
1: 1 2 3 4
thank you.

Here the w function takes the top item on the stack (its first argument but the
one that appears second in the program, i.e., 0 and 1 for the two invocations of
w here) as an address and the next item is written to memory at that address.
The r function takes a single numeric argument as an address. So to write
something to memory, read it back, and then print the result we could write:

5 3 w 3 r print

--->
5
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At this point the stack is empty but memory location 3 would still have the
value 5.

Because memory locations can hold lists they may be exeuted as programs; this
is the dum way to define a subroutine.

Program flow: if and while

Program flow is made possible by two functions, if and while. The if function
tests its first argument and, if nonzero, executes the second argument:

( ( 1 2 3 4 ) print ) 1 if

--->
1 2 3 4

( ( 1 2 3 4 ) print ) 0 if

--->

In both examples the program to be executed is as folows:

( 1 2 3 4 ) print

which puts a list of four elements on the stack (as a single object) which the
print function then pops back off and prints. Then either 1 or 0 is pushed on
top. To see what the state of the interpreter is at this point we can type:

( ( 1 2 3 4 ) print ) 1 dump

--->
stack: ( ( 1 2 3 4 ) print ) 1
thank you.
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Now the if function is called. It pops the top object from the stack, 0 or 1,, and
then the next object the list, (1 2 3 4 ) print. (The enclosing parentheses
aren’t actually part of the object, they merely frame it syntactically.) The value
is tested, an if it is found to be nonzero, the list is executed.

(By the way, dum has no need for either a “pop” or an “eval” function; these
are accomplished by writing 0 if and 1 if, respectively.)

The while function executes loops. Unlike if whose top argument must be a
number, the two arguments to while are both arbitrary lists. The top argument
is evaluated (passed to the interpreter). It must return a number by leaving it
on the top of the stack. This number is then popped and tested. If it is nonzero
the second argumnet is evaluated (this is the body of the loop). Then the test
(the top argument) is re-evaluated and tested again, and so on. The second
argument is not evaluated even once if the test fails on the first try.

[note to self - hmm, you don’t really have to pop the two lists off the stack if
you just protect the stack against the lists popping themselves while they’re
running - this will make context switching simpler later.]

So, for example, we can now count to ten:

0 0 w
( 0 r print 0 r 1 + 0 w )
( 0 r 10 < )

while

--->
0
1
2
3
4
5
6
7
8
9

Here a loop is initialized by writing 0 to memory location 0 (the first line). The
second line is the body of the loop. It reads and prints the contents of location
0 in three words: 0 r print. Then it increments the value (reads it, adds, one,
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and writes the result back): 0 r 1 + 0 w. The next line is the test: we read the
value again and push 10. Then the logical operator < returns 1 if the value was
indeed less than 10, and zero otherwise. These two lists (lines two and three)
are the arguments to the function while.

We now have all we need to write computer programs. Behold:

2 0 w
(

2 1 w
1 2 w
(

( 0 2 w ) 0 r 1 r mod 0 == if
1 r 1 + 1 w

)
( 1 r 1 r * 0 r <= ) while
( 0 r print ) 2 r if
0 r 1 + 0 w

)
( 0 r 50 < ) while

--->
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

List of functions in dum

Table 1 shows all the functions in dum. In addition to the ones we’ve used
(and the several binary arithmetic functions that work the same way as the
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name args return function
if A F - if F is nonzero evaluate A
while B A - eval A; if nonzero eval B; repeat
r F list read and return memory location F
r1 F G number read Gth item of memory location F
w A F - write list A to memory location F
w1 H F G - write number H to Gth item of memory loc F
+, *, etc. F G number F+G, etc.
<, ==, etc. F G number logical operations
min, max F G number minimum and maximum of 2 numbers
div, mod F G number integer division and modulus (remainder)
print A - print a list
scan - number scan a number from input
wait F - wait F seconds
dump - - printout for debugging

Table 1: Functions defined in dum. The last four are implementation dependent.

ones we’ve seen) two interesting functions appear: scan and wait. These are of
course the most important functions, since they are the ones that are relevant to
how an dumprogram will function in real time. Their effect will differ depending
on what environment we are running dum in, and so we defer discussing them
until we are in the context of one or another implementation, starting in the
next section.

Implemtation of f as a command line program

A command line dum interpreter, in about 475 lines of c code, is available from
http://crca.ucsd.edu/~msp/syllabi/206.12f/f.c. On a unix-like system
this can be compiled by typing “cc f.c” to a command line. When run, dum
repeatedly reads words from the standard input (the user can type the input of
redirect it from a file or other process) and evaluates them.

The code is in three sections: first, data structures and stack manipulation
routines; second, the built-in functions (with the system-dependent ones at the
end); and third, a parser for text input and the main program.

At the heart of the command-line interpreter is the function eval, which scans
through the items in a list and executes them. The items can be words or
parenthesis-enclosed lists. If an item is either a list or a word that is a number,
the item is pushed on the stack. If it is a word that is a built-in function,
the function is called. The function can then pop items off the stack to use as
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arguments and/or return values by pushing them back on the stack.

The if and while functions

Of the “pure” (non-system) built-in functions defined in dum, the two functions
if and while are special in that they may in turn call eval (which, meanwhile,
is already in the process of calling the built-in function itself.) This is an example
of recursion, and any implementation of dum will have to be capable of recursion.

Fortunately, in the command-line dum interpreter, we can use the built-in recur-
sive function calling capability of the c programming language to provide this.
As we will see later, though, in other situations we may not be able to take
advantage of this and so it’s worth looking in detail at how recursion is actually
working in this implementation.

For the sake of brevity we’ll take the counting program above but only count
to one:

0 0 w
( 0 r print 0 r 1 + 0 w )
( 0 r 1 < )

while

--->
0

In evaluating this, the dum interpreter ends up calling eval() recursively. For
instance, at the first encounter of the < function on line 3, the state of the dum
interpreter (as reported by inserting a dump function before the <) is:

stack: ( 0 r print 0 r 1 + 0 w ) ( 0 r 1 dump < ) 0 1
0: 0

and the C stack (reported by breaking on fle in a debugger) is as follows:
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function name relevant state in c stack frame
main
eval list to eval (0 0 w ... while)

word being evaluated (while)
f while arg 1 (0 r 1 dump <)

arg 2 (0 r print 0 r 1 + 0 w)
arg being evaluating (arg 1)
dum stack to restore (empty)

eval list to eval (0 r 1 dump <)
word being evaluated (<)

The dum stack and the c stack grow and shrink loosely in parallel; the dum stack
changing constantly every time a word is encountered by the interpreter, and
the relevant parts of the c stack more slowly as the textttf if(), extttf while(),
and eval() functions recursively call each other and return.

The items on the c stack represent whatever context the textttf if(), extttf while(),
and eval() functions will need to resume execution once control is returned to
them after calling any subroutines in turn. The eval() function will need to
know what list it was executing and the index of the next item it will deal with
in the list it is evaluating. The list itself is either the entire program (for the
topmost call to eval()) or else it is a list that was pushed on the stack for the
if or while functions (dum functions, not c functions) to access as arguments.

As to the while dum function, something slightly impure has already taken place
that needs explaining. In the dum implementation being described here, the
textttf while() c function has artificially delayed popping its two list arguments
off the stack. Logically those lists themselves should be in the stack frame
belonging to the textttf while() call. However, we have chosen to simplify the
dum interpreter slightly by leaving those two lists on the stack and remembering
that we should have popped them. For this reason, we need one more thing in
the textttf while() stack frame, showing what size the stack should be popped
down to once we’re ready to return.
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