
Music as a formal language

Bryan Jurish
Universität Potsdam, Institut für Linguistik, PF 601553, 14415 Potsdam, Germany

jurish@ling.uni-potsdam.de

September 26, 2004

Abstract

The main focus of this paper is the characterization of generic mu-
sical structure in terms of the apparatus of formal language theory. It
is argued that musical competence falls into the same class as natu-
ral language with respect to strong generative capacity – the class of
mildly context-sensitive languages described by Joshi (1985).

Contents

1 Introduction 2

2 A Brief Tour of Formal Language Theory 2

2.1 Alphabets and Strings . 2

2.2 Grammars and Automata . 2

2.3 Generative Capacity . 3

3 Mild Context-Sensitivity 5

3.1 Constant Growth . 6

3.2 Polynomial Parsing Time . 6

3.3 Bounded Cross-Serial Dependencies 7

4 Conclusions and Perspectives 7

1

mailto:jurish@ling.uni-potsdam.de

Music as a formal language

1 Introduction

The main focus of this paper is the characterization of generic musical struc-
ture in terms of the apparatus of formal language theory. Section 2 briefly
describes some relevant aspects of formal language theory. Section 3 intro-
duces that class of mildly context-sensitive languages assumed to contain the
natural (spoken) languages, and presents an argument that musical compe-
tence also falls into this class.

2 A Brief Tour of Formal Language Theory

2.1 Alphabets and Strings

A formal language is simply a set L of (finite) strings1 over some finite charac-
ter alphabet Σ: L ⊆ Σ∗. Candidates for alphabetic characters in the domain
of music include rhythmic, tonal, and timbral quanta. Such an inventory of
quanta might be extended by additional “empty elements” to encode continu-
ous aspects of musical structure within the context of a finite alphabet, much
as the symbolic linguist’s toolbox has been extended to include traces, empty
operators, and other theoretical objects which cannot be directly observed
in surface strings.

2.2 Grammars and Automata

Any “interesting” language being infinite, it has proved useful to charac-
terize formal languages by means of some well-defined finite specification.
Traditionally, both grammars and automata have been used for this pur-
pose. The most general notion of a grammar is usually defined as a 4-tuple
G = 〈V, Σ, P, S〉 where:

• V is a finite alphabet, partitioned into disjoint subsets N (nonterminal
alphabet) and Σ (terminal alphabet),

• P ⊂ V ∗ × V ∗ is a finite set of productions or rewrite rules, usually
written as x → y ∈ P for (x, y) ∈ P .

• S ∈ N is the distinguished start symbol.

1Traditionally, formal languages are defined in terms of the free monoid 〈Σ∗, ◦, ε〉, where
◦ is the concatenation operator and ε represents the empty string.

2

Jurish

Type-0
{〈w, M〉 | w ∈ L(M)}

Rule GrammarsTuring Machines

Type-1
{ww | w ∈ Σ∗}

Context-Sensitive
Grammars

Linear Bounded
Turing Machines

Type-2
{anbn | n ∈

�
}

Context-Free
Grammars

Pushdown
Automata

Type-3
{an | n ∈

�
}

Regular GrammarsFinite-State
Automata

Figure 1: The Chomsky hierarchy of weak generative capacity

A grammar G may be used to specify the formal language L = L(G) gener-
ated by G by means of the direct derivability relation ⇒G for G: uxv⇒G uyv

iff u, v, x, y ∈ V ∗ and x → y ∈ P ; defining2 L(G) = {w ∈ Σ∗ | S ⇒∗

G w}.

Varying restrictions on the format of a grammar’s rules gives rise to different
species of grammar, and has strong implications concerning the computa-
tional complexity associated with common language-related tasks such as
parsing or generation.

2.3 Generative Capacity

The weak generative capacity of a grammar formalism is just the set of string
languages which can be described in terms of generation by that formalism.
A grammar formalism’s strong generative capacity on the other hand can
be identified with the set of complete derivations in that formalism, thus
capturing the structural properties encoded by a grammar in addition to its
string output. The inclusion hierarchy of traditional grammar formalisms
(Chomsky, 1957; Hopcroft and Ullman, 1969) is graphically depicted in Fig-
ure 1.

• Type-3 (Regular Languages)
A notational variant of regular expressions such as those used by many

2Here, ⇒∗

G is the reflexive and transitive closure of the direct derivability relation ⇒G

for G.

3

Music as a formal language

Unix utilities, the type-3 languages (regular grammars, finite-state au-
tomata) are computationally unproblematic: they are deterministically
parseable (in linear time), and support a number of useful algebraic op-
erations including union, concatenation, closure, and even complement
and intersection. The major drawback of type-3 languages is their lim-
ited generative capacity3.

• Type-2 (Context-Free Languages)
Type-2 languages exhibit structures which can be described by trees,
such as balanced parentheses or “mirror” structures. Most program-
ming languages belong to the deterministically parseable subset of the
type-2 languages. The type-2 languages in general are parseable in
O(n3) time, but carry with them a number of sticky problems related
to ambiguity, and are not closed under complement or intersection.

Certain aspects of musical structure place musical languages at least
in this category – an example is the “mirrored” melodic run in Figure
2(a).

(a) (b)

Figure 2: Context-free (a) and non-context-free (b) tone dependencies

• Type-1 (Context-Sensitive Languages)
The context-sensitive languages include the copy language (see Figure
1) among others. They are decidable, but are computationally quite
complex in the general case. In some cases however, the adequate
analysis of musical languages appears to require more structure than a
type-2 grammar can provide, as suggested by Figure 2(b).

• Type-0 (Recursively Enumerable Languages)
Type-0 languages are those recognized by some Turing machine (equiv-
alently, those produced by some unrestricted rule grammar), and are
usually taken to be identical to the (image of the) set of computable

3As anyone who has tried to use sed(1) to automate tricky corrections in C code knows,
regular expressions cannot perform balanced parenthesis matching to arbitrary depths.

4

Jurish

MCSL

Type-1 (CSL)

{an! | n ∈
�
}

{ap | p prime }

Type-2 (CFL)

Convergent MCSLs
(T AL = LIL = HL = CCL)

{anbncndn | n ∈
�
}

Indexed Languages (IL)

{a2n

| n ∈
�
}

Linear CF Rewrite Languages (LCFRL)
{www | w a Dyck word}

Figure 3: Generative capacity of some (mildly) context sensitive formalisms

functions. Type-0 formalisms are very powerful, but famously in-
tractable (Turing, 1936).

3 Mild Context-Sensitivity

Natural languages are known to exhibit some phenomena the description of
which goes beyond the weak generative capacity of context-free grammars
(Huybregts, 1984; Shieber, 1985). Most prominent among these are counting
dependencies (of order m ∈

�
) of the form {xn

1
xn

2
. . . xn

m | n ∈
�
}: context-

free (CF) grammars can encode such dependencies only for m ≤ 2. This is
easy to see informally when context-free analysis trees are considered: tree
structures cannot have “tangling branches”, and thus cannot encode such
dependencies.

Joshi (1985) characterized the class of languages to which natural languages
are expected to belong as that of the mildly context-sensitive languages
(MCSL), the inclusion relations between some well-known examples of which
are graphically depicted in Figure 3. This class of formal languages is infor-
mally identified by the properties of constant growth, polynomial parsing
complexity, and bounded cross-serial dependencies, which are discussed in-

5

Music as a formal language

dividually in the following sections.

3.1 Constant Growth

Every known natural (spoken) language has a length-ordering on well-formed
sentences for which there is a finite upper bound on the number of words
which separate the sentences with respect to that ordering. The condition on
constant growth excludes languages such as {a2n

} from the class of MCSLs,
thus eliminating Aho’s (1968) Indexed Grammars as a candidate formalism.

Although I lack extensive knowledge of the empirical data in the case of mu-
sical languages, I think it safe to surmise that these also display the constant
growth property. Taking melody again as an example, this means that for
a musical language L there must exist a number j ∈

�
such that for all

melodies4 M1, M2 ∈ L with |M1| > |M2| where there is no M3 ∈ L with
|M1| > |M3| > |M2|, then |M1| − |M2| ≤ j. Informally, this amounts to
the claim that whenever a melody can be extended (and possibly altered) to
produce a longer melody, the maximum length of the shortest such extended
melody is fixed by the musical system in question.

3.2 Polynomial Parsing Time

Essentially a constraint on computational tractability, MCSL membership
for a given input string must be decidable in polynomial time with respect
to the length of that string. Rephrased in terms of generation systems, an
output string of length n should be derivable in O(nk) for some k ∈

�
specific

to the grammar (weak form) or MCSL subfamily (strong form) in question.

For practical purposes, it is certainly desirable to require some compu-
tational complexity constraint on any formalism used to describe musi-
cal structure. Concrete modeling proposals known to me (Xenakis, 1971;
Lerdahl and Jackendoff, 1983; Steedman, 1984, 1996; Baker, 1989; Leman,
1989; Bel and Kippen, 1992; Bod, 2001, 2002) do in fact all fulfill this crite-
rion.

4Here, |M | represents the length of M : |x1 . . . xn| = n for x1, . . . , xn ∈ Σ.

6

Jurish

3.3 Bounded Cross-Serial Dependencies

This condition is clearly motivated by the counting dependency evidence
placing natural language beyond the domain of the context-free languages. It
requires a limit m ∈

�
on the number of cross-serial structural dependencies

encodable by a given grammar (original, weak form), or grammar formalism
(strong form).

It is not at all immediately clear whether such a restriction is desirable for
musical languages, especially if phenomena such as theme and variation are
to be encoded as real cross-serial dependencies rather than pure chance sim-
ilarities. At the very least, we should reject the strong form of this criterion
for musical languages. Such a weak (original) form of Joshi’s restriction is
compatible with the formal properties of contemporary theories for the de-
scription of natural (spoken) languages (Stabler, 1999; Michaelis, 2001).

Common equivalent mildly context-sensitive grammar formalisms include
the Tree Adjoining Languages (T AL) (Joshi, 1985, 1987), the Linear In-
dexed Languages (LIL) (Gazdar, 1988), the Head Languages (HL) (Pollard,
1984), and a restricted form of the Combinatory Categorial Languages (CCL)
(Steedman, 1990). This family of languages is distinguished by a hard limit
of m ≤ 4 counting dependencies.

Stronger formalisms which provide room for more counting dependencies on a
per-grammar basis include the Divided Index Languages (DIL) (Staudacher,
1993) and the Linear Context-Free Rewrite Languages (LCFRL) (Seki et al.,
1991).5 Michaelis (1999, 2001) showed that the latter are equivalent to Sta-
bler’s (Stabler, 1997) formalization of the Minimalist Grammars proposed by
Chomsky (1995) as a vehicle for the description of natural language.

4 Conclusions and Perspectives

Adopting the working hypothesis that musical structure can be expressed
symbolically in terms of a finite alphabet of structural quanta, it becomes
possible to model a musical system as a formal language, or set of strings. The
generative capacity required for the characterization of musical languages
must lie beyond that of the context-free languages, in order to adequately
encode the cross-serial dependencies displayed by musical phenomena such

5The context-sensitive “pattern grammars” used by Bel and Kippen (1992) to model
musical structure appear at first glance to fall into the same category, but a proof of this
hypothesis is beyond the scope of the current work.

7

Music as a formal language

as theme and variation. Empirical arguments were presented that musical
languages exhibit the characteristic properties of the mildly context-sensitive
languages, to which natural (spoken) languages are also assumed to belong.

One property considered important for musical languages which was not
discussed above is the possibility of their incremental generation and analysis,
also known as the “improvisation property”. While empirical evidence exists
that spoken language also displays this property, it is often unclear how
it may be efficiently implemented for a strong language family such as the
MCSLs.

Real-time musical processing environments such as Pd (Puckette, 1996, 2004)
oriented toward generation and synthesis are usually Turing-complete (type-
0), thus opting for strong generative capacity and leaving issues of compu-
tational complexity within the user’s discretion. Analytically motivated ap-
proaches (Xenakis, 1971; Steedman, 1984; Bod, 2002) often tend toward the
opposite extreme of low computational complexity at the cost of generative
capacity.

One way to try and unify these disparate approaches is to use a powerful (but
complex) processing tool such as Pd as a vehicle for the instantiation, manip-
ulation, and interpretation of instances of a weaker (but generally efficient)
generative mechanism. The most obvious candidate for such a weak embed-
ded mechanism which also exhibits the improvisation property and which
is familiar to many users is that of regular expressions, a notational vari-
ant of the type-3 languages. An abstract C library for regular expressions
and weighted finite state machines with a Pd interface is currently under
development (Jurish, 2004).

References

A. V. Aho. Indexed grammars. Journal of the Association for Computing
Machinery, 15:647–671, 1968.

M. Baker. A computational approach to modeling musical grouping struc-
ture. Contemporary Music Review, 4:311–325, 1989.

B. Bel and J. Kippen. Bol processor grammars. In O. Laske, M. Balaban,
and K. Ebcioglu, editors, Understanding Music with AI – Perspectives on
Music Cognition, pages 366–401. MIT Press, Cambridge, MA, 1992.

R. Bod. A memory-based model for music analysis: Challenging the Gestalt
principles. Journal of New Music Research, 31(1):26–36, 2001.

8

Jurish

R. Bod. A unified model of structural organization in language and music.
Journal of Artificial Intelligence Research, 17:289–308, 2002.

N. Chomsky. Syntactic Structures. Mouton and Co., The Hague, 1957.

N. Chomsky. The Minimalist Program. MIT Press, Cambridge, MA, 1995.

G. Gazdar. Applicability of indexed grammars to natural languages. In
U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic
Theories, pages 69–94. D. Reidel, Dordrecht, 1988.

J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to
Automata. Addison-Wesley, Reading, MA, 1969.

R. Huybregts. The weak inadequacy of context-free phrase structure gram-
mars. In G. J. de Haan, M. Trommelen, and W. Zonneveld, editors, Van
Periferie naar Kern, pages 81–99. Foris, Dordrecht, 1984.

A. K. Joshi. Tree adjoining grammars: How much context-sensitivity is
necessary for characterizing structural descriptions. In D. Dowty, L. Kar-
tunnen, and A. Zwicky, editors, Natural Language Processing: Theoretical,
Computational, and Psychological Perspectives, pages 206–250. Cambridge
University Press, New York, NY, 1985.

A. K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-
Ramer, editor, Mathematics of Language, pages 87–114. John Benjamins,
Amsterdam, 1987.

B. Jurish. gfsm finite-state machine library. work in progress, 2004. URL
http://www.ling.uni-potsdam.de/~moocow/projects/gfsm .

M. Leman. Adaptive dynamics of musical listening. Contemporary Music
Review, 4:347–362, 1989.

F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT
Press, Cambridge, MA, 1983.

J. Michaelis. Derivational minimalism is mildly context-sensitive. In Lin-
guistics in Potsdam (LiP), volume 5, pages 179–198. Universität Potsdam,
Potsdam, Germany, 1999.

J. Michaelis. On Formal Properties of minimalist Grammars, volume 13 of
Linguistics in Potsdam. Univeristät Potsdam, Potsdam, Germany, 2001.

9

http://www.ling.uni-potsdam.de/~moocow/projects/gfsm

Music as a formal language

C. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and
Natural Language. PhD thesis, Stanford University, Stanford, CA, 1984.

M. Puckette. Pure Data: another integrated computer music environment.
In Proceedings of the Second Intercollege Computer Music Concerts, pages
37–41, Tachikawa, Japan, 1996.

M. Puckette. Pd: real-time music and multimedia environment (version
0.37-4), 2004. URL http://crca.ucsd.edu/~msp/software.html .

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free
grammars. Theoretical Computer Science, 88:191–229, 1991.

S. M. Shieber. Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8:333–343, 1985.

E. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects of
Computational Linguistics (LACL ’96), volume 1328 of Lecture Notes in
Artificial Intelligence, pages 68–95. Springer, Berlin, Heidelberg, 1997.

E. Stabler. Remnant movement and complexity. In G. Bouma, G.-J. M.
Kruijff, E. Hinrichs, and R. T. Oehrle, editors, Constraints and Resources
in Natural Language Syntax and Semantics, pages 299–326. CSLI Publica-
tions, Stanford, CA, 1999.

P. Staudacher. New frontiers beyond context-freeness: DI grammars and DI
automata. EACL Proceedings, pages 358–367, 1993.

M. Steedman. A generative grammar for jazz chord sequences. Music Per-
ception, 2:52–77, 1984.

M. Steedman. Gapping as constituent coordination. Linguistics and Philos-
ophy, 13:207–263, 1990.

M. Steedman. The blues and the abstract truth: Music and mental models.
In Mental Models in Cognitive Science, pages 305–318. Erlbaum, Mahwah,
NJ, 1996.

A. M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):
230–265, 1936.

I. Xenakis. Formalized Music. Indiana University Press, Bloomington, 1971.

10

http://crca.ucsd.edu/~msp/software.html

	Introduction
	A Brief Tour of Formal Language Theory
	Alphabets and Strings
	Grammars and Automata
	Generative Capacity

	Mild Context-Sensitivity
	Constant Growth
	Polynomial Parsing Time
	Bounded Cross-Serial Dependencies

	Conclusions and Perspectives

