Conventions:

I'll use capitals for complex numbers, lower-case for real numbers, and greek letters for anything in radians. (Until I start forgetting. Note the first exception below where R is the sample rate).

Formulas:

A sampled real-valued sinusoid looks like:

$$
x[n]=a \cdot \cos (\omega n+\phi)
$$

Here a is the amplitude, ω the angular frequency, and ϕ the initial phase. The angular frequency is in radians per sample, and the initial phase in radians. The frequency can be expressed in cycles per second as:

$$
f=\frac{\omega R}{2 \pi}
$$

A sampled complex-valued sinusoid looks like:

$$
X[n]=A \cdot e^{i \omega n}
$$

Or rewritten more simply,

$$
X[n]=A Z^{n}
$$

where

$$
Z=e^{i \omega n}=\cos (\omega n)+i \sin (\omega n)
$$

See the Book, section 1.1 (real sinusoids) and then section 7.1 (Time Shifts) for the complex version.

Exercises

1. A complex sinusoid $X[n]$ has frequency 11025 Cycles per second has amplitude 50 and initial phase 135 degrees. Another one, $Y[n]$, has the same frequency, but amplitude 20 and initial phase 45 degrees. What are the amplitude and initial phase of the sum of X and Y ?
2. What are the frequency, initial phase, and amplitude of the signal obtained when $X[n]$ (above) is delayed 4 samples?
3. What are the frequency, initial phase, and amplitude of the signal product $X[n] Y[n]$?

Sonic challenge

Try to synthesize something like http://man104nfs.ucsd.edu/ mpuckett/270a.05w/01/crash-stereo.wav.

