
Theory and Techniques of Electronic Music

Miller Puckette

University of California, San Diego

DRAFT

Copyright c©2003 Miller Puckette

February 21, 2005

ii

Contents

Introduction vii

1 Acoustics of digital audio signals 1

1.1 Measures of Amplitude . 2
1.2 Amplitude of Combined Signals 3
1.3 Units of Amplitude . 4
1.4 Controlling Amplitude . 5
1.5 Synthesizing a Sinusoid . 6
1.6 Superposing Sinusoids . 9
1.7 Frequency . 10
1.8 Periodic Signals . 11
1.9 About the Software Examples . 13

1.9.1 Quick Introduction to Pd 13
1.9.2 How to find and run the examples 15

1.10 Examples . 15
1.10.1 constant amplitude scaler 15
1.10.2 amplitude control in decibels 17
1.10.3 smoothed amplitude control with an envelope generator . 19
1.10.4 major triad . 20
1.10.5 conversion between frequency and pitch 20

2 Wavetables and samplers 23

2.1 The Wavetable Oscillator . 25
2.2 Sampling . 29
2.3 Enveloping samplers . 31
2.4 Timbre stretching . 35
2.5 Interpolation . 39
2.6 Examples . 43

2.6.1 wavetable oscillator . 43
2.6.2 wavetable lookup in general 44
2.6.3 using a wavetable as a sampler 46
2.6.4 looping samplers . 48
2.6.5 Overlapping sample looper 50
2.6.6 automatic read point precession 52

iii

iv CONTENTS

3 Audio and control computations 55

3.1 The sampling theorem . 55
3.2 Control . 57
3.3 Control streams . 59
3.4 Converting from audio signals to numeric control streams 63
3.5 Control streams in block diagrams 64
3.6 Event detection . 65
3.7 Control computation using audio signals directly 67
3.8 Operations on control streams . 69
3.9 Control operations in Pd . 71
3.10 Examples . 73

3.10.1 Sampling and foldover . 73
3.10.2 Converting controls to signals 75
3.10.3 Non-looping sample player 76
3.10.4 Signals to controls . 78
3.10.5 Analog-style sequencer . 78
3.10.6 MIDI-style synthesizer . 80

4 Automation and voice management 83

4.1 Envelope Generators . 83
4.2 Linear and Curved Amplitude Shapes 86
4.3 Continuous and discontinuous control changes 88

4.3.1 Muting . 89
4.3.2 Switch-and-ramp . 90

4.4 Polyphony . 92
4.5 Voice allocation . 92
4.6 Voice tags . 93
4.7 Encapsulation in Pd . 96
4.8 Examples . 97

4.8.1 ADSR envelope generator 97
4.8.2 Transfer functions for amplitude control 100
4.8.3 Additive synthesis: Risset’s bell 101
4.8.4 Additive synthesis: spectral envelope control 104
4.8.5 Polyphonic synthesis: sampler 107

5 Modulation 113

5.1 Taxonomy of spectra . 113
5.2 Multiplying audio signals . 116
5.3 Waveshaping . 120
5.4 Frequency and phase modulation 126
5.5 Examples . 129

5.5.1 Ring modulation and spectra 129
5.5.2 Octave divider and formant adder 131
5.5.3 Waveshaping and difference tones 132
5.5.4 Waveshaping using Chebychev polynomials 133
5.5.5 Waveshaping using an exponential function 134

CONTENTS v

5.5.6 Sinusoidal waveshaping: evenness and oddness 135
5.5.7 Phase modulation and FM 137

6 Designer spectra 141

6.1 Carrier/modulator model . 142
6.2 Pulse trains . 145
6.3 Movable ring modulation . 148
6.4 Phase-aligned formant (PAF) generator 151
6.5 Examples . 156

6.5.1 Wavetable pulse train . 156
6.5.2 Simple formant generator 159
6.5.3 Two-cosine carrier signal 159
6.5.4 The PAF generator . 162

7 Time shifts 167

7.1 Complex numbers . 168
7.1.1 Sinusoids as geometric series 170

7.2 Time shifts and phase changes 172
7.3 Delay networks . 172
7.4 Recirculating delay networks . 177
7.5 Power conservation and complex delay networks 181
7.6 Artificial reverberation . 186

7.6.1 Controlling reverberators 188
7.7 Variable and fractional shifts . 190
7.8 Accuracy and frequency response of interpolating delay lines . . 193
7.9 Pitch shifting . 194
7.10 Examples . 200

7.10.1 Fixed, noninterpolating delay line 200
7.10.2 Recirculating comb filter 201
7.10.3 Variable delay line . 202
7.10.4 Order of execution and lower limits on delay times 203
7.10.5 Order of execution in non-recirculating delay lines 205
7.10.6 Non-recirculating comb filter as octave doubler 207
7.10.7 Time-varying complex comb filter: shakers 208
7.10.8 Reverberator . 210
7.10.9 Pitch shifter . 210
7.10.10Exercises . 213

8 Filters 215

8.1 Taxonomy of filters . 216
8.1.1 Low-pass and high-pass filters 216
8.1.2 Band-pass and stop-band filters 218
8.1.3 Equalizing filters . 218

8.2 Designing filters . 221
8.2.1 Elementary non-recirculating filter 221
8.2.2 Non-recirculating filter, second form 222

vi CONTENTS

8.2.3 Elementary recirculating filter 225
8.2.4 Compound filters . 225
8.2.5 Real outputs from complex filters 226

8.3 Designing filters . 227
8.3.1 One-pole low-pass filter 229
8.3.2 One-pole, one-zero high-pass filter 229
8.3.3 Shelving filter . 230
8.3.4 Band-pass filter . 232
8.3.5 Peaking and band-stop filter 233
8.3.6 Butterworth filters . 233
8.3.7 Stretching the unit circle with rational functions 236
8.3.8 Butterworth band-pass filter 237
8.3.9 Time-varying coefficients 238
8.3.10 Impulse responses of recirculating filters 239
8.3.11 All-pass filters . 242

8.4 Applications . 243
8.4.1 Subtractive synthesis . 243
8.4.2 Envelope following . 245
8.4.3 Single Sideband Modulation 247

8.5 Examples . 249
8.5.1 Prefabricated low-, high-, and band-pass filters 249
8.5.2 Prefabricated time-variable band-pass filter 250
8.5.3 Envelope followers . 251
8.5.4 Single sideband modulation 252
8.5.5 Using elementary filters directly: shelving and peaking . . 253
8.5.6 Making and using all-pass filters 254

Introduction

This book is about using electronic techniques to record, synthesize, process,
and analyze musical sounds, a practice which came into its modern form in the
years 1948-1952, but whose technological means and artistic uses have under-
gone several revolutions since then. Nowadays most electronic music is made
using computers, and this book will focus exclusively on what used to be called
“computer music”, but which should really now be called “electronic music using
a computer”.

Most of the available computer music tools have antecedents in earlier gener-
ations of equipment. The computer, however, is relatively cheap and the results
of using one are much easier to document and re-create than those of earlier gen-
erations of equipment. In these respects at least, the computer makes the ideal
electronic music instrument—until someone invents something even cheaper and
more flexible than a computer.

The techniques and practices of electronic music can be studied (at least
in theory) without making explicit reference to the current state of technology.
Still, it’s important to provide working examples of them. So each chapter starts
with theory (without any reference to implementation) and ends with a series
of examples realized in a currently available software package.

The ideal reader of this book is anyone who knows and likes electronic music
of any genre, has plenty of facility with computers in general, and who wants
to learn how to make electronic music from the ground up, starting with the
humble oscillator and continuing through sampling, FM, filtering, waveshaping,
delays, and so on. This will take plenty of time.

This book doesn’t concern itself with the easier route of downloading pre-
cooked software to try out these techniques; instead, the emphasis is on learning
how to use a general-purpose computer music environment to realize them your-
self. Of the several such packages are available, we’ll use Pd, but that shouldn’t
stop you from using these same techniques in some other environment such as
Csound or Max/MSP. To facilitate this, each chapter is divided into a software-
independent discussion of theory, followed by actual examples in Pd, which you
can transpose into your own favorite package.

To read this book you must also understand mathematics through interme-
diate algebra and trigonometry, which most students should have mastered by
age 17 or so. A quick glance at the first few pages of chapter one should show
you if you’re ready to take it on. Many adults in the U.S. and elsewhere may

vii

viii INTRODUCTION

have forgotten this material and will want to get their Algebra 2 textbooks out
as a reference. A refresher by F. Richard Moore appears in [Str85, pp. 1-68].

You don’t need much background in music as it is taught in the West; in par-
ticular, Western written music notation is avoided except where it is absolutely
necessary. Some elementary bits of Western music theory are used, such as the
tempered scale, the A-B-C system of naming pitches, and terms like “note”
and “chord”. Also you should be familiar with the fundamental terminology
of musical acoustics such as sinusoids, amplitude, frequency, and the overtone
series.

Each chapter starts with a theoretical discussion of some family of tech-
niques or theoretical issues, followed by a a series of examples realized in Pd
to illustrate them. The examples are included in the Pd distribution, so you
can run them and/or edit them into your own spinoffs. In addition, all the fig-
ures were created using Pd patches, which appear in an electronic supplement.
These aren’t carefully documented but in principle could be used as an example
of Pd’s drawing capabilities for anyone interested in learning more about that
aspect of things.

Chapter 1

Acoustics of digital audio
signals

Digital audio processing—the analysis and/or synthesis of digital sound–is done
by processing digital audio signals. These are sequences of numbers,

..., x[n − 1], x[n], x[n + 1], ...

where the index n, called the sample number, may range over some or all the
integers. A single number in the sequence is called a sample. (To prevent
confusion we’ll avoid the widespread, conflicting use of the word “sample” to
mean “recorded sound”.) Here, for example, is the real sinusoid:

REAL SINUSOID

x[n] = a cos(ωn + φ),

where a is the amplitude, ω the angular frequency, and φ the initial phase. At
sample number n, the phase is equal to φ + ωn.

We call this sinusoid real to distinguish it from the complex sinusoid (chapter
7), but where there’s no chance of confusion we will simply say “sinusoid” to
speak of the real-valued one.

Figure 1.1 shows a sinusoid graphically. The reason sinusoidal signals play
such a key role in audio processing is that, if you shift one of them left or right by
any number of samples, you get another one. So it is easy to calculate the effect
of all sorts of operations on them. Our ears use this same magic property to help
us parse incoming sounds, which is why sinusoidal signals, and combinations of
them, can be used for a variety of musical effects.

Digital audio signals do not have any intrinsic relationship with time, but to
listen to them we must choose a sample rate, usually given the variable name R,
which is the number of samples that fit into a second. Time is related to sample

1

2 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

1

−1

y[n]

n 0 50

Figure 1.1: A digital audio signal, showing its discrete-time nature. This one
is a REAL SINUSOID, fifty points long, with amplitude 1, angular frequency
0.24, and initial phase zero.

number by Rt = n, or t = n/R. A sinusoidal signal with angular frequency ω
has a real-time frequency equal to

f =
ωR

2π

in cycles per second, because a cycle is 2π radians and a second is R samples.
A real-world audio signal’s amplitude might be expressed as a time-varying

voltage or air pressure, but the samples of a digital audio signal are unitless real
(or in some later chapters, complex) numbers. We’ll casually assume here that
there is ample numerical accuracy that round-off errors are negligible, and that
the numerical format is unlimited in range, so that samples may take any value
we wish. However, most digital audio hardware works only over a fixed range of
input and output values. We’ll assume that this range is from -1 to 1. Modern
digital audio processing software usually uses a floating-point representation for
signals, so that the may assume whatever units are convenient for any given
task, as long as the final audio output is within the hardware’s range.

1.1 Measures of Amplitude

Strictly speaking, all the samples in a digital audio signal are themselves ampli-
tudes, and we also spoke of the amplitude a of the SINUSOID above. In dealing
with general digital audio signals, it is useful to have measures of amplitude for
them. Amplitude and other measures are best thought of as applying to a win-

dow, a fixed range of samples of the signal. For instance, the window starting
at sample M of length N of an audio signal x[n] consists of the samples,

x[M], x[M + 1], . . . , x[M + N − 1]

1.2. AMPLITUDE OF COMBINED SIGNALS 3

The two most frequently used measures of amplitude are the peak amplitude,
which is simply the greatest sample (in absolute value) over the window:

Apeak{x[n]} = max |x[n]|, n = M, . . . ,M + N − 1

and the root mean square (RMS) amplitude:

ARMS{x[n]} =
√

P{x[n]}

where Px[n] is the mean power, defined as:

P{x[n]} =
1

N

(

|x[M]|2 + · · · + |x[M + N − 1]|2
)

In this last formula, the absolute value signs aren’t necessary as long as we’re
working on real signals, but they are significant if the signals are complex-valued.
The peak and RMS amplitude of any signal is at least zero, and is only exactly
zero if the signal itself is zero.

The RMS amplitude of a signal may equal the peak amplitude but never
exceeds it; and it may be as little as 1/

√
N times the peak amplitude, but never

less than that.
Under reasonable conditions—if the window contains at least several periods

and if the angular frequency is well under one radian per sample—the peak
amplitude of the SINUSOID is approximately a and its RMS amplitude about
a/

√
2.

1.2 Amplitude of Combined Signals

If a signal x[n] has a peak or RMS amplitude A (in some fixed window), then
the scaled signal k · a[n] (where k ≥ 0) has amplitude kA. The RMS power of
the scaled signal changes by a factor of k2. The situation gets more complicated
when two different signals are added together; just knowing the amplitudes of
the two does not suffice to know the amplitude of the sum. The two amplitude
measures do at least obey triangle inequalities; for any two signals x[n] and y[n],

Apeak{x[n]} + Apeak{y[n]} ≥ Apeak{x[n] + y[n]}

ARMS{x[n]} + ARMS{y[n]} ≥ ARMS{x[n] + y[n]}
If we fix a window from M to N + M − 1 as usual, we can write out the mean
power of the sum of two signals:

MEAN POWER OF THE SUM OF TWO SIGNALS

P{x[n] + y[n]} = P{x[n]} + P{y[n]} + 2COR{x[n], y[n]}

where we have introduced the correlation of two signals:

4 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

CORRELATION

COR{x[n], y[n]} =
x[M]y[M] + · · · + x[M + N − 1]y[M + N − 1]

N

The correlation may be positive, zero, or negative. Over a sufficiently large
window, the correlation of two sinusoids with different frequencies is negligible.
In general, for two uncorrelated signals, the power of the sum is the sum of the
powers:

POWER RULE FOR UNCORRELATED SIGNALS

P{x[n] + y[n]} = P{x[n]} + P{y[n]}, whenever COR{x[n], y[n]} = 0

Put in terms of amplitude, this becomes:

(ARMS{x[n] + y[n]})2 = (ARMS{x[n]})2 + (ARMS{y[n]})2.

This is the familiar Pythagorean relation. So uncorrelated signals can be thought
of as vectors at right angles to each other; positively correlated ones as having
an acute angle between them, and negatively correlated as having an obtuse
angle between them.

For example, if we have two uncorrelated signals both with RMS amplitude
a, the sum will have RMS amplitude

√
2a. On the other hand if the two signals

happen to be equal—the most correlated possible—the sum will have amplitude
2a, which is the maximum allowed by the triangle inequality.

1.3 Units of Amplitude

Two amplitudes are often best compared using their ratio rather than their
difference. For example, saying that one signal’s amplitude is greater than
another’s by a factor of two is more informative than saying it is greater by
30 millivolts. This is true for any measure of amplitude (RMS or peak, for
instance). To facilitate this we often express amplitudes in logarithmic units
called decibels. If a is an amplitude in any linear scale (such as above) then we
can define the decibel (dB) amplitude d as:

d = 20 · log10(a/a0)

where a0 is a reference amplitude. This definition is set up so that, if we increase
the signal power by a factor of ten (so that the amplitude increases by a factor
of

√
10), the logarithm will increase by 1/2, and so the value in decibels goes up

(additively) by ten. An increase in amplitude by a factor of two corresponds to
an increase of about 6.02 decibels; doubling power is an increase of 3.01 dB. In
dB, therefore, adding two uncorrelated signals of equal amplitude results in one
that is about 3 dB higher, whereas doubling a signal increases its amplitude by
6 dB.

1.4. CONTROLLING AMPLITUDE 5

Still using a0 as a reference amplitude, a signal with linear amplitude smaller
than a0 will have a negative amplitude in decibels: a0/10 gives -20 dB, a0/100
gives -40, and so on. A linear amplitude of zero is smaller than that of any value
in dB, so we give it a dB value of −∞.

In digital audio a convenient choice of reference, assuming the hardware has
a maximum amplitude of one, is

a0 = 10−5 = 0.00001

so that the maximum amplitude possible is 100 dB, and 0 dB is likely to be
inaudibly quiet at any reasonable listening level. Conveniently enough, the
dynamic range of human hearing—the ratio between a damagingly loud sound
and an inaudibly quiet one—is about 100 dB.

Amplitude is related in an inexact way to perceived loudness of a sound. In
general, two signals with the same peak or RMS amplitude won’t necessarily
have the same loudness at all. But amplifying a signal by 3 dB, say, will fairly
reliably make it sound about one ”step” louder. Much has been made of the
supposedly logarithmic responses of our ears (and other senses), which may
indeed partially explain why decibels are such a popular scale of amplitude.

Amplitude is also related in an inexact way to musical dynamic. Dynamic
is better thought of as a measure of effort than of loudness or power, and the
scale moves, roughly, over nine values: rest, ppp, pp, p, mp, mf, f, ff, fff. These
correlate in an even looser way with the amplitude of a signal than does loudness
[RMW02, pp. 110-111].

1.4 Controlling Amplitude

Conceptually at least, the simplest strategy for synthesizing sounds is by com-
bining SINUSOIDS, which can be generated by evaluating the formula from
section 1.1, sample by sample. The real sinusoid has a constant nominal ampli-
tude a, and we would like to be able to vary that in time.

In general, to multiply the amplitude of a signal x[n] by a constant y ≥ 0,
you can just multiply each sample by y, giving a new signal y · x[n]. Any
measurement of the RMS or peak amplitude of x[n] will be greater or less by
the factor y. More generally, you can change the amplitude by an amount y[n]
which varies sample by sample. If y[n] is nonnegative and if it varies slowly
enough, the amplitude of the product y[n] · x[n] (in a fixed window from M to
M + N − 1) will be related to that of x[n] by the value of y[n] in the window
(which we assume doesn’t change much over the N samples in the window).

In the more general case where both x[n] and y[n] are allowed to take negative
and positive values and/or to change quickly, the effect of multiplying them can’t
be described as simply changing the amplitude of one of them; this is considered
later in chapter 5.

6 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

(a)

OUT

FREQUENCY

OUT

FREQUENCY

(b)

X y[n]

Figure 1.2: Block diagrams for (a) a sinusoidal oscillator; (b) controlling the
amplitude using a multiplier and an amplitude signal y[n].

1.5 Synthesizing a Sinusoid

In most widely used audio synthesis and processing packages (Csound, Max/MSP,
and Pd, for instance), the audio operations are specified as networks of unit gen-

erators which pass audio signals among themselves. The user of the software
package specifies the network, sometimes called a patch, which essentially cor-
responds to the synthesis algorithm to be used, and then worries about how
to control the various unit generators in time. In this section, we’ll use ab-
stract block diagrams to describe patches, but in the ”examples” section later,
we’ll have to choose a real implementation environment and show some of the
software-dependent details.

To show how to produce a sinusoid with time-varying amplitude we’ll need
to introduce two unit generators. First we need a pure, SINUSOID which is
produced using an oscillator. Figure 1.2(a) shows the icon we use to show a
sinusoidal oscillator. The input is a frequency (in cycles per second), and the
output is a SINUSOID of peak amplitude one.

Figure 1.2(b) shows how to multiply the output of a sinusoidal oscillator
by an appropriate amplitude scaler y[n] to control its amplitude. Since the
oscillator’s peak amplitude is 1, the peak amplitude of the product is about y[n],
assuming y[n] changes slowly enough and doesn’t become negative in value.

Figure 1.3 shows how the SINUSOID of Figure 1.1 is affected by amplitude
change by two different controlling signals y[n]. In the first case the controlling
signal shown in (a) has a discontinuity, and so therefore does the resulting
amplitude-controlled sinusoid shown in (b). The second case (c, d) shows a
more gently-varying possibility for y[n] and the result. Intuition suggests that

1.5. SYNTHESIZING A SINUSOID 7

(a)

(b)

(c)

(d)

n

−1

1

−1

−1

−1

1

1

1

y[n]

x[n]y[n]

x[n]y[n]

y[n]

0 50

Figure 1.3: Two amplitude functions (a, c), and, in (b) and (d), the result of
multiplying them by the pure sinusoid of 1.1.

8 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

OUT

FREQUENCY

X

Figure 1.4: Using an envelope generator to control amplitude.

the result shown in (b) won’t sound like an amplitude-varying sinusoid, but
instead by a sinusoid interrupted by a fairly loud “pop” after which the sinusoid
reappears more quietly. In general, for reasons that can’t be explained in this
chapter, amplitude control signals y[n] which ramp smoothly from one value
to another are less likely to give rise to parasitic results (such as the “pop”
here) than are abruptly changing ones. Two general rules may be suggested
here. First, pure sinusoids are the class of signals most sensitive to the parasitic
effects of quick amplitude change; and second, depending on the signal whose
amplitude you are changing, the amplitude control will need between 0 and
30 milliseconds of “ramp” time—zero for the most forgiving signals (such as
white noise), and 30 for the least (such as a sinusoid). All this also depends (in
complicated ways) on listening levels and the acoustic context.

Suitable amplitude control functions y[n] may be obtained using an envelope

generator. Figure 1.4 shows a network in which an envelope generator is used
to control the amplitude of an oscillator. Envelope generators vary widely in
functionality from one design to another, but our purposes will be adequately
met by the simplest kind, which generates line segments, of the kind shown in
fig. 1.2(b). If a line segment is specified to ramp between two output values a
and b over N samples starting at sample number M , the output is:

y[n] = a + (b − a)
n − M

N
, M ≤ n < M + N − 1.

The output may have any number of segments such as this, laid end to end, over
the entire range of sample numbers n; flat, horizontal segments can be made by
setting a = b.

In addition to changing amplitudes of sounds, amplitude control is often
used, expecially in real-time applications, simply to turn sounds on and off: to

1.6. SUPERPOSING SINUSOIDS 9

turn one off, ramp the amplitude smoothly to zero. Most software synthesis
packages also provide ways to actually stop modules from computing samples
at all, but here we’ll use amplitude control instead.

Envelope generators are described in more detail in section 4.1.

1.6 Superposing Sinusoids

If two sinusoids have sufficiently different frequencies, they don’t interact acous-
tically; the power of the sum is the sum of the powers, and they are likely to
be heard as separate sounds. Something more complicated happens when two
sinusoids of closely neighboring frequencies are combined, and something yet
again when the two frequencies happen to be equal. Here we’ll treat this last
case.

We have seen that adding two sinusoids with the same frequency and the
same phase (so that the two signals are proportional) gives a resultant sinusoid
with the sum of the two amplitudes. If the two have different phases, though,
we have to do some algebra.

If we fix a frequency ω, there are two useful representations of a general (real)
sinusoid at frequency ω; the first is the original SINUSOID formula, which is
expressed in magnitude-phase form (also called polar form:

x[n] = a · cos (ωn + φ)

and the second is the sinusoid in rectangular form:

x[n] = c · cos (ωn) + s · sin (ωn) .

Solving for c and s in terms of a and φ gives:

c = a · cos (φ)

s = −a · sin (φ)

and vice versa we get:

a =
√

c2 + s2

φ = − arctan
s

c

We can use this to find the amplitude and phase of a sum of two sinusoids at
the same frequency ω but with possibly different amplitudes and phases, say,
a1, a2, φ1, and φ2. We just write the sum expicitly, convert to rectangular form,
add the two, and finally convert back to magnitude-phase form:

a1 cos (ωn + φ1) + a2 cos (ωn + φ2)

= a1 cos (ωn) cos (φ1) − a1 sin (ωn) sin (φ1)

+a2 cos (ωn) cos (φ2) − a2 sin (ωn) sin (φ2)

10 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

= (a1 cos (φ1) + a2 cos (φ2)) cos (ωn) − (a1 sin (φ1) + a2 sin (φ2)) sin (ωn)

= a3 cos (φ3) cos (ωn) − a3 sin (φ3) sin (ωn)

= a3 cos (ωn + φ3)

where we have chosen a3 and φ3 so that:

a3 cosφ3 = a1 cos φ1 + a2 cos φ2,

a3 sin φ3 = a1 sin φ1 + a2 sinφ2.

Solving for a3 and φ3 gives

a3 =
√

a1
2 + a2

2 + 2a1a1 cos (φ1 − φ2),

φ3 = arctan

(
a1 sin φ1 + a2 sin φ2

a1 cos φ1 + a2 cos φ2

)

In general, the amplitude of the sum can range from the difference of the two
amplitudes to their sum, depending on the phase difference. As a special case,
if the two sinusoids have the same amplitude a = a1 = a2, the amplitude of the
sum turns out to be:

a3 = 2a cos

(
φ1 − φ2

2

)

By comparing the more general formula for a3 above with the equation for
the MEAN POWER OF THE SUM OF TWO SIGNALS, we learn that the
correlation of two sinusoids of the same frequency is given by:

COR {a1 cos (ωn + φ1) , a2 cos (ωn + φ2)} = a1a2 cos (φ1 − φ2)

1.7 Frequency

Frequencies, like amplitudes, are often described on a logarithmic scale, in order
to emphasize proportions between frequencies, which usually provide a better
description of the relationship between frequencies than do differences between
them. The frequency ratio between two musical tones determines the musical
interval between them.

The Western musical scale divides the octave (the musical interval associated
with a ratio of 2:1) into twelve equal sub-intervals, each of which therefore
corresponds to a ratio of 21/12. For historical reasons this sub-interval is called
a half step. A convenient logarithmic scale for pitch is simply to count the
number of half-steps from a reference pitch—allowing fractions to permit us
to specify pitches which don’t fall on a note of the Western scale. The most
commonly used logarithmic pitch scale is MIDI, in which the pitch 69 is assigned
to the frequency 440, the A above middle C. To convert between MIDI pitch
and frequency in cycles per second, apply the formulas:

PITCH/FREQUENCY CONVERSION

1.8. PERIODIC SIGNALS 11

m = 69 + 12log2(f/440)

f = 440 · 2(m−69)/12

Middle C, corresponding to MIDI pitch 60, comes to 261.626 cycles per second.
Although MIDI itself (a hardware protocol which has unfortunately insin-

uated itself into a great deal of software design) allows only integer pitches
between 0 and 127, the underlying scale is well defined for any number, even
negative ones; for example a ”pitch” of -4 is a good rate of vibrato. The pitch
scale cannot, however, describe frequencies less than or equal to zero. (For a
clear description of MIDI, its capabilities and limitations, see [Bal03, ch.6-8]).

A half step comes to a ratio of about 1.059 to 1, or about a six percent
increase in frequency. Half steps are further divided into cents, each cent being
one hundredth of a half step. As a rule of thumb, it takes about three cents to
make a clearly audible change in pitch—at middle C this comes to a difference
of about 1/2 cycle per second.

1.8 Periodic Signals

A signal x[n] is said to repeat at a period τ if

x[n + τ] = x[n]

for all n. Such a signal would also repeat at periods 2τ and so on; the smallest
tau if any at which a signal repeats is called the signal’s period. In discussing
periods of digital audio signals, we quickly run into the difficulty of describing
signals whose “period” isn’t an integer, so that the equation above doesn’t make
sense. Throughout this section, we’ll avoid this difficulty by supposing that the
signal x[n] may somehow be interpolated between the samples so that it’s well
defined whether n is an integer or not.

The SINUSOID has a period (in samples) of 2π/ω where ω is the angular
frequency. More generally, any sum of sinusoids with frequencies 2πk/ω, for
integers k, will have this period. This is the FOURIER SERIES:

FOURIER SERIES

x[n] = a0 + a1 cos (ωn + φ1) + a2 cos (2ωn + φ2) + · · · + ap cos (pωn + φp)

Moreover, if we define the notion of interpolation carefully enough, we can
represent any periodic signal as such a sum. This is the discrete-time variant of
Fourier analysis which will reappear in many guises later.

The angular frequencies of the sinusoids above, i.e., integer multiples of ω,
are called harmonics of ω, which in turn is called the fundamental. In terms
of pitch, the harmonics ω, 2ω, . . . are at intervals of 0, 1200, 1902, 2400, 2786,
3102, 3369, 3600, ..., cents above the fundamental; this sequence of pitches is

12 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

OUT

FREQUENCY

X 2

X 3

X

+

X X

(more)

Figure 1.5: Using many oscillators to synthesize a waveform with desired har-
monic amplitudes.

sometimes called the harmonic series. The first six of these are all oddly close
to multiples of 100; in other words, the first six harmonics of a pitch in the
Western scale land close to (but not always on) other pitches of the same scale;
the third (and sixth) miss only by 2 cents and the fifth misses by 14.

Put another way, the frequency ratio 3:2 is almost exactly seven half-tones,
4:3 is just as near to five half tones, and the ratios 5:4 and 6:5 are fairly close
to intervals of four and three half-tones, respectively. These four intervals are
called the fifth, the fourth, and the major and minor thirds—again for historical
reasons which don’t concern us here.

Leaving questions of phase aside, we can use a bank of sinusoidal oscillators
to synthesize periodic tones, or even to morph smoothly through a succession
of periodic tones, by specifying the fundamental frequency and the (possibly
time-varying) amplitudes of the partials. Figure 1.5 shows a block diagram
for doing this. This is a special case of additive synthesis; more generally the
term can be applied to networks in which the frequencies of the oscillators are
independently controllable. The early days of computer music were full of the
sound of additive synthesis.

1.9. ABOUT THE SOFTWARE EXAMPLES 13

1.9 About the Software Examples

The examples here have all been realized using Pure Data (Pd), and to use
and understand them you will have to learn at least something about Pd itself.
Pd is an environment for quickly assembling computer music applications, pri-
marily intended for live music performances involving computers. Pd’s utility
extends to graphical and other media, although here we’ll focus on Pd’s audio
capabilities.

Several other patchable audio DSP environments exist besides Pd. The most
widely used one is certainly Barry Vercoe’s Csound, which differs from Pd in
being text-based–not GUI based—which is an advantage in some respects and a
disadvantage in others. Csound is better adapted than Pd for batch processing
and it handles polyphony much better than Pd does. On the other hand, Pd has
a better developed real-time control structure than Csound. More on Csound
can be found in ([Bou00]).

Another alternative in wide use is James McCartney’s SuperCollider, which
is also more text oriented than Pd, but like Pd is explicitly designed for real-
time use. SuperCollider has powerful linguistic constructs which make it more
useful than Csound as a programming language. Another major advantage is
that SuperCollider’s audio processing primitives are heavily optimized for the
processor family it runs on (MIPS), making it perhaps twice as efficient as Pd or
Csound. At this writing SuperCollider has the disadvantage that it is available
only for Macintosh computers (whereas Pd and Csound both run on a variety
of operating systems.)

Finally, Pd has a widely-used relative, Cycling74’s commercial program
Max/MSP (the others named here are all open source). Both beginners and
system managers running multi-user, multi-purpose computer labs will find
Max/MSP better supported and documented than Pd. It’s possible to take
knowledge of Pd and use it on Max/MSP and vice versa, and even to port
patches from one to the other, but they aren’t truly compatible.

1.9.1 Quick Introduction to Pd

Pd documents are called “patches.” They correspond roughly to the boxes in
the abstract block diagrams shown earlier in this chapter, but in detail they are
quite different, reflecting the fact that Pd is an implementation environment
and not a specification language.

A Pd patch, such as the one shown in Figure 1.6, consists of a collection of
boxes connected in a network called a patch. The border of a box tells you how
its text is interpreted and how the box functions. In part (a) of the figure we
see three types of boxes. From top to bottom they are:

• a message box. Message boxes, with a flag-shaped border, interpret the
text as a message to send whenever the box is activated (by an incoming
message or with the mouse.) The message in this case consists simply of
the number “34”.

14 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

0

+ 13

<− message box21

<− object box

(a)
dac~

osc~

0

(b)

frequency

sinusoidal oscillator

multiplier

output

*~

amplitude (on/off)

<− number (GUI) box

0.1 0

Figure 1.6: (a) three types of boxes in Pd (message, object, and GUI); (b) a
simple patch to output a sinusoid.

• an object box. Object boxes have a rectangular border; they use the text
to create objects when you load a patch. Object boxes may represent
hundreds of different classes of objects—including oscillators, envelope
generators, and other signal processing modules to be introduced later—
depending on the text inside. In this example, the box contains an adder.
In most Pd patches, the majority of boxes are of type “object”. The first
word typed into an object box specifies its class, which in this case is just
“+”. Any additional (blank-space-separated) words appearing in the box
are called creation arguments, which specify the initial state of the object
when it is created.

• a number box. number boxes are a particular case of a GUI box, which also
include push buttons, toggle switches, sliders, and more; these will come
up later in the examples. The number box has a punched-card-shaped
border, with a nick out of its top right corner. Whereas the appearance
of an object or message box is static when a patch is running, a number
box’s contents (the text) changes to reflect the current value held by the
box. You can also use a number box as a control by clicking and dragging
up and down, or by typing values in it.

In fig. 1.6(a) the message box, when clicked, sends the message “21” to an
object box which adds 13 to it. The lines connecting the boxes carry data from
one box to the next; outputs of boxes are on the bottom and inputs on top.

Figure 1.6(b) shows a Pd patch which makes a sinusoid with controllable
frequency and amplitude. The connecting patch lines are of two types here; the
thin ones are for carrying sporadic messages, and the thicker ones (connecting
the oscillator, the multiplier, and the output “dac ”) carry digital audio signals.
Since Pd is a real-time program, the audio signals flow in a continuous stream.
On the other hand, the sporadic messages appear at specific but possibly un-

1.10. EXAMPLES 15

predictable instants in time.
Whether a connection carries messages or signals is a function of the box

the connection comes from; so, for instance, “+” outputs messages, but “*˜”
outputs a signal. The inputs of objects may or may not accept signals (but they
always accept messages, even if only to convert them to signals). As a naming
convention, object boxes which input or output signals are all named with a
trailing tilde (“˜”) as in “*˜” and “osc˜”.

1.9.2 How to find and run the examples

To run the patches, you must first download, install, and run Pd. Instructions
for doing this appear in Pd’s on-line HTML documentation, which you can find
at http:/crca/ucsd/edu/˜msp/software.htm.

This book should appear at: http:/crca/ucsd/edu/˜msp/techniques.htm,
possibly in several revisions. Choose the revision that corresponds to the text
you’re reading (go to the introduction to find the revision number) and down-
load the archive containing the associated revision of the examples (you may
also download an archive of the HTML version for easier access on your ma-
chine.) The examples should all stay in a single directory, since some of them
depend on other files in that directory and might not find them if you move
things around.

If you do want to copy one of the examples to another directory so that
you can build on it (which you’re welcome to do), you should either include
the examples directory in Pd’s search path (see the Pd documentation) or else
figure out what other files are needed and copy them too. A good way to find
this out is just to run Pd on the relocated file and see what Pd complains it
can’t find.

There should be dozens of files in the “examples” folder, including the ex-
amples themselves and the support files. The filenames of the examples all
begin with a letter (A for chapter 1, B for 2, etc.) and a number, as in
“A01.sinewave.pd”.

The example patches are also distributed with Pd, but beware that you may
have a different version of the examples which might not correspond with the
text you’re reading.

1.10 Examples

1.10.1 constant amplitude scaler

Patch A01.sinewave.pd, shown in figure 1.7, contains essentially the simplest
possible noise-making patch, with only three object boxes. (There are also
comments, and two message boxes to turn Pd’s “DSP” (audio) processing on
and off.) The three object boxes are:

osc ∼ : the sinusoidal oscillator. The left hand side input and the output
take digital audio signals. The input is taken to be a (possibly time-varying)

16 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

osc~ 440

dac~

<−− 440 Hz. sine wave at full blast

<−− reduce amplitude to 0.05*~ 0.05

<−−−−− send to the audio output device

MAKING A SINE WAVE

Audio computation can be turned on and off by sending
messages to the global "pd" object as follows:

;
pd dsp 1

;
pd dsp 0

ON OFF

You should see the Pd window change to reflect whether
audio is on or off. You can also turn audio on and off
using the "audio" menu, but the buttons are provided as a
shortcut.

When DSP is on, you should hear a tone whose pitch is A 440
and whose amplitude is 0.05. If instead you are greeted
with silence, you might want to read the HTML documentation
on setting up audio.

In general when you start a work session with Pd, you will
want to choose "test audio and MIDI" from the help window,
which opens a more comprehensive test patch than this one.

Audio computation in Pd is done using "tilde objects" such
as the three below. They use continuous audio streams to
intercommunicate, as well as communicating with other
("control") Pd objects using messages.

<−− click these

Figure 1.7: The contents of the first Pd example patch: A01.sinewave.pd.

1.10. EXAMPLES 17

frequency in Hz. The output is a SINUSOID at the specified frequency. If
nothing is connected to the frequency inlet, the creation argument (440 in this
example) is used as the frequency. The output has peak amplitude one. You
may set an initial phase by sending messages (not audio signals) to the right
inlet. The left (frequency) inlet may also be sent messages to set the frequency,
since any inlet that takes an audio signal may be sent messages which are
automatically converted to the desired audio signal.

∗ ∼ : the multiplier. This exists in two forms. If a creation argument is
specified (as in this example; it’s 0.05), this box multiplies a digital audio signal
(in the left inlet) by the number; messages to the right inlet can update the
number as well. If no argument is given, this box multiplies two incoming
digital audio signals together.

dac ∼ : the audio output device. Depending on your hardware, this might not
actually be a Digital/Analog Converter—as the name suggests—but in general,
it allows you to send any audio signal to your computer’s audio output(s). If
there are no creation arguments, the default configuration is to output to chan-
nels one and two of the audio hardware; you may specify alternative channel
numbers (one or many) using the creation arguments. Pd itself may be con-
figured to be using two or more output channels, or may not have the audio
output device open at all; consult the Pd documentation for details.

The two message boxes in example 1 show a peculiarity in the way messages
are parsed in message boxes. In the previous example, the message consisted
only of the number 21. When clicked, that box sent the message “21” to its
outlet and hence to any objects connected to it. In the current example, the
text of the message boxes starts with a semicolon. This is a terminator between
messages (so the first message is empty), after which the next word is taken as
the name of the recipient of the following message. Thus the message here is “dsp
1” (or “dsp 0”) and the message is to be sent, not to any connected objects—
there aren’t any anyway— but rather, to the object named “pd”. This particular
object is provided invisibly by the Pd program and you can send it various
messages to control Pd’s global state, in this case turning audio processing on
(“1”) and off (“0”).

Many more details about the control aspects of Pd, such as the above, are
explained in a different series of example patches (the “control examples”) as
part of the Pd release, but they will only be touched on here as necessary to
demonstrate the audio signal processing aspects that are the subject of this
book.

1.10.2 amplitude control in decibels

Patch A02.amplitude.pdshows how to make a crude amplitude control; the ac-
tive elements are shown in figure 1.7(a). There is one new object class:

dbtorms : Decibels to amplitude conversion. The “RMS” is a misnomer; it
should have been named “dbtoamp”, since it really converts from decibels to
any linear amplitude unit, be it RMS, peak, or other. An input of 100 dB

18 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

osc~ 440

dac~

*~ 0

0

dbtorms

0

(a)

osc~ 440

dac~

*~

line~ <−−− ramp generator

0.1 2000

0 2000

0.1 50

0 50

0.1

0

<−− slow on

<−− fast on

<−− instant on

<−− slow off

<−− fast off

<−− instant off

<−− multiplier: this time

taking a signal in

on both sides.

(b)

osc~ 440

osc~ 550

osc~ 660

+~

+~

(c)

output~

0dB

mute

Figure 1.8: The active ingredients to three patches: (a) A02.amplitude.pd; (b)
A03.line.pd; (c) A05.output.subpatch.pd.

1.10. EXAMPLES 19

is normalized to an output of 1. Values greater than 100 are fine (120 will
give 10), but values less than or equal to zero will output zero (a zero input
would otherwise have output a small positive number.) This is a control object,
i.e., the numbers going in and out are messages, not signals. (A corresponding

object, dbtorms ∼ , is the signal correlate. However, as a signal object this is
expensive in CPU time and most often we’ll find one way or another to avoid
using it.)

The two number boxes are connected to the input and output of the dbtorms
object. The input functions as a control; “mouse” on it (click and drag upward
or downward) to change the amplitude. It has been set to range from 0 to
80; this is protection for your speakers and ears, and it’s wise to build such
guardrails into your own patches.

The other number box shows the output of the dbtorms object. It is useless
to mouse on this number box, since its outlet is connected nowhere; it is here
purely to display its input. Number boxes may be useful as controls, displays,
or both, although if you’re using it as both there is some extra work to do.

1.10.3 smoothed amplitude control with an envelope gen-
erator

As figure 1.3 shows, one way to make smooth amplitude changes in a signal
without clicks is to multiply by an envelope generator; one is invoked in figure
1.4. This may be implemented in Pd using the line~ class:

line ∼ : envelope generator. The output is a signal which ramps linearly from
one value to another over time, as determined by the messages received. The
inlets take messages to specify target values (left inlet) and time delays (right
inlet). Because of a general rule of Pd messages, a pair of numbers sent to
the left inlet suffices to specify a target value and a time together. The time
is in milliseconds (taking into account the sample rate), and the target value
is unitless, or rather, its units should conform to whatever input it may be
connected to.

Patch A03.line.pd demonstrates the use of a line~ object to control the
amplitude of a sinusoid. The active part is shown in figure 1.8(b). The six mes-
sage boxes are all connected to the line~ object, and are activated by clicking
on them; the top one, for instance, specifies that the line~ ramp (starting at
wherever its output was before receiving the message) to the value 0.1 over two
seconds. After the two seconds elapse, unless other messages have arrived in the
meantime, the output remains steady at 0.1. Messages may arrive before the
two seconds elapse, in which case the line~ object abandons its old trajectory
and takes up a new one.

Two messages to line~ might arrive at the same time or so close together
in time that no DSP computation takes place between the two; in this case, the
earlier message has no effect, since line~ won’t have changed its output yet
to follow the first message, and its current output, unchanged, is then used as
a starting point for the second segment. An exception to this rule is that, if

20 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

line~ gets a time value of zero, the output value is immediately set to the new
value and further segments will start from the new value; thus, by sending two
pairs, the first with a time value of zero and the second with a nonzero time
value, one can independently specify the beginning and end values of a segment
in line~’s output.

The treatment of line~’s right inlet is unusual among Pd objects in that it
forgets old values; thus, a message with a single number such as ”0.1” is always
equivalent to the pair, ”0.1 0”. Most Pd objects will keep the previous value for
the right inlet, instead of filling in zero.

Patch A04.line2.pd shows the line~ object’s output graphically, so that
you can see the principles of Figure 1.4 in action.

1.10.4 major triad

Patch A05.output.subpatch.pd, whose active ingredients are shown in Figure
1.8(c), presents three sinusoids with frequencies in the ratio 4:5:6, so that the
lower two are separated by a major third, the upper two by a minor third, and
the top and bottom by a fifth. The lowest frequency is 440, equal to A above
middle C, or MIDI 69. The others are approximately four and seven half-steps
higher, respectively. The three have equal amplitudes.

The amplitude control in this example is taken care of by a new object
called output~. This isn’t a built-in object of Pd, but is itself a Pd patch which
lives in a file, output.pd. You can see the internals of output by right-clicking
on the box and selecting ”open”. You get two controls, one for amplitude in
dB (100 meaning ”unit gain”), and a ”mute” button. Pd’s audio processing
is turned on automatically when you set the output level—this might not be
the right behavior in general, but it’s appropriate for these example patches.
The mechanism for embedding one Pd patch as an object box inside another is
discussed in section 4.7.

1.10.5 conversion between frequency and pitch

Patch A06.frequency.pd (figure 1.9) shows Pd’s object for converting pitch to
frequency units (mtof, meaning ”MIDI to frequency”) and its inverse ftom. We
also introduce two other object classes, send and receive:

mtof , ftom : Converts MIDI pitch to frequency units according to the
PITCH/FREQUENCY CONVERSION formulas. Inputs and outputs are mes-
sages (but ”tilde” equivalents of the two also exist, although like dbtorms~

they’re expensive in CPU time). The ftom object’s output is -1500 of the input
is zero or negative; and likewise, if you give mtof -1500 or lower it outputs zero.

receive , r : Receive messages non-locally. The receive object, which may
be abbreviated as “r” waits for non-local messages to be sent by a send object
(below) or by a message box using redirection (the “;” feature discussed in the
earlier example, A01.sinewave.pd). The argument (such as “frequency” and
“pitch” in this example) is the name to which messages are sent. Multiple

1.10. EXAMPLES 21

0

set $1

0

r frequency

set $1

s frequency

r pitch

s pitch

mtof

s frequencys pitch

ftom

<−− set frequency <−− set MIDI pitch

<−− convert frequency

to "MIDI" pitch

<−− convert "MIDI" pitch
to frequency

Figure 1.9: Conversion between pitch and frequency in A06.frequency.pd.

receive objects may share the same name, in which case any message sent to
that name will go to all of them.

send , s : The send object, which may be abbreviated as “s”, directs mes-
sages to receive objects.

Two new properties of number boxes are used here. Heretofore we’ve used
them as controls or as displays; here, the two number boxes each function as
both. If a number box gets a number in its inlet, it not only displays the number
but also repeats it to its output. However, a number box may also be sent a
“set” message, such as “set 55” for example. This would set the value of the
number box to 55 (and display it) but not cause the output that would result
from the simple “55” message. In this case, numbers coming from the two
receives are formatted (using message boxes) to read “set 55” instead of just
“55”, and so on. (The special word “$1” is replaced by the incoming number.)
This is done because otherwise we would have an infinite loop: frequency would
change pitch which would change frequency and so on forever, or at least until
something breaks.

Exercises

1. If 0 dB corresponds to an amplitude of 1, how many dB corresponds to
amplitudes of 1.5, 2, 3, and 5? (Answer: about 3, 6, 10, and 14.)

2. Two uncorrelated signals of RMS amplitude 3 and 4 are added; what’s
the RMS amplitude of the sum?

3. How many uncorrelated signals, all of equal amplitude, would you have to
add to get a signal that is 9 dB hotter?

4. What is the angular frequency of middle C at 44100 samples per second?

22 CHAPTER 1. ACOUSTICS OF DIGITAL AUDIO SIGNALS

5. If x[n] is an audio signal, show that:

ARMS{x[n]} ≤ Apeak{x[n]}

and
ARMS{x[n]} ≥ Apeak{x[n]}/

√
N,

where N is the window size. Under what conditions does equality hold
for each one?

6. If x[n] is the SINUSOID of Section 1.1, and making the assumptions of
section 1.2, show that its RMS amplitude is approximately a/

√
2. Hint:

use an integral to approximate the sum. Since the window contains many
periods, you can assume that the integral covers a whole number of peri-
ods.

Chapter 2

Wavetables and samplers

In the previous chapter we treated audio signals as if they always flowed by in a
continuous stream at some sample rate. The sample rate isn’t really a quality of
the audio signal, but rather it specifies how fast the individual samples should
flow into or out of the computer. But the audio signal is at bottom just a
sequence of numbers, and in practice we don’t have to assume that they will be
“played” linearly at all. Another, complementary view is that they can be stored
in memory, and, later, they can be read back in any order—forward, backward,
back and forth, or totally at random. A huge range of new possibilities opens
up, one that will never be exhausted.

For many years (roughly 1950-1990), magnetic tape served as the main stor-
age medium for sounds. Tapes were passed back and forth across magnetic
pickups to render them in real time. Since 1995 or so, the predominant method
of sound storage has been to keep them as digital audio signals, which are read
back with much greater freedom and facility than were the magnetic tapes.
Many modes of use dating from the tape era are still current, including cut-
ting, duplication, speed change, and time reversal. Other techniques, such as
waveshaping, have come into their own only in the digital era.

Suppose we have a stored digital audio signal, which is just a sequence of
numbers x[n] for n = 0, ..., N − 1, where N is the size in samples of the stored
signal. Then if we have an input signal y[n] (which we assume to be flowing
in real time), we can use its values as indices to look up values of the stored
signal x[n]. This operation, called wavetable lookup, gives us a new signal, z[n],
calculated as:

z[n] = x[y[n]].

Schematically we represent this operation as shown in figure 2.1.

Two complications arise. First, the input values, y[n], might lie outside
the range 0, ..., N − 1, in which case the wavetable x[n] has no value and the
expression for the output z[n] is undefined. In this situation we might choose
to anything negative and N − 1 for anything N or greater. Alternatively, we
might prefer to wrap them around end to end. Here we’ll adopt the convention

23

24 CHAPTER 2. WAVETABLES AND SAMPLERS

IN

OUT

Figure 2.1: Diagram for wavetable lookup. The input is in samples, ranging
approximately from 0 to the wavetable’s size N , depending on the interpolation
scheme.

that out-of-range samples are always clipped; when we need wraparound, we’ll
introduce another signal processing block to do it for us.

The second complication is that the input values need not be integers; in
other words they might fall between the points of the wavetable. In general,
this is addressed by choosing some scheme for interpolating between the points
of the wavetable. For the moment, though, we’ll just round down to the nearest
integer below the input. This is called noninterpolating wavetable lookup, and
its full definition is:

z[n] =







x[by[n]c] if 0 ≤ y[n] < N − 1
x[0] if y[n] < 0
x[N − 1] if y[n] ≥ N − 1

(where the symbol by[n]c means, “the greatest integer not exceeding y[n]”).
Pictorally, we use y[0] (a number) as a location on the horizontal axis of the

wavetable shown in figure 2.1, and the output, z[0], is whatever we get on the
vertical axis; and the same for y[1] and z[1] and so on. The “natural” range
for the input y[n] is 0 ≤ y[n] < N . This is different from the usual range of an
audio signal suitable for output from the computer, which ranges from -1 to 1
in our units. We’ll see later that the range of input values, nominally from 0 to
N , contracts slightly if interpolating lookup is used.

Figure 2.2 shows a wavetable (a) and the result of using two different input
signals as lookup indices into it. The wavetable contains 40 points, which are
numbered from 0 to 39. In part (b) of the figure, a sawtooth wave is used as
the input signal y[n]. A sawtooth wave is nothing but a ramp function repeated
end to end. In this case the sawtooth’s range is from 0 to 40 (this is shown
in the vertical axis). The sawtooth wave thus scans the wavetable from left
to right—from the beginning point 0 to the endpoint 39—and does so every
time it repeats. Over the fifty points shown in Figure 2.2(b) the sawtooth wave

2.1. THE WAVETABLE OSCILLATOR 25

makes two and a half cycles. Its period is twenty samples, or in other words the
frequency (in cycles per second) is R/20.

Part (c) of figure 2.2 shows the result of applying wavetable lookup, using
the table x[n], to the signal y[n]. Since the sawtooth input simply reads out
the contents of the wavetable from left to right, repeatedly, at a constant rate
of precession, the result will be a new periodic signal, whose waveform (shape)
is derived from x[n] and whose frequency is determined by the sawtooth wave
y[n].

Parts (d) and (e) of figure 2.2 show an example of reading the wavetable in a
nonuniform way; since the inputs signal rises from 0 to N and then later recedes
to 0, we see the wavetable appear first forward, then frozen at its endpoint, then
backward. The table is scanned from left to right and then, more quickly, from
right to left. As in the previous example the incoming signal controls the speed
of precession while the output’s amplitude is that of the wavetable.

2.1 The Wavetable Oscillator

Figure 2.2 suggests an easy way to synthesize any desired fixed waveform at
any desired frequency, using the block diagram shown in Figure 2.3. The upper
block is an oscillator—not the sinusoidal oscillator we saw earlier, but one which
produces sawtooth waves instead. The output values, as indicated at the left
of the block, should range from 0 to the wavetable size N . This is used as an
index into the wavetable lookup block (introduced in Figure 2.1), resulting, as
shown in Figure 2.2(b,c), in a periodic waveform. Figure 2.3(b) adds an envelope
generator and a multiplier to control the output amplitude in the same way as
for the sinusoidal oscillator shown in Chapter 1. Often, one uses a wavetable
with (RMS or peak) amplitude 1, so that the amplitude of the output is just
the magnitude of the envelope generator’s output.

Wavetable oscillators are often used to synthesize sounds with specified,
static spectra. To do this, you can precompute N samples of any waveform of
period N (angular frequency 2π/N) by adding up the elements of the FOURIER
SERIES (section 1.8). The computation involved in setting up the wavetable
at first might be significant, but this may be done in advance of the synthesis
process, which can then take place in real time. Frequently, wavetables are
prepared in advance and stored in files to be loaded into memory as needed for
performance.

While direct additive synthesis of complex waveforms, as shown in Chapter
1, is in principle infinitely flexible as a technique for producing time-varying
timbres, wavetable synthesis is much less expensive in terms of computation but
requires switching wavetables to change the timbre. An intermediate technique,
more flexible and expensive than simple wavetable synthesis but less flexible
and less expensive than additive synthesis, is to create time-varying mixtures
between a small number of fixed wavetables. If the number of wavetables is only
two, this is in effect a cross-fade between the two waveforms, as diagrammed
in figure 2.3. Here we suppose that some signal 0 ≤ x[n] ≤ 1 is to control the

26 CHAPTER 2. WAVETABLES AND SAMPLERS

1

−1

n 0

x[n]

40

50

0

40

1

−1

1

−1

0

40

y[n]

z[n]

y2[n]

z2[n]

(a)

(b)

(c)

(d)

(e)

Figure 2.2: Wavetable lookup. (a): a wavetable; (b) and (d): signal inputs for
lookup; (c) and (e): the corresponding outputs.

2.1. THE WAVETABLE OSCILLATOR 27

N

0

−1

1

frequency

OUT
X

N

0

−1

1

OUT
(a)

(b)

frequency

Figure 2.3: Block diagram (a) for a wavetable lookup oscillator , and (b) with
amplitude control by an envelope generator.

relative strengths of the two waveforms, so that, if x[n] = 0, we get the first one
and if x[n] = 1 we get the second. Supposing the two signals to be cross-faded
are y[n] and z[n], we compute the signal

(1 − x[n])y[n] + x[n]z[n],

or, equivalently and usually more efficient to calculate,

y[n] + x[n](z[n] − y[n]).

This computation is diagrammed in figure 2.4.

In using this technique to cross-fade between wavetable oscillators, it might
be desirable to keep the phases of corresponding partials the same across the
wavetables, so that their amplitudes combine additively when they are mixed.
On the other hand, if arbitrary wavetables are used (for instance, borrowed from
a recorded sound) there will be a phasing effect as the different waveforms are
mixed.

This scheme can be extended in a daisy chain to travel a continuous path
between a succession of timbers. Alternatively, or in combination with daisy-
chaining, cross-fading may be used to interpolate between two different timbres,
for example as a function of musical dynamic. To do this you would prepare
two or even several waveforms of a single synthetic voice played at different

28 CHAPTER 2. WAVETABLES AND SAMPLERS

N

0

−1

1

OUT

frequency

−

X +

Figure 2.4: Block diagram for cross-fading between two wavetables.

2.2. SAMPLING 29

dynamics. and interpolate between successive ones as a function of the output
dynamic you want.

You can even use pre-recorded instrumental (or other) sounds as a waveform.
In its simplest form this is called ”sampling” and is the subject of the next
section.

2.2 Sampling

To make a sampler, we just record a real sound into a wavetable and then later
read it back out again. In music stores the entire wavetable is usually called a
“sample” but to avoid confusion we’ll only use the word “sample” here to mean
a single point in an audio signal, as described in Chapter 1.

Going back to figure 2.2, suppose that instead of 40 points the wavetable
x[n] is a one-second recorded sample, originally recorded at a sample rate of
44100, so that it has 44100 points; and let y[n] in part (b) of the figure have a
period of 22050 samples. This corresponds to a frequency of 2 Hz. But what
we hear is not a pitched sound at 2 cycles per second (that’s too slow to hear as
a pitch) but rather, we’ll hear the original sample x[n] played back repeatedly
at double speed. We’ve just re-invented the sampler.

At its simplest, a sampler is simply a wavetable oscillator, as was shown in
figure 2.3. However, in the earlier discussion we imagined playing the oscillator
back at a frequency high enough to be perceived as a pitch, at least 30 Hz or
so. In the case of sampling, the frequency is usually lower than 30 Hz, and so
the period, at least 1/30 second and perhaps much more, is long enough that
you can hear the individual cycles as separate events.

In general, if we assume the sample rate R of the recorded sample is the
same as the output sample rate, if the wavetable has N samples and if we play
it back using a sawtooth wave of period M , the sample is transposed by a
factor of N/M , equal to Nf/R if f is the frequency in Hz of the sawtooth. As
an interval, the transposition in half steps is given by the TRANSPOSITION
FORMULA FOR LOOPING WAVETABLES:

h = 12 log2

(
N

M

)

= 12 log2

(
Nf

R

)

.

Frequently the desired transposition h is known and the formula must be solved
for either f or N :

f =
2h/12R

N
,

N =
2h/12R

f
,

where h is the desired transposition in half steps.
So far we have used a sawtooth as the input wave y[t], but, as suggested in

parts (d) and (e) of figure 2.2, we could use anything we like as an input signal.

30 CHAPTER 2. WAVETABLES AND SAMPLERS

In this case, the transposition is time dependent and is controlled by the rate
of change of the input signal.

As a speed multiple the transposition multiple t and the transposition in
half steps h are given by the: MOMENTARY TRANSPOSITION FORMULAS
FOR WAVETABLES:

t[n] = |y[n] − y[n − 1]|,
h[n] = 12log2|y[n] − y[n − 1]|.

(Here the enclosing bars (|) mean absolute value.) For example, if y[n] = n,
then z[n] = x[n] so we hear the wavetable at its original pitch, and this is what
the formula predicts since, in that case,

y[n] − y[n − 1] = 1.

On the other hand, if y[n] = 2n, then the wavetable is transposed up an octave,
consistent with

y[n] − y[n − 1] = 2.

If values of y[n] are decreasing with n, you hear the sample backward, but the
transposition formula still gives a positive multiplier. This is all consistent with
the earlier TRANSPOSITION FORMULA FOR LOOPING WAVETABLES; if
a sawtooth ranges from 0 to N , f times per second, the difference of successive
samples is just Nf/R—excepting the samples at the beginnings of new cycles.

It’s well known that transposing a sample also transposes its timbre—this is
the “chipmunk” effect. Not only are any periodicities (such as might give rise
to pitch) in the sample transposed, but so are the frequencies of the overtones.
Some timbres, notably those of vocal sounds, can be described in terms of
frequency ranges in which overtones are stronger than their neighbors. These
frequency ranges are also transposed, which is heard as a timbre change. In
language that will be made more precise in section 5.1, we say that the spectral

envelope is transposed along with the pitch or pitches.
In both this and the preceding section, we have considered playing waveta-

bles periodically. In section 2.1 the playback repeated quickly enough that the
repetition gives rise to a pitch, say between 25 and 4000 times per second,
roughly the range of a piano. In the current section we assume a wavetable one
second long, and in this case ”reasonable” transposition factors (less than four
octaves up) would give rise to a rate of repetition below 25, usually much lower,
and going down as low as we wish.

The number 25 is significant for another reason: it is roughly the maximum
number of separate events the ear can discern per second; for instance, 25 syl-
lables of speech or melodic notes per second, or attacks of a snare drum roll,
are about the most we can hope to crowd into a second before our ability to
distinguish them breaks down.

A continuum exists between samplers and wavetable oscillators, in that the
patch of Figure 2.3 can either be regarded as a sampler (if the frequency of
repetition is less than about 20 Hz.) or as a wavetable oscillator (if the frequency
is greater than about 40 Hz.) It is possible to move continuously between the

2.3. ENVELOPING SAMPLERS 31

two regimes. Furthermore, it is not necessary to play an entire sample in a loop;
with a bit more arithmetic we can choose sub-segments of the sample, and these
can change in length and location continuously as the sample is played.

The practice of playing many small segments of a sample in rapid succession
is often called granular synthesis. For much more discussion of the possibilities,
see [Roa01].

Figure 2.5 shows how to build a very simple looping sampler. In the figure,
if we call the frequency f and the segment size in samples is s, the output
transposition factor is given by t = fs/R, where R is the sample rate at which
the wavetable was recorded (which need not equal the sample rate the block
diagram is working at.) In practice, this equation must usually be solved for
either f or s to attain a desired transposition.

In the figure, a sawtooth oscillator controls the location of wavetable lookup,
but the lower and upper values of the sawtooth aren’t statically specified as they
were in Figure 2.3; rather, the sawtooth oscillator simply ranges from 0 to 1 in
value and the range is adjusted to select a desired segment of samples in the
wavetable.

It might be desirable to specify the segment’s location l either as its left-hand
edge (its lower bound) else as the segment’s midpoint; in either case we specify
the length s as a separate parameter. In the first case, we start by multiplying
the sawtooth by s, so that it then ranges from 0 to s; then we add l so that it
now ranges from l to l + s. In order to specify the location as the segment’s
midpoint, we first subtract 1/2 from the sawtooth (so that it ranges from −1/2
to 1/2, and then as before multiply by s (so that it now ranges from −s/2 to
s/2 and add l to give a range from l − s/2 to l + s/2.

In the looping sampler, we will need to worry about the continuity between
the beginning and the end of segments of a sample, which we’ll consider in the
next section.

A further detail is that, if the segment size and location are changing with
time (they might be digital audio signals themselves, for instance), they will
affect the transposition factor, and the pitch or timbre of the output signal might
waver up and down as a result. The simplest way to avoid this problem is to
synchronize changes in the values of s and l with the regular discontinuities of the
sawtooth; since the signal jumps discontinuously there, the transposition is not
really defined there anyway, and, if you are enveloping to hide the discontinuity,
the effects of changes in s and l are hidden as well.

2.3 Enveloping samplers

In the previous section we considered reading a wavetable either sporadically
or repeatedly to make a sampler. In most real applications we must deal with
getting the samples to start and stop cleanly, so that the output signal doesn’t
jump discontinuously at the beginnings and ends of samples. This discontinuity
can sound like a click or a thump depending on the wavetable.

32 CHAPTER 2. WAVETABLES AND SAMPLERS

0

−1

1

OUT

frequency

−

X

1

1/2 optional − for

centered segments

segment size

+ segment location

Figure 2.5: A simple looping sampler, as yet with no amplitude control. There
are inputs to control the frequency and the segment size and location. The
“-” operation is included if we wish the segment location to be specified as the
segment’s midpoint; otherwise we specify the location of the left end of the
segment.

2.3. ENVELOPING SAMPLERS 33

−−−−−−−−−−−− new periods −−−−−−−−−−

(a)

(b)

Figure 2.6: Differing envelope requirements for oscillators and samplers: (a) in
an oscillator, the envelope can be chosen to conform to any desired timescale;
(b) when the wavetable is a recorded sound, it’s up to you to get the envelope
to zero before you hit the end of the wavetable for the first time.

The easiest way to do this, assuming we will always play a wavetable com-
pletely from beginning to end, is simply to prepare the sample in advance so
that it fades in cleanly at the beginning and out cleanly at the end. This may
even be done in the case that the wavetable is sampled live, by multiplying
the input signal by a line segment envelope timed to match the length of the
recording.

In many situations, however, it is either inconvenient or impossible to pre-
envelope the sample—for example, we might want to play only part of the sample
back, or we may want to change the sharpness of the enveloping dynamically.
In section 2.1 we had already seen how to control the amplitude of sinusoidal
oscillators using multiplication by a ramp function (also known as an envelope
generator), and we built this notion into the wavetable oscillators of Figures
2.3 and 2.4. This also works fine for turning samplers on and off to avoid
discontinuities, but with one major difference: whereas in wavetable synthesis,
we were free to assume that the waveform lines up end to end, so that we
are free to choose any envelope timing we want, in the case of sampling using
unprepared waveforms, we are obliged to get the envelope generator’s output
to zero by the time we reach the end of the wavetable for the first time. This
situation is pictured in Figure 2.6.

In situations where an arbitrary wavetable must be repeated as needed, the
simplest way to make the looping work continuously is to arrange for amplitude

34 CHAPTER 2. WAVETABLES AND SAMPLERS

0

−1

1

OUT

frequency

X

1

+

size

location

X N

1

0

0 N

X

Figure 2.7: A sampler as in Figure 2.6, but with an additional wavetable lookup
for enveloping.

change to be synchronized with the looping, using a separate wavetable (the
envelope). This may be implemented as shown in figure 2.7. A single sawtooth
oscillator is used to calculate lookup indices for two wavetables, one holding the
recorded sound, and the other, an envelope shape. The main thing to worry
about is getting the inputs of the two wavetables each in its own appropriate
range.

In many situations it is desirable to combine two or more copies of the looping
wavetable sampler at the same frequency and at a specified phase relationship.
This may be done so that when any particular one is at the end of its segment,
one or more others is in the middle of the same segment, so that the aggregate
is continuously making sound. To accomplish this, we need a way to generate
two or more sawtooth waves at the desired phase relationship that we can use
in place of the oscillator at the top of figure 2.7. We can start with a single
sawtooth wave and then produce others at fixed phase relationships with the
first one. If we wish a sawtooth which is, say, a cycles ahead of the first one,

2.4. TIMBRE STRETCHING 35

0

OUT

frequency

1

+ a

WRAP

1

0.3

1.3

1

0.3

Figure 2.8: A technique for generating two or more sawtooth waves with fixed
phase relationships between them. The relative phase is controlled by the pa-
rameter a.

we simply add the parameter a and then take the fractional part, which is the
desired new sawtooth wave, as shown in Figure 2.8.

2.4 Timbre stretching

The waveform oscillator of section 2.1, which we extended in section 2.2 to en-
compass grabbing waveforms from arbitrary wavetables such as recorded sounds,
may also, or simultaneously, be extended in a complementary way, that we’ll
refer to as timbre stretching, for reasons we’ll develop in this section. There
are also many other possible ways to extend the wavetable oscillator, using, for
instance frequency modulation and waveshaping, but we’ll leave those for later
chapters.

The central idea of timbre stretching is to reconsider the idea of the wavetable
oscillator as a mechanism of playing a stored wavetable (or part of one) end to
end. There is no reason the end of one cycle has to coincide with the beginning
of another. Instead, we could ask for copies of the waveform to be spaced
with alternating segments of silence; or, going in the opposite direction, the

36 CHAPTER 2. WAVETABLES AND SAMPLERS

(c)

(a)

(b)

Figure 2.9: A waveform is played at a period of 20 samples: (a) at 100 percent
duty cycle; (b) at 50 percent; (c) at 200 percent

waveform copies could be space more closely together so that they overlap. The
single parameter available in section 2.1—the frequency—has been heretofore
used to control two separate aspects of the output: the period at which we start
new copies of the waveform, and also the length of each individual copy. The
idea of timbre stretching is to control the two independently.

Figure 2.9 shows the result of playing a wavetable in three ways. In each
case the output waveform has period 20; in other words, the output frequency
is R/20 if R is the output sample rate. In part (a) of the figure, each copy of the
waveform is played over 20 samples, so that the wave form fits exactly into the
cycle with no gaps and no overlap. In part (b), although the period is still 20,
the waveform is compressed into the middle half of the period (10 samples); or
in other words, the duty cycle—the relative amount of time the waveform fills
the cycle—equals 50 percent. The remaining 50 percent of the time, the output
is zero.

In part (c), the waveform is stretched to 40 samples, and since it is still
repeated every 20 samples, the waveforms overlap two to one. The duty cycle
is thus 200 percent.

Suppose now that the 100 percent duty cycle waveform has a Fourier series
(section 1.8) equal to:

x100[n] = a0 + a1 cos (ωn + φ1) + a2 cos (2ωn + φ2) + · · ·

where ω is the angular frequency (equal to π/10 in our example since the period

2.4. TIMBRE STRETCHING 37

is 20.) To simplify this example we won’t worry about where the series must
end, and will just let it run on forever.

We would like to relate this to the Fourier series of the other two waveforms
in the example, in order to show how changing the duty cycle changes the timbre
of the result. For the 50 percent duty cycle case (calling the signal x50[n]), we
observe that the waveform, if we replicate it out of phase by a half period and
add the two, gives exactly the original waveform at twice the frequency:

x100[2n] = x50[n] + x50[n +
π

ω
],

where ω is the angular frequency (and so π/ω is half the period) of both signals.
So if we denote the Fourier series of x50[n] as:

x50[n] = b0 + b1 cos (ωn + θ1) + b2 cos (2ωn + θ2) + · · ·

and substitute the Fourier series for all three terms above, we get:

a0 + a1 cos (2ωn + φ1) + a2 cos (4ωn + φ2) + · · ·

= b0+b1 cos (ωn + θ1)+b2 cos (2ωn + θ2)+· · ·+b0+b1 cos (ωn + π + θ1)+b2 cos (2ωn + 2π + θ2)+· · ·
= 2b0 + 2b2 cos (2ωn + θ2) + 2b4 cos (4ωn + θ4) + · · · ,

and so
a0 = 2b0, a1 = 2b2, a2 = 2b4,

and so on: the even partials of x50, at least, are obtained by stretching the
partials of x100 out twice as far. (We don’t yet know about the odd partials of
x50, and these might be in line with the even ones or not, depending on factors
we can’t control yet. Suffice it to say for the moment, that if the waveform
connects smoothly with the horizontal axis at both ends, the odd partials will
act globally like the even ones. To make this more exact we’ll need to use Fourier
analysis, which is developed in a later chapter.)

Similarly, x100 and x200 are related in exactly the same way:

x200[2n] = x100[n] + x100[n +
π

ω
],

so that, if the amplitudes of the fourier series of x200 are denoted by c0, c1, . . .,
we get:

c0 = 2a0, c1 = 2a2, c2 = 2a4, . . . ,

so that the partials of x200 are those of x100 shrunk, by half, to the left.
We see that squeezing the waveform by a factor of 2 has the effect of stretch-

ing the Fourier series out by two, and on the other hand stretching the waveform
by a factor of two squeezes the Fourier series by two. By the same sort of ar-
gument, in general it turns out that stretching the waveform by a factor of
any positive number f squeezes the overtones, in frequency, by the reciprocal
1/f—at least approximately, and the approximation is at least fairly good if
the waveform “behaves well” at its ends. (As we’ll see later, the waveform can

38 CHAPTER 2. WAVETABLES AND SAMPLERS

200%

100%

50%

0 1 2 3 4 5

Figure 2.10: The Fourier series magnitudes for the waveforms shown in Figure
2.9. The horizontal axis is the harmonic number. We only ”hear” the coefficients
for integer harmonic numbers; the continuous curves are the “ideal” contour.

always be forced to behave at least reasonably well by enveloping it as in Figure
2.7.)

Figure 2.10 shows the spectra of the three waveforms—or in other words the
one waveform at three duty cycles—of Figure 2.9. The figure emphasizes the
relationship between the three spectra by drawing curves through each, which,
on inspection, turn out to be the same curve, only stretched differently; as the
duty cycle goes up, the curve is both compressed to the left (the frequencies all
drop) and amplified (stretched upward).

The continuous curves have a very simple interpretation. Imagine squeezing
the waveform into some tiny duty cycle, say 1 percent. The contour will be
stretched by a factor of 100. Working backward, this would allow us to inter-
polate between each pair of consecutive points of the 100 percent duty cycle
contour (the original one) with 99 new ones. Already in the figure the 50 per-
cent duty cycle trace defines the curve with twice the resolution of the original
one. In the limit, as the duty cycle gets arbitrarily small, the spectrum is filled
in more and more densely; and the limit is the “true” spectrum of the waveform.

This “true” spectrum is only audible at suitably low duty cycles, though.
The 200 percent duty cycle example actually misses the peak in the ideal (con-

2.5. INTERPOLATION 39

tinuous) spectrum because the peak falls below the first harmonic. In general,
higher duty cycles sample the ideal curve at lower resolutions.

Timbre stretching gives us an extremely powerful technique for generating
sounds with systematically variable spectra. Combined with the possibilities of
mixtures of waveforms (section 2.1) and of snatching endlessly variable wave-
forms from recorded samples (section 2.2), it is possible to generate all sorts of
sounds.

For example, the block diagram of Figure 2.7 gives us a way to to grab and
stretch timbres from a recorded wavetable. When the “frequency” parameter f
is high enough to be audible as a pitch, the “size” parameter s can be thought of
as controlling timbre stretch, via the formula s = tR/f from section 2.2, where
we now reinterpret t as the factor by which the timbre is to be stretched.

2.5 Interpolation

As mentioned before, interpolation schemes are often used to increase the ac-
curacy of table lookup. Here we will give a somewhat simplified account of the
effects of table sizes and interpolation schemes on the result of table lookup.

To speak of error in table lookup, we must view the wavetable as a sampled
version of an underlying function—and when we ask for a value of the underlying
function which lies between the points of the wavetable, the error is the difference
between the result of the wavetable lookup and the “ideal” value of the function
at that point. The most revealing study of wavetable lookup error assumes that
the underlying function is the SINUSOID of chapter 1. We can then understand
what happens to other wavetables by considering them as superpositions (sums)
of sinusoids.

The accuracy of lookup from a wavetable containing a real sinusoid depends
on two factors: the quality of the interpolation scheme, and the period of the
sinusoid. In general, the longer the period of the sinusoid, the more accurate
the result.

In the case of a synthetic wavetable, we might know its sinusoidal com-
ponents from having specified them—in which case the issue becomes one of
choosing a wavetable size appropriately, when calculating the wavetable, to
match the interpolation algorithm and meet the desired standard of accuracy.
In the case of recorded sounds, the accuracy analysis might lead us to adjust
the sample rate of the recording, either at the outset or else by resampling later.

Interpolation error for a sinusoidal wavetable can have two components: first,
the continuous signal (the theoretical result of reading the wavetable continu-
ously in time, as if the output sample rate were infinite) might not be a pure
sinusoid; and second, the amplitude might be wrong. (It is possible to get phase
errors as well, but only through carelessness; and we won’t worry about that
here.)

In this treatment we’ll only consider polynomial interpolation schemes such
as rounding, linear interpolation, and cubic interpolation. These schemes amount
to evaluating polynomials (of degree zero, one, and three, respectively) in the

40 CHAPTER 2. WAVETABLES AND SAMPLERS

interstices between points of the wavetable. The idea is that, for any index x,
we choose a nearby “good” point x0, and let the output be calculated by some
polynomial:

a0 + a1(x − x0) + a2(x − x0)
2

+ · · · + an(x − x0)
n
.

Usually we choose the polynomial which passes through the n+1 nearest points
of the wavetable. For 1-point interpolation (a zero-degree polynomial) this
means letting a0 equal the nearest point of the wavetable. For two-point inter-
polation, we draw a line segment between the two points of the wavetable on
either side of the desired point x. We can let x0 be the point at the left of x
(which we write as bxc) and then the formula for linear interpolation is:

y[x0] + (y[x0 + 1] − y[x0]) · (x − x0).

or in other words,
a0 = y[x0],

a1 = (y[x0 + 1] − y[x0]).

In general, you can fit exactly one polynomial of degree n − 1 through any n
points as long as their x values are all different.

Figure 2.11 shows the effect of using linear (two-point) interpolation to fill
in a sinusoid of period 6. At the top are three traces: the original sinusoid,
the linearly-interpolated result of using 6 points per period to represent the
sinusoid, and finally, another sinusoid, of slightly smaller amplitude, which bet-
ter matches the six-segment waveform. The error introduced by replacing the
original sinusoid by the linearly interpolated version has two components: first,
a (barely perceptible) change in amplitude, and second, a (very perceptible)
distortion of the wave shape.

The bottom graph in the figure shows the difference between the segmented
waveform and the best-fitting sinusoid. This is a residual signal all of whose en-
ergy lies in overtones of the original sinusoid. As the number of points increases,
the error gets smaller in magnitude. Since the error is the difference between a
sinusoid and a sequence of approximating line segments, the magnitude of the
error is roughly proportional to the square of the phase difference between each
pair of points, or in other words, inversely proportional to the square of the
number of points in the wavetable. Put another way, wavetable error decreases
by 12 dB each time the table doubles in size. (This approximation is only good
for tables with 4 or more points.)

Four-point (cubic) interpolation works similarly. The formula is:

−f(f − 1)(f − 2)/6 · y[x0 − 1] + (f + 1)(f − 1)(f − 2)/2 · y[x0]

−(f + 1)f(f − 2)/2 · y[x0 + 1] + (f + 1)f(f − 1)/6 · y[x0 + 2],

where f = x − x0 is the fractional part of the index. For tables with 4 or
more points, doubling the number of points on the table tends to improve the
RMS error by 24 dB. Table 2.5 shows the calculated RMS error for sinusoids at

2.5. INTERPOLATION 41

original

interpolated

−1

0

1

−0.2

−0.1

0

0.1

0.2

best fit

error

Figure 2.11: Linear interpolation of a sinusoid: (a) the original sinusoid, the
interpolated sinusoid, and the best sinusoidal fit back to the interpolated version;
(b) the error.

42 CHAPTER 2. WAVETABLES AND SAMPLERS

period interpolation points
1 2 4

2 -1.2 -17.1 -20.2
3 -2.0 -11.9 -15.5
4 -4.2 -17.1 -24.8
8 -10.0 -29.6 -48.4

16 -15.9 -41.8 -72.5
32 -21.9 -53.8 -96.5
64 -27.9 -65.9 -120.6

128 -34.0 -77.9 -144.7

Table 2.1: RMS error for table lookup using 1, 2, and 4 point interpolation at
various table sizes.

various periods for 1, 2, and 4 point interpolation. (A slightly different quantity
is measured in [Moo90, p.164]. There, the errors in amplitude and phase are
also added in, yielding slightly more pessimistic results. See also [Har87].)

The allowable input domain for table lookup depends on the number of
points of interpolation. In general, if using k-point interpolation into a table
with N points, the inputs may range over an interval of N + 1 − k points. If
k = 1 (i.e., no interpolation at all), the domain is from 0 to N (including the
endpoint at 0 but excluding the one at n) if input values are truncated (and
we will always use truncation in this book when doing non-interpolated table
lookup). The domain is from -1/2 to N − 1/2 if, instead, we round the input to
the nearest integer instead of interpolating. In either case, the domain stretches
over a length of N points.

For two-point interpolation, the inputs must lie between the first and last
points, that is, between 0 and N − 1. So the N points suffice to define the
function over a domain of length N −1. For four-point interpolation, we cannot
get values for inputs between 0 and 1 (not having the required two points to the
left of the input) and neither can we for the space between the last two points
(N − 2 and N − 1. So in this case the domain reaches from 1 to N − 2 and has
length N − 3.

Periodic waveforms stored in wavetables require special treatment at the
ends of the table. For example, suppose we wish to store a pure sinusoid of
length N . For a noninterpolating table, it suffices to set, for example,

x[n] = cos(2πn/N), n = 0, . . . , N − 1.

For two-point interpolation, we need N + 1 points:

x[n] = cos(2πn/N), n = 0, . . . , N ;

in other words, we must repeat the first (n = 0) point at the end, so that the
last segment from N − 1 to N reaches back to the beginning value.

For four-point interpolation, the cycle must be adjusted to start at the point
n = 1, since we can’t get properly interpolated values out for inputs less than

2.6. EXAMPLES 43

0

mtof

0

tabosc4~ table10

output~

0dB

mute

table10

Figure 2.12: A wavetable oscillator: B01.wavetables.pd.

one. If, then, one cycle of the wavetable is arranged from 1 to N , we must
supply extra points for 0 (copied from N), and also N + 1 and N + 2, copied
from 1 and 2, to make a table of length N + 3. For the same sinusoid as above,
the table should contain:

x[n] = cos(2π(n − 1)/N), n = 0, . . . , N + 2.

2.6 Examples

2.6.1 wavetable oscillator

Patch B01.wavetables.pd, shown in figure 2.12, implements a wavetable oscilla-
tor, which plays back from a wavetable named “table10”. Two new Pd prim-
itives are shown here. First is the wavetable itself, which appears at right in
the figure. You can ”mouse” on the wavetable to change its shape and hear
the sound change as a result. Not shown in the figure but demonstrated in
the patch is Pd’s facility for automatically calculating wavetables with specified
partial amplitudes, which is often preferable to drawing waveforms by hand.
You can also read and write tables to (text or sound) files for interchanging
data with other programs. The other novelty is an object class:

tabosc4 ∼ : a wavetable oscillator. The “4” indicates that this class uses 4-
point (cubic) interpolation. In the example, the table’s name, “table10”, is
specified as a creation argument to the tabosc4 ∼ object. (You can also switch
between wavetables dynamically by sending appropriate messages to the object.)

Wavetables used by tabosc4 ∼ must always have a period equal to a power of
two; but as shown above, the wavetable must have three extra points wrapped
around the ends. Allowable table lengths are thus of the form 2m + 3, such as
131, 259, 515, etc.

Wavetable oscillators are not limited to use as audio oscillators. Patch

44 CHAPTER 2. WAVETABLES AND SAMPLERS

B01.wavetables.pd shows a pair of wavetable oscillators in series. The first one’s
output is used as the input of the second one, and thus controls its frequency
which changes periodically in time.

2.6.2 wavetable lookup in general

The tabosc4 ∼ class, while handy and efficient, is somewhat specialized and for
many of the applications described in this chapter we need something more gen-
eral. Patch B03.tabread4.pd (Figure 2.13) demonstrates the timbre stretching
technique discussed in section 2.4. This is a simple example of a situation where
tabosc4 ∼ would not have sufficed. There are new classes introduced here:

tabread4 ∼ : wavetable lookup. As in tabosc4 ∼, the table is read using
4-point interpolation. But whereas tabosc4 ∼ takes a frequency as input and
automatically reads the waveform in a repeating pattern, the simpler tabread4 ∼
expects the table lookup index as input. If you want to use it to do something
repetitious, as in this example, the input itself has to be a repeating waveform.
Like tabosc4 ∼ (and all the other table reading and writing objects), you can
send messages to select which table to use.

tabwrite ∼ : record an audio signal into a wavetable. In this example the
tabwrite ∼ is used to display the output (although later on it will be used for
all sorts of other things.) Whenever it receives a “bang” message from the
button icon above it, tabwrite ∼ begins writing successive samples of its input
to the named table.

Patch B03.tabread4.pd shows how to combine a phasor ∼ and a tabread4 ∼
object to make a wavetable oscillator. The phasor ∼’s output ranges from 0
to 1 in value. In this case the input wavetable, named “waveform12”, is 131
elements long. The domain for the tabread4 ∼ object is thus from 1 to 129. To
adjust the range of the phasor ∼ accordingly, we multiply it by the length of the
domain (128) so that it reaches between 0 and 128, and then add 1, effectively
sliding the interval to the right by one point. This rescaling is accomplished by
the ∗ ∼ and + ∼ objects between the phasor ∼ and the tabread4 ∼.

With only these four boxes we would have essentially reinvented the tabosc4 ∼
class. In this example, however, the multiplication is not by a constant 128 but
by a variable amount controlled by the “squeeze” parameter. The function of
the four boxes at the right hand side of the patch is to supply the ∗ ∼ object
with values to scale the phasor ∼ by. This makes use of one more new object
class:

pack : compose a list of two or more elements. The creation arguments es-

tablish the number of arguments, their types (usually numbers) and their initial
values. The inlets (there will be as many as you specified creation arguments)
update the values of the message arguments, and, if the leftmost inlet is changed
(or just triggered with a bang message), the message is output.

In this patch the arguments are initially 0 and 50, but the number box will
update the value of the first argument, so that, as pictured, the most recent
message to leave the pack object was “206 50”. The effect of this on the line~

2.6. EXAMPLES 45

phasor~

tabread4~ waveform12

+~ 1

162 206

pack 0 50

line~*~

phase

generation −−>

range

adjustment −−>

squeezefrequency

tabwrite~ wave−out12

<−−click to graph

+~ 128

wave−out12

waveform12

output~

4dB

mute

Figure 2.13: A wavetable oscillator with variable duty cycle: B03.tabread4.pd.

46 CHAPTER 2. WAVETABLES AND SAMPLERS

object below is to ramp to 206 in 50 milliseconds; in general the output of the
line~ object is an audio signal that smoothly follows the sporadically changing
values of the number box labeled “squeeze”.

Finally, 128 is added to the “squeeze” value; if “squeeze” takes non-negative
values (as the number box in this patch enforces), the range-setting multiplier
ranges the phasor by 128 or more. If the value is greater than 128, the effect
is that the rescaled phasor spends some fraction of its cycle stuck at the end of
the wavetable (which clips its input to 129.) The result is that the waveform is
scanned over some fraction of the cycle. As shown, the waveform is squeezed
into 128/(128+206) of the cycle, so the spectrum is stretched by a factor of
about 1/2.

For simplicity, this patch is subtly different from the example of section 2.4
in that the waveforms are squeezed toward the beginning of each cycle and not
toward the middle. This has the effect of slightly changing the phase of the
various partials of the waveform as it is stretched and squeezed; if the squeezing
factor changes quickly, the corresponding phase drift will sound like a slight
wavering in pitch. This can be avoided by using a slightly more complicated
arrangement: subtracting 1/2 from the phasor~, multiply it by 128 or more,
and then add 65 instead of one.

2.6.3 using a wavetable as a sampler

Patch B04.sampler.pd (Figure 2.14) shows how to use a wavetable as a sampler.
In this case the index into the sample (the wavetable) is controlled by mousing
on a number box at top. A convenient scaling for the number box is hundredths
of a second; to convert to samples (as the input of tabread4~ requires) we
multiply by 44100 samples/sec times 0.01 sec to get 441 samples per unit, before
applying pack and line~ in much the same way as they were used in the previous
example. The transposition you hear depends on how quickly you mouse up and
down. This example has introduced one new object class:

hip ∼ : simple high-pass (low-cut) filter. The creation argument gives the

rolloff frequency in cycles per second. We use it here to eliminate the constant
(zero-frequency) output when the input sits in a single sample (whenever you
aren’t actively changing the wavetable reading location with the mouse.) Filters
are discussed in chapter 8.

The pack and line~ in this example are not merely to make the sound
more continuous, but are essential to making the sound intelligible at all. If the
index into the wavetable lookup simply changed every time the mouse moved a
pixel (say, twenty to fifty times a second) the overwhelming majority of samples
would get the same index as the previous sample (the other 44000+ samples, not
counting the ones where the mouse moved.) So the speed of precession would
almost always be zero. Instead of changing transpositions, you would hear 20
to 50 cycles-per-second grit. (Try it to find out what that sounds like!)

2.6. EXAMPLES 47

hip~ 5 high pass filter to cut DC

sample−table

tabread4~ sample−table

line~

* 441

32

pack 0 100

output~

90dB

mute

−−− 44103 samples −−−

convert to SAMPLES

<−− read point, 0−100

Figure 2.14: A sampler with mouse-controlled index: B04.sampler.pd.

48 CHAPTER 2. WAVETABLES AND SAMPLERS

2.6.4 looping samplers

In most situations, you’ll want a more automated way than moving the mouse to
specify wavetable read locations; for instance, you might want to be able to play
a sample at a steady transposition; you might have several samples playing back
at once (or other things requiring attention), you might want to switch quickly
between samples or go to prearranged locations. In the next few examples we’ll
develop an automated looping sample reader, which, although only one of many
possible approaches, is a powerful and often-used one.

Patches B05.sampler.loop.pd and B06.sampler.loop.smooth.pd show how to
do this; B05.sampler.loop.pd in the simplest possible way and B06.sampler.loop.smooth.pd
(pictured in Figure 2.14 part (a)) incorporating a second waveshape to envelope
the sound as described in section 2.3. One new object class is introduced here:

cos ∼ : Takes the cosine of 2π times the input signal (so that 0 to 1 makes a
whole cycle.) Unlike the table reading classes in Pd, cos ∼ handles wraparound
so that there is no range limitation on its input.

In Figure 2.14 part (a), a phasor ∼ supplies both indices into the wavetable
(at right) and phases for a half-cosine-shaped envelope function at left. These
two are multiplied, and the product is high-pass filtered and output. Reading
the wavetable is straightforward; the phasor is multiplied by a “chunk size”
parameter, added to 1, and used as an index to tabread4 ∼. The chunk size
parameter is multiplied by 441 to convert it from hundredths of a second to
samples. This corresponds exactly to the block diagram shown in Figure 2.5,
with a segment location of 1. (The segment location can’t be 0 because 1 is the
minimum index for which tabread4 ∼ works.)

The left-hand signal path in 2.14 part (a) corresponds to the enveloping
wavetable lookup shown in Figure 2.7. Here the sawtooth wave is adjusted to
the range (-1/4, 1/4) (by multiplying by 0.5 and then subtracting 0.25), and
then sent to cos ∼. This reads the cosine function in the range (−π/2, π/2),
thus giving only the positive half of the waveform.

Part (b) of Figure 2.14 introduces a third parameter, the “read point”, which
specifies where in the sample the loop is to start. (In part (a) we always started
at the beginning.) The necessary change is simple enough: simply add the “read
point” control value, in samples, to the wavetable index and proceed as before.
To avoid discontinuities in the index we smooth the read point value using pack
and line ∼ objects, just as we did in the first sampler example (Figure 2.14).

This introduces an important, though subtle, detail. The MOMENTARY
TRANSPOSITION formula (section 2.2) predicts that, as long as the chunk size
and read point aren’t changing in time, the transposition is just the frequency
times the chunk size (as always, using appropriate units; Hz. and seconds, for
example, so that the product is dimensionless.) However, varying the chunk
size and read point in time will affect the momentary transposition, often in
very noticeable ways, as can be seen in patch B07.sampler.scratch.pd. Patch
B08.sampler.nodoppler.pd (the one shown in the figure), shows one possible way
of controlling this effect, while introducing a new object class:

2.6. EXAMPLES 49

hip~ 5

0

frequency (Hz.)

0

* 441

+~ 1

chunk size

−~ 0.5

cos~

*~

phasor~

*~ 0.5

*~

tabread4~ table18

hip~ 5

0

frequency

0

* 441

+~ 1

phasor~ 0

chunk size

*~

line~

* 441

0

pack 0 100

read point

+~

samphold~

samphold~
*~

−~ 0.5

*~ 0.5

cos~

tabread4~ table20

(hundredths of a

second)

output~

0dB

mute

(a)

(b)

output~

0dB

mute

Figure 2.15: (a) a looping sampler with a synchronized envelope
(B06.sampler.loop.smooth.pd); (b) the same, but with a control for read lo-
cation (B08.sampler.nodoppler.pd).

50 CHAPTER 2. WAVETABLES AND SAMPLERS

samphold ∼ : a sample and hold unit. (This will be familiar to analog syn-

thesizer users, but with a digital twist.) This stores a single sample of the
left-hand-side input and outputs it repeatedly, until caused by the right-hand-
side input (also a digital audio signal, called the trigger) to overwrite the stored
sample with a new one—again from the left-hand-side input. The unit acquires
a new sample whenever the trigger’s numerical value falls from one sample to
the next. This is designed to be easy to pair with phasor ∼ objects, to facilitate
triggering on phase wraparounds.

Patch B08.sampler.nodoppler.pd uses two samphold ∼ objects to update
the values of the chunk size and read point, exactly when the phasor ∼ wraps
around, at which moments the cosine envelope is at zero so the effect of the
instantaneous changes can’t be heard. In this situation we can apply the sim-
pler TRANSPOSITION FORMULA for looping wavetables to relate frequency,
chunk size, and transposition. This is shown in patch B09.sampler.transpose.pd
(not shown.)

2.6.5 Overlapping sample looper

As described in section 2.3, it is sometimes desirable to use two or more over-
lapping looping samplers to produce a reasonably continuous sound without
having to envelope too sharply at the ends of the loop. This is especially likely
in situations where the chunk that is looped is short, a tenth of a second or
less. Patch B10.sampler.overlap.pd, shown in Figure 2.16 (part a), realizes two
looping samplers a half-cycle out of phase from each other. New object classes
are:

loadbang : output a “bang” message on load. This is used in this patch to

make sure the division of transposition by chunk size will have a valid transpo-
sition factor in case “chunk size” is moused on first.

expr : evaluate arithmetic expressions. Variables appear as $f1, $f2, and so

on, corresponding to the object’s inlets. Arithmetic expressions are allowed,
with parentheses for grouping, and many library functions are supplied, such as
exponentiation, which shows up in this example as “pow” (the power function.)

wrap ∼ : wrap to the interval from 0 to 1. So, for instance, 1.2 becomes 0.2;

0.5 remains unchanged; and -0.6 goes to 0.4.

send ∼ , s ∼ : receive ∼ , r ∼ : signal versions of send and receive. An
audio signal sent to a send ∼ appears at the outlets of any and all receive ∼
objects of the same name. Unlike send and receive, you may not have more than
one send ∼ object with the same name (in that connection, see the throw ∼
and catch ∼ objects).

In the example, part of the wavetable reading machinery is duplicated, using
identical calculations of chunk-size-samples (a message stream) and read-pt

(an audio signal smoothed as before). However, the phase audio signal, in
the other copy, is replaced by phase2. The top part of the figure shows the
calculation of the two phase signals: the first one as the output of a phasor ∼

2.6. EXAMPLES 51

hip~ 5

+~ 1

*~

+~ samphold~

samphold~

*~ r~ phase

s~ phase

r~ phase

r~ phase

r~ phase

0

r chunk−size

t b f

/

loadbang

−~ 0.5

*~ 0.5

cos~

output~

0dB

mute

expr pow(2, $f1/120)

phasor~

r~ read−pt

+~ 0.5

wrap~

s~ phase2

r chunk−size−samples

+~

tabread4~ table22

<−− transposition,

<− (second reader

not shown)

(a)

hip~ 5

10

*~

0

+~

samphold~

*~

r~ phase

s~ phase

r~ phase

r~ phase

s chunk−size

0

r chunk−size

t b f

−~ 0.5

*~ 0.5

cos~

output~

0dB

mute

phasor~

s~ read−pt

r~ read−pt

+~ 0.5

wrap~

s~ phase2

+~

* 0.001phasor~

*~ 0.9

*~ 44100

tabread4~ table23

r chunk−size

+~ 1

s precession

t b f

r precession

expr (pow(2, $f1/120)−$f3)/$f2

/ 0.9

* 0.01

loadbang

10

<−− precession

(percent)

<−− transposition

(tenths of a halftone)

<− (second reader

not shown)

chunk
size

(chunk size and read point
controls not shown)

(b)

<−(msec)

Figure 2.16: (a) two overlapped looping samplers (B10.sampler.overlap.pd); (b)
the same, but with a phasor-controlled read point (B11.sampler.rockafella.pd).

52 CHAPTER 2. WAVETABLES AND SAMPLERS

object, and the second by adding 0.5 and wrapping, thereby subtracting 0.5
cycles (π radians) from the phase. The two phase signals are each used, with
the same range adjustments as before, to calculate indices into the wavetable
and the cos ∼ object, and to control the two samphold ∼ objects. Finally, the
outputs of the two copies are added for output.

2.6.6 automatic read point precession

Patch B11.sampler.rockafella.pd, shown in part (b) of Figure 2.16, adapts the
ideas shown above to a situation where the read point is computed automati-
cally. Here we precess the read-point through the sample in a loop, permitting
us to speed up or slow down the playback independently of the transposition.

This example addresses a weakness of the preceding one, which is that, if the
relative precession speed is anywhere near one (i.e., the natural speed of listening
to the recorded wavetable), and if there is not much transposition either, it
becomes preferable to use larger grains and lower the frequency of repetition
accordingly (keeping the product constant to achieve the desired transposition.)
However, if the grain size is allowed to get large, it is no longer convenient to
quantize control changes at phase wrappings, because they might be too far
apart to allow for a reasonable response time to control changes.

In this patch we remove the samphold ∼ object that had controlled the read
point (but we leave in the one for chunk size which is much harder to change in
mid-loop.) Instead, we use the (known) rate of precession of the read point to
correct the sawtooth frequency, so that we maintain the desired transposition.
It turns out that, when transposition factor and precession are close to each
other (so that we are nearly doing the same thing as simple speed change)
the frequency will drop to a value close to zero, so we will have increased the
naturalness of the result at the same time.

In this patch we switch from managing read points, chunk sizes, etc., in
samples and use seconds instead, converting to samples (and shifting by one)
only just before the tabread4 ∼ object. The wavetable holds one second of
sound, and we’ll assume here that the nominal chunk size will not exceed 0.1
second, so that we can safely let the read point range from 0 to 0.9; the “real”
chunk size will vary, and can become quite large, because of the moving read
pointer.

So the precession control sets the frequency of a phasor of amplitude 0.9,
and therefore the precession must be multiplied by 0.9 to set the frequency of
the phasor (so that, for a precession of one for instance, the amplitude and
frequency of the read point are both 0.9, so that the slope, equal to amplitude
over frequency, is one.) The output of this is named read-pt as before, and is
used by both copies of the wavetable reader.

The precession p and the chunk size c being known, and if we denote the
frequency of the upper (original) phasor ∼ by f , the transposition factor is given
by:

t = p + cf,

2.6. EXAMPLES 53

and solving for f gives:

f =
t − p

c
=

2h/12 − p

c
,

where h is the desired transposition in half steps. This is the formula used in
the expr object.

Exercises

1. A sinusoid is stored in a wavetable with period 4 so that the first four
elements are 0, 1, 0, and -1, corresponding to indices 0, 1, 2, and 3. What
value do we get for an input of 1.5: (a) using 2-point interpolation? (b)
using 4-point interpolation? (c) what’s the value of the original sinusoid
there?

54 CHAPTER 2. WAVETABLES AND SAMPLERS

Chapter 3

Audio and control
computations

3.1 The sampling theorem

We have heretofore discussed digital audio signals as if they were capable of de-
scribing any function of time, in the sense that knowing the values the function
takes on the integers should somehow determine the values it takes between
them. This isn’t really true. For instance, suppose some function f (defined
for real numbers) happens to attain the value 1 at all integers: f(n) = 1 for
n = . . . ,−1, 0, 1, We might guess that f(t) = 1 for all real t. But perhaps
f happens to be one for integers and zero everywhere else—that’s a perfectly
good function too, and nothing about the function’s values at the integers dis-
tinguishes it from the simpler f(t) = 1. But intuition tells us that the constant
function is in the spirit of digital audio signals, whereas the one that hides a
secret between the samples isn’t. A function that is “possible to sample” should
be one for which we can use some reasonable interpolation scheme to deduce its
values for non-integers from its values for integers.

It is customary at this point in discussions of computer music to invoke the
famous Nyquist theorem. This states (roughly speaking) that if a function is a
finite or even infinite combination of REAL SINUSOIDS, none of whose angular
frequencies exceeds π, then, theoretically at least, it is fully determined by the
function’s values on the integers. One possible way of reconstructing the func-
tion would be as a limit of higher- and higher-order polynomial interpolation.

The angular frequency π, called the Nyquist frequency, corresponds to R/2
cycles per second if R is the sample rate. The corresponding period is two sam-
ples. The Nyquist frequency is the best we can do in the sense that any real
sinusoid of higher frequency is equal, at the integers, to one whose frequency
is lower than the Nyquist, and it is this lower frequency that will get recon-
structed by the ideal interpolation process. For instance, a REAL SINUSOID

55

56 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0 7

Figure 3.1: Two real sinusoids, with angular frequencies π/2 and 3π/2, showing
that they coincide at integers. A digital audio signal can’t distinguish between
the two.

with angular frequency between π and 2π, say π + ω, can be written as

cos((π + ω)n + φ) = cos((π + ω)n + φ − 2πn)

= cos((ω − π)n + φ

= cos((π − ω)n − φ),

for all integers n. (If n weren’t an integer the first step would fail.) So a
sinusoid with frequency between π and 2π was equal, on the integers at least,
to one with frequency between 0 and π; you simply can’t tell the two apart.
And since any conversion hardware will do the “right” thing and reconstruct
the lower-frequency sinusoid, any higher-frequency one you try to synthesize
will come out your speakers at the wrong frequency—specifically, you will hear
the unique frequency between 0 and π that the higher frequency lands on when
reduced in the above way. This phenomenon is called foldover, because the
half-line of frequencies from 0 to inf is folded back and forth, in lengths of π,
onto the interval from 0 to π. The word aliasing means the same thing. Figure
3.1 shows sinusoids of angular frequencies π/2 and 3π/2; the higher frequency
folds over to the lower one.

We conclude that when, for instance, we’re computing an EXPLICIT SUM
OF SINUSOIDS, either as a wavetable or as a real-time signal, we had better
drop any sinusoid in the sum whose frequency exceeds π. But the picture in
general is not this simple, since most techniques other than additive synthesis
don’t lead to neat, band-limited signals (ones whose components stop at some
limited frequency.) For example, a sawtooth wave of frequency ω, of the form
put out by Pd’s phasor ∼ object but considered as a continuous function f(t),
expands to:

f(t) =
1

2
− 1

π

(

sin(ωt) +
sin(2ωt)

2
+

sin(3ωt)

3
+ · · ·

)

,

which enjoys arbitrarily high frequencies; and moreover the hundredth partial
is only 40 dB below the first one in level. At any but very low values of ω,
the partials above π will be audibly present—and, because of foldover, they will

3.2. CONTROL 57

be heard at incorrect frequencies. (This does not mean that one shouldn’t use
sawtooth waves as phase generators—the wavetable lookup step magically fixes
the foldover problem—but one should think twice before using a sawtooth wave
itself as a digital sound source.)

Many synthesis techniques, even if not strictly band-limited, give partials
which may be made to drop off more rapidly than 1/n as in the sawtooth
example, and are thus more forgiving to work with digitally. In any case, it is
always a good idea to keep the possibility of foldover in mind, and to train your
ears to recognize it.

The first line of defense against foldover is simply to use high sample rates;
it is a good practice to systematically use the highest sample rate that your
computer can easily handle. The highest practical rate will vary according to
whether you are working in real time or not, CPU time and memory constraints,
and/or input and output hardware, and sometimes even software-imposed lim-
itations.

A very non-technical treatment of sampling theory is given in [Bal03]. More
detail can be found in [Mat69, pp. 1-30].

3.2 Control

So far we have dealt with audio signals, which are just sequences x[n] defined
for integers n, which correspond to regularly spaced points in time. This is
often an adequate framework for describing synthesis techniques, but real elec-
tronic music applications usually also entail other computations which have to
be made at irregular points in time. In this section we’ll develop a framework
for describing what we will call control computations. We will always require
that any computation correspond to a specific logical time. The logical time
controls which sample of audio output will be the first to reflect the result of
the computation.

In a non-real-time system such as Csound, this means that logical time
proceeds from zero to the length of the output soundfile. Each ”score card” has
an associated logical time (the time in the score), and is acted upon once the
audio computation has reached that time. So audio and control calculations
(grinding out the samples and handling note cards) are each handled in turn,
all in increasing order of logical time.

In a real-time system, logical time, which still corresponds to the time of
the next affected sample of audio output, is always slightly in advance of real

time, which is measured by the sample that is actually leaving the computer.
Control and audio computations still are carried out in alternation, sorted by
logical time.

The reason for using logical time and not real time in computer music com-
putations is to keep the calculations independent of the actual execution time
of the computer, which can vary for a variety of reasons, even for two seemingly
identical calculations. When we are calculating a new value of an audio signal
or processing some control input, real time may pass but we require that the

58 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0 1

0

1 2 2 3

1 2

. . .

0 4 4 8

0 1 2 3 4 5 6 7

8

. . .

a

b

logical time

audio output

control

audio

Figure 3.2: Timeline for digital audio and control computation. In (a) the block
size is one sample. We compute the audio at a delay of one sample after the
control computation; so sample 0 (at top of (a)) is computed at logical time
1 (logical times are shown on the number line below). In (b), the block size
is four samples, and hence so is the delay for computing audio after control.
Control affecting samples 0 through 3 is all computed at once, followed by the
corresponding audio computation.

logical time stay the same through the whole calculation, as if it took place
instantaneously. As a result of this, electronic music computations, if done cor-
rectly, are deterministic: two runs of the same real-time or non-real-time audio
computation, each having the same inputs, should have identical results.

Figure 3.2 part (a) shows schematically how logical time and sample com-
putation are lined up. Audio samples are computed periodically (as shown with
wavy lines), but before the calculation of each sample we do all the control
calculations (marked as straight line segments). First we do the control compu-
tations associated with logical times starting at zero, up to but not including
one; then we compute the first audio sample (of index zero), at logical time one.
We then do all control calculations up to but not including logical time 2, then
the sample of index one, and so on. (Here we are adopting certain conventions
about labeling that could be chosen differently. For instance, there is no funda-
mental reason control should be pictured as coming “before” audio computation
but it is easier to think that way.)

Part (b) of the figure shows the situation if we wish to compute the audio
output in blocks of more than one sample at a time. Using the variable B to
denote the number of elements in a block (so B = 4 in the figure), the first audio
computation will output samples 0, 1, ...B − 1 all at once in a block. We have
to do the relevant control computations for all four periods of time in advance.

3.3. CONTROL STREAMS 59

time

Figure 3.3: Graphical representation of a control stream as a sequence of points
in time.

There is a delay of B samples between logical time and the appearance of audio
output.

Most computer music software computes audio in blocks. This is done to
increase the efficiency of individual audio operations (such as Csound’s unit
generators and Max/MSP and Pd’s tilde objects). Each unit generator or tilde
object incurs overhead each time it is called, equal to perhaps twenty times the
cost of computing one sample on average. If the block size is one, this means
an overhead of 2,000%; if it is sixty-four (as in Pd by default), the overhead is
only some 30%.

3.3 Control streams

Control computations may come from a variety of sources, both internal and
external to the overall computation. Examples of internally engendered con-
trol computations include sequencing (in which control computations must take
place at pre-determined times) or feature detection of the audio output (for
instance, watching for zero crossings in a signal). Externally engendered ones
may come from input devices such as MIDI controllers, the mouse and keyboard,
ethernet packets, and so on. In any case, they may occur at irregular intervals,
unlike audio samples which correspond to a steadily ticking sample clock.

We will need a way of describing how information flows between control
and audio computations, which we will base on the notion of a control stream.
This is simply a collection of numbers—possibly empty—that appear as a re-
sult of control computations, whether regularly or irregularly spaced in logical
time. The simplest possible control stream has no information other than a time

sequence:

. . . , t[0], t[1], t[2], . . . ,

in units of audio samples. We require to be sorted in nondecreasing order:

· · · ≤ t[0] ≤ t[1] ≤ t[2] ≤ · · · .

We don’t insist, though, that the t[n] be integers. Each item in the list is called
an event.

Control streams may be shown graphically in Figure 3.3. A number line
shows time and a sequence of arrows point to the times associated with each

60 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

event. The control stream shown has no data (it is a time sequence). If we want
to show data in the control stream we will write it at the base of each arrow.

A numeric control stream. is one that contains one number per time point,
so that it appears as a sequence of ordered pairs:

. . . , (t[0], x[0]), (t[1], x[1]), . . . ,

where the t[n] are the time points and the x[n] are the signal’s values at those
times.

A numeric control stream is roughly analogous to a “MIDI controller”, whose
values change irregularly, for example when a physical control is moved by a
performer. Other control stream sources may have higher possible rates of
change and/or more precision. On the other hand, a time sequence might be a
sequence of pedal hits, which (MIDI implementation notwithstanding) shouldn’t
be considered as having values, just times.

Numeric control streams are like audio signals in that both are just time-
varying numeric values. But whereas the audio signal comes at a steady rate
(and so the time values need not be specified per sample), the control stream
comes unpredictably—perhaps evenly, perhaps unevenly, perhaps never.

Let us now look at what happens when we try to convert a numeric control
stream to an audio signal. As before we’ll choose a block size B = 4. We will
consider as a control stream a square wave of period 5.5:

(2, 1), (4.75, 0), (7.5, 1), (10.25, 0), (13, 1), . . .

and demonstrate three ways it could be converted to an audio signal. Figure 3.4,
part (a), shows the simplest, fast-as-possible, conversion. Each audio sample of
output simply reflects the most recent value of the control signal. So samples
0 through 3 (which are computed at logical time 4 because of the block size)
are 1 in value because of the point (2, 1). The next four samples are also one,
because of the two points, (4.75, 0) and (7.5, 1), the most recent still has the
value 1.

Fast-as-possible conversion is most appropriate for control streams which
do not change frequently compared to the block size. Its main advantages are
simplicity of computation and the fastest possible response to changes. As the
figure shows, when the control stream’s updates are too fast (on the order of
the block size), the audio signal may not be a good likeness of the sporadic one.
(If, as in this case, the control stream comes at regular intervals of time, we can
use the sampling theorem to analyze the result. Here the Nyquist frequency of
the output is lower than the input square wave’s frequency, and so the output
is aliased to a new frequency lower than the Nyquist frequency.)

Part (b) shows the result of nearest-sample conversion. Each new value of
the control stream at a time t affects output samples starting from index btc
(the greatest integer not exceeding t). This is equivalent to using fast-as-possible
conversion at a block size of 1; in other words, nearest-sample conversion hides
the effect of the larger block size. This is better than fast-as-possible conversion
in cases where the control stream might change quickly.

3.3. CONTROL STREAMS 61

0

0 1 2 3

. . .

a

4 8

4

12 16

(2, 1)

(4.75, 0)

(7.5, 1)

(10.25, 0)

(13, 1)

(15.75, 0)

(18.5, 1)

0

0 1 2 3

. . .

4 8

4

12 16

b

8 12 16

8 12 16

0

0 1 2 3

. . .

4 8

4

12 16

8 12 16
c

Figure 3.4: Three ways to change a control stream into an audio signal. A: as fast
as possible; B: delayed to the nearest sample; C: with two-point interpolation
for higher delay accuracy.

62 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

Part (c) shows sporadic-to-audio conversion, again at the nearest sample,
but now also using two-point interpolation to further increase the time accuracy.
Conceptually we can describe this as follows. Suppose the value of the control
stream was last equal to x, and that the next point is (n + f, y), where n is an
integer and f is the fractional part of the time value (so 0 ≤ f < 1). The first
point affected in the audio output will be the sample at index n. But instead
of setting the output to y as before, we set it to

fx + (1 − f)y,

in other words, to a weighted average of the previous and the new value, whose
weights favor the new value more if the time of the sporadic value is earlier,
closer to n. In the example shown, the transition from 0 to 1 at time 2 gives

0 · x + 1 · y = 1,

while the transition from 1 to 0 at time 4.75 gives:

0.75 · x + 0.25 · y = 0.75.

This technique gives a still closer representation of the control signal (at least,
the portion of it that lies below the Nyquist frequency), at the expense of more
computation and slightly greater delay.

Numeric control streams may also be converted to audio signals using ramp
functions to smooth discontinuities. This is often used when a control stream is
used to control an amplitude, as described in section 1.5. In general there are
three values to specify to set a ramp function in motion: a start time and target
value (specified by the control stream) and a target time, often expressed as a
delay after the start time.

In such situations it is almost always accurate enough to adjust the start
and ending times to match the first audio sample computed at a later logical
time, a choice which corresponds to the fast-as-possible scenario above. Figure
3.5 part (a) shows the effect of ramping from 0, starting at time 3, to a value
of 1 at time 9, immediately starting back toward 0 at time 15. The times 3, 9,
and 15 are truncated to 0, 8, and 12, respectively.

In real situations, where the block size might be on the order of a millisec-
ond, this is fine for amplitude controls, which, if they reach a target a fraction
of a millisecond early or late won’t make an audible difference in most cases.
However, other uses of ramps are more sensitive to this kind of jitter. The
most frequently encountered example of this is fast repetition driven by control
computations. If we do something repetitively every few milliseconds, say. the
differences in actual segment lengths will make for an audible aperiodicity.

For situations such as these, we can improve the ramp generation algorithm
to start and stop at arbitrary samples, as shown in figure 3.5 part (b), for
example. Here the endpoints of the line segments line up exactly with the
requested samples 3, 9, and 15. We can go even further and adjust for fractional
samples, making the line segments touch the values 0 and 1 at exactly specifiable
points on a number line.

3.4. CONVERTING FROM AUDIO SIGNALS TO NUMERIC CONTROL STREAMS63

. . .

9

0 8 12 4

a

b

3 15

15 3 9

Figure 3.5: Line segment smoothing of numeric control streams: (a) aligned to
block boundaries; (b) aligned to nearest sample.

For example, suppose we want to repeat a recorded sound out of a wavetable
100 times per second, every 441 samples at the usual sample rate. Rounding
errors due to blocking at 64-sample boundaries could detune the playback by
as much as a whole tone in pitch; and even rounding to one-sample boundaries
would introduce variations up to about 0.2%, or three cents. This situation
would call for sub-sample accuracy in sporadic-to-audio conversion.

3.4 Converting from audio signals to numeric
control streams

We sometimes need to convert in the other direction, from an audio signal to
a sporadic one. To go in this direction, we somehow provide a series of logical
times (a time sequence), as well as an audio signal. For output we want a control
stream combining the time sequence with values taken from the audio signal.
We do this when we want to incorporate the signal’s value as part of a control
computation.

For example, we might be controlling the amplitude of a signal using a line ∼
object as in Chapter 1, Example 3 (page 19). Suppose we wish to turn off the
sound at a fixed rate of speed instead of in a fixed amount of time. For instance,
we might want to re-use the network for another sound and wish to mute it as
quickly as possible without audible artifacts; we probably can ramp it off in
less time if the current amplitude is low than if it is high. To do this we must
confect a message to the line ∼ object to send it to zero in an amount of time
we’ll calculate on the basis of its current output value. This will require, first of
all, that we “sample” the line ∼ object’s output (an audio signal) into a control
stream.

The same issues of time delay and accuracy appear as for sporadic to audio
conversion. Again there will be a tradeoff between immediacy and accuracy.

64 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

signal snapshot

(a) (b)

trigger

Figure 3.6: Conversion between control and audio: (a) control to signal; (b)
signal to control by snapshots.

Suppose as before that we are calculating audio in blocks of 4 samples, and
suppose that at logical time 6 we want to look at the value of an audio signal,
and use it to change the value of another one. As shown in figure 3.2 part
(b), the most recently calculated value of the signal will be for index 3 and the
earliest index at which our calculation can affect a signal is 4. We can therefore
carry out the whole affair with a delay of only one sample. However, we can’t
choose exactly which sample—we only get the chance once out of every four of
them.

As before, we can trade immediacy for increased time accuracy. If it matters
exactly at which sample we carry out the audio-to-control-to-audio computation,
we read the sample of index 2 and update the one at index 6. Then if we want
to do the same thing again at logical time 7, we read from index 3 and update
at index 7, and so on. In general, if the block size is B, and for any index n,
we can always read the sample at index n − B and affect the one at index n.
There is thus a round-trip delay of B samples in going from audio to control to
audio computation, which is the price incurred for being able to name the index
n exactly.

If we wish to go further, to being able to specify a fraction of a sample,
then (as before) we can use interpolation—at a slight further increase in delay.
In general, as in the case of sporadic-to-audio conversion, in most cases the
simplest solution is the best, but in a few cases we have to do extra work.

3.5 Control streams in block diagrams

Figure 3.6 shows how control streams are expressed in block diagrams, using
control-to-signal and signal-to-control conversion as examples. Control streams
are represented using dots (as opposed to audio signals which appear as solid
arrows).

The signal operator converts from a numeric control stream to an audio

3.6. EVENT DETECTION 65

signal. The exact type of conversion isn’t be specified at this level of detail;
when we see specific examples in Pd the choice of conversion operator will
determine this.

The snapshot operator converts from audio signals back to numeric control
streams. In addition to the audio signal, a separate, control input is needed to
specify the time sequence at which the audio signal is sampled.

3.6 Event detection

Besides taking snapshots, a second mode of passing information from audio sig-
nals to control computations is event detection. Here we derive time information
from the audio signal, for instance, the time at which a signal crosses a thresh-
old. The input is an audio signal and the output will be a time sequence. Here
we’ll consider the example of threshold detection in some detail.

A defining situation in which we use threshold detection is to find out when
some kind of activity starts and stops, such as a performer playing an instru-
ment. We’ll suppose we already have a continuous measure of activity in the
form of an audio signal. (This can be done, for example, using an envelope
follower). What we want is a pair of time sequences, one which marks times in
which activity starts, and the other marking stops.

Figure 3.7 part (a) shows a simple realization of this idea. We assume the
signal input is as shown in the continuous graph. A horizontal line shows the
constant value of the threshold. The time sequence marked ”onsets” contains
one event for each time the signal crosses the threshold from below to above;
the one marked ”turnoffs” marks crossings in the other direction.

In many situations we will want to avoid getting multiple onsets and turnoffs
caused by small ripples in the signal close to the threshold. This can be managed
in at least two simple ways. First, as shown in part (b) of the figure, we can
set two thresholds: a high one for marking onsets, and a lower one for turnoffs.
In this scheme the rule is that we only report the first onset after each turnoff,
and, vice versa, we only report one turnoff after each onset. Thus the third time
the signal crosses the high threshold in the figure, there is no reported onset
because there was no turnoff since the previous one. (At startup, we act as if
the most recent output was a turnoff, so that the first onset is reported.)

A second approach to filtering out multiple onsets and turnoffs, shown in part
(c) of the figure, is to associate a dead period to each onset. This is a constant
interval of time after each reported onset, during which we refuse to report more
onsets or turnoffs. After the period ends, if the signal has dropped below the
threshold in the meantime, we belatedly report a turnoff. Dead periods may
also be associated with turnoffs, and the two time periods may have different
values.

The two filtering strategies may be used separately or simultaneously. It is
usually necessary to tailor the threshold values and/or dead times by hand to
each specific situation in which thresholding is used.

66 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

time

threshold

onsets

turnoffs

(a)

high threshold

low threshold

(b)

(c)

dead periods

Figure 3.7: Threshold detection: (a) with no debouncing; (b) debounced using
two threshold levels; (c) debounced using dead periods.

3.7. CONTROL COMPUTATION USING AUDIO SIGNALS DIRECTLY 67

Thresholding is often used as a first step in the design of higher-level strate-
gies for arranging computer responses to audible cues from performers. A simple
example could be to set off a sequence of pre-planned processes, each one to be
set off by an onset of sound after a specified period of relative silence, such as
you would see if a musician played a sequence of phrases separated by rests.

More sophisticated detectors (built on top of threshold detection) could de-
tect continuous sound or silence within an expected range of durations, or se-
quences of quick alternation between playing and not playing, or periods of time
in which the percentage of playing time to rests is above or below a threshold,
or many other possible features. These could set off predetermined reactions or
figure in an improvisation.

3.7 Control computation using audio signals di-
rectly

From the tradition of analog synthesis comes an elegant, old-fashioned approach
to control problems which can be used as an alternative to the control streams
we have been concerned with so far in this chapter. Instead, or in addition
to using control streams, we can use audio signals themselves to control the
production of other audio signals. Two specific techniques from analog synthesis
lend themselves well to this treatment: analog sequencing and sample-and-hold.

The analog sequencer was often used to set off a regularly or semi-regularly
repeating sequence of sounds. The sequencer itself typically put out a repeating
sequence of voltages, along with a trigger signal which pulsed at each transi-
tion between voltages. One used the voltages for pitches or timbral parameters,
and the trigger to control one or more envelope generators. Getting looped se-
quences of predetermined values in digital audio practice is as simple as sending
a phasor ∼ into a non-interpolating table lookup. If you want, say, four values
in the sequence, scale the phasor ∼ output to take values from 0 to 3.999 . . . so
that the first fourth of the cycle reads point 0 of the table and so on.

To get repeated triggering, the first step is to synthesize another sawtooth
that runs in synchrony with the phasor ∼ output but four times as fast. This is
done using a variant of the technique of Figure 2.8, in which we used an adder
and a wraparound operator to get a desired phase shift. Figure 3.8 shows the
effect of multiplying a sawtooth wave by an integer, then wrapping around to
get a sawtooth at a multiple of the original frequency.

From there is is easy to get to a repeated envelope shape by wavetable
lookup fro example (using an interpolating table lookup this time, unlike for the
sequence voltages above). All the waveform generation and altering techniques
used for making pitched sounds can also be brought to use here.

The other standard control technique from analog synthesizer control is the
sample and hold unit. This takes an incoming signal, picks out certain instan-
taneous values from it, and “freezes” those values for its output. The particular
values to pick out are selected by a secondary, “trigger” input. At points in

68 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0

OUT

frequency

1

WRAP

4 *

1

4

1

Figure 3.8: Multiplying and wrapping a sawtooth wave to generate a higher
frequency.

3.8. OPERATIONS ON CONTROL STREAMS 69

OUT

S/H

trigger

IN

Figure 3.9: Sample and hold, using falling edges of the trigger signal.

time specified by the trigger input a new, single value is taken from the primary
input and is output continuously until the next time point, when it is replaced
by a new value of the primary input.

In digital audio it is often useful to sample a new value on falling edges of
the trigger signal; for instance, we can sample whenever the current value of
the trigger signal is smaller than its previous value. This is shown in Figure
3.9. Notice that this is especially well adapted for use with a sawtooth trigger,
so that we can discretely sample signals in synchrony with any oscillator-driver
process.

3.8 Operations on control streams

So far we’ve discussed how to convert between control streams and audio streams.
In addition to this possibility, there are four types of operations you can per-
form on control streams to get other control streams. These control stream
operations have no corresponding operations on audio signals. Their existence
explains in large part why it is useful to introduce a whole control structure in
parallel with that of audio signals.

70 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

time

(b)

(input)

(c)

(a)delay

in

out

delay time

Figure 3.10: Delay as an operation on a control stream: (a) block diagram; (b)
effect of a simple delay on a control stream; (c) effect of a compound delay.

The first type consists of delay operations, which offset the time values
associated with a control stream. In real-time systems the delays can’t be
negative in value. A control stream may be delayed by a constant amount, or
alternatively, you can delay each event separately by different amounts.

Two different types of delay are used in practice: simple and compound.
Examples of each are shown in Figure 3.10. A simple delay acting on a control
stream schedules each event, as it comes in, for a time in the future. However,
if another event arrives at the input before the first event is output, the first
event is forgotten in favor of the second. In a compound delay, each event at the
input produces an output, even if other inputs arrive before the output appears.

A second operation on control steams is merging. This is simply taking any
two control streams and combining all the events into a new one. Figure 3.11 (a)
shows how this and the remaining operations can be shown in block diagrams,
and part (b) of the figure shows the effect of merging two streams.

A subtlety arises when merging two streams: what if they contain simulta-
neous events? We’ll say here that the output simply contains two events at the
same time.

A third type of operation on control streams is pruning. Pruning a control
stream means looking at the associated data and letting only certain elements

3.9. CONTROL OPERATIONS IN PD 71

through. Figure 3.11 (c) shows an example, in which events (which each have
an associated number) are passed through only if the number is positive.

Finally, there is the concept of resynchronizing one control stream to an-
other, as shown in part (d) of the figure. Here one control stream (the source)
contributes values which are put onto the time sequence of a second one (the
sync). The value given the output is always the most recent one from the source
stream. Note that any event from the source may appear more than once (as
suggested in the figure), or, on the other hand, it need not appear at all.

Again, we have to consider what happens when the two streams each contain
an event at the same time. Should the sync even be considered as happening
before the source (so that the output gets the value of the previous source event)?
Or should the source event be considered as being first so that its value goes
to the output at the same time? How this should be disambiguated is a design
question, to which various software environments take various approaches.

3.9 Control operations in Pd

So far we have used Pd mostly for processing audio signals, although as early
as Figure 1.6 we have had to make the distinction between Pd’s notion of audio
signals and of control streams: thin connections carry control streams and thick
ones carry audio. Control streams in Pd appear as sequences of messages. The
messages may contain data (most often, one or more numbers), or not. A
numeric control stream (section 3.3) appears as a (thin) connection that carries
numbers as messages.

Messages not containing data make up time sequences. So that you can see
messages with no data, in Pd they are given the (arbitrary) symbol “bang”.

The four types of control operations described in the previous section can
be expressed in Pd as shown in Figure 3.12. Delays are accomplished using two
explicit delay objects:

del , delay : simple delay. You can specify the delay time in a creation

argument or via the right inlet. A “bang” in the left inlet sets the delay, which
then outputs “bang” after the specified delay in milliseconds. The delay is
simple in the sense that sending a bang to an already set delay resets it to the
new output time, canceling the previously scheduled one.

pipe : compound delay. Messages coming in the left inlet appear on the

output after the specified delay, which is set by the first creation argument. If
there are more creation arguments, they specify one or more inlets for numeric
or symbolic data the messages will contain. Any number of messages may
be stored by pipe simultaneously, and messages may be reordered as they are
output depending on the various delay times given for them.

Merging of control streams in Pd is accomplished not by explicit objects but
by Pd’s connection mechanism itself. This is shown in part (b) of the figure.

Pd offers several objects for pruning control streams, of which two are shown
in part (c) of the figure:

72 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

(a)

merge prune resync

sync data

(b)

(c)1 −2 3 −4

1 3

(d)
1 3

1 3 1

Figure 3.11: Operations on control streams (besides delay): (a) block diagrams;
(b) merging; (c) pruning; (d) resynchronizing.

3.10. EXAMPLES 73

(a)
(b)

(c) (d)

0 0

0
delay

0

0

float

0

moses

0

0

0

select

0

Figure 3.12: The four control operations in Pd: (a) delay; (b) merging; (c)
pruning; (d) resynchronizing.

moses : prune for numeric range. Numeric messages coming in the left inlet
appear on the left output if they are smaller than a threshold value (set by a
creation argument or by the right inlet), and out the right inlet otherwise.

select , sel : prune for specific numbers. Numeric messages coming in the

left inlet produce a “bang” on the output only if they match a test value exactly.
The test value is set either by creation argument or from the right inlet.

Finally, as for the case of merging, Pd takes care of resynchronizing control
streams implicitly in its connection mechanism, as illustrated by part (d) of
the figure. Most objects with more than one inlet synchronize all other inlets
to the leftmost one. So the float object shown in the figure resynchronizes its
right-hand-side inlet (which takes numbers) to its left-hand-side one. Sending
a “bang” to the left inlet outputs the most recent number float has received
beforehand.

3.10 Examples

3.10.1 Sampling and foldover

Patch C01.nyquist.pd, shown in Figure 3.13 part (a), shows an oscillator playing
a wavetable, sweeping through frequencies from 500 to 1423. The wavetable
consists of only the 46th partial, which therefore varies from 23000 to 65458 Hz.
At a sample rate of 44100 these two frequencies sound at 21100 and 22742 Hz,
but sweeping from one to the other folds down through zero and back up.

Two other waveforms are provided to show the interesting effects of beat-
ing between partials which, although they “should” have been far apart, find
themselves neighbors through foldover. For instance, at 1423 Hz, the second

74 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

line~

500, 1423 4000

tabosc4~ table24

(OUT)

(a)

*~ *~

line line~

pd metro

1 300 0 300

osc~ 880

(b)

pd metro

1 2 0 2

line~ vline~

(c)

output~

0dB

mute

output~

0dB

mute

output~

0dB

mute

output~

0dB

mute

table24

Figure 3.13: Sending an oscillator over the Nyquist frequency.

3.10. EXAMPLES 75

harmonic is 2846 Hz whereas the 33rd harmonic sounds at 1423*33-44100 =
2859 Hz—a pronounced dissonance.

Other less extreme examples can still produce audible foldover in less striking
forms. Usually it is still objectionable and it is worth training ones ears to
detect it. Patch C02.sawtooth-foldover.pd (not pictured here) demonstrates this
for a sawtooth (the phasor ∼ object). For wavetables holding audio recordings,
interpolation error can create extra foldover. The effects of this can vary widely;
the sound is sometimes described as ”crunchy” or ”splattering”, depending on
the recording, the transposition, and the interpolation algorithm.

3.10.2 Converting controls to signals

Patch C03.zipper.noise.pd (Figure 3.13 part b) demonstrates the effect of con-
verting a slowly-updated control stream to an audio signal. This introduces a
new object:

line : a ramp generator with control output. Like line ∼, line takes pairs of
numbers as (target, time) pairs and ramps to the target in the given amount of
time; however, unlike line ∼, the output is a numeric control stream, appearing,
by default, at 20 msec time intervals.

In the example you can compare the sound of the rising and falling amplitude
controlled by the line output with one controlled by the audio signal generated
by line ∼.

The output of line is converted to an audio signal at the input of the ∗ ∼
object. The conversion is implied here by connecting a numeric control stream
into a signal inlet. In Pd, implicit conversions from numeric control streams to
audio streams is done in the fast-as-possible mode shown in Figure 3.4 part (a).
The line output becomes a staircase signal with 50 steps per second. The result
is commonly called “zipper noise”.

Whereas we were able to demonstrate the limitations of the line object for
generating audio signals were clear even at such long time periods as 300 msec,
the signal variant, line ∼, does not yield audible problems until the time periods
involved become much shorter. Patch C04.control.to.signal.pd (Figure 3.13 part
c) demonstrates the effect of using line ∼ to generate a 250 Hz. triangle wave.
Here the effects shown in Figure 3.5 come into play. Since line ∼ always aligns
line segments to block boundaries, the exact durations of line segments vary,
and in this case the variation (on the order of a millisecond) of the segments is
a significant fraction of their length.

A more precise object (and a more expensive one, in terms of computation
time) is provided for these situations:

vline ∼ : exact line segment generator. This third member of the “line” family
not only outputs an audio signal, but aligns the endpoints of the signal to the
desired time points, accurate to a fraction of a sample. (The accuracy is limited
only by the floating-point numerical format used by Pd.) Further, many line
segments may be specified withing a single audio block; vline ∼ can generate

76 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

waveforms at periods down to two samples (beyond which you will just get
foldover instead).

The vline ∼ object can also be used for converting numeric control streams
to audio streams in the nearest-sample and two-point-interpolation modes as
shown in Figure 3.4 parts (b) and (c). To get nearest-sample conversion, simply
give vline ∼ a ramp time of zero. For linear interpolation, give it a ramp time
of one sample (0.0227 msec if the sample rate is 44100 Hz.)

3.10.3 Non-looping sample player

One application area requiring careful thought about the control stream/audio
signal boundary is sampling. Until now our samplers have skirted these issues
by looping perpetually. This allows for a rich variety of sound that can be
accessed by making continuous changes in parameters such as loop size and
envelope shape. However, many uses of sampling require the internal features
of a sample to emerge at predictable, synchronizable moments in time. For
example, percussion samples are usually played from the beginning, are not often
looped, and are usually played in some kind of determined time relationship with
the rest of the music.

In this situation, control streams are better adapted than audio signals as
triggers. Example patch C05.sampler.oneshot.pd (Figure 3.14) shows one possi-
ble way to accomplish this. The four tilde objects at bottom left form the signal
processing network for playback. One vline ∼ object generates a phase signal
(actually just a table lookup index) to the tabread4 ∼ object; this replaces the
phasor ∼ of patch B02.wavetable.FM.pd(page 45) and its derivatives.

The amplitude of the output of tabread4 ∼ is controlled by a second vline ∼
object. This is in order to prevent discontinuities in the output in case a new
event is started while the previous event is still playing. The “cutoff” vline ∼
ramps the output down to zero (whether or not it is playing) so that, once the
output is zero, the index of the wavetable may be changed discontinuously.

The sequence of events for starting a new “note” is, first, that the “cutoff”
vline ∼ is ramped to zero; then, after a delay of 5 msec (at which point vline ∼
has reached zero) the phase is reset. This is done with two messages: first, the
phase is set to 1 (with no time value so that it jumps to 1 with no ramping.)
This is the first readable point of the wavetable. Second, in the same message
box, the phase is sent to 441,000,000 over a time period of 10,000,000 msec.
This corresponds to 44.1 units per millisecond and thus to a transposition of
one. The upper vline ∼ (which generates the phase) receives these messages via
the r phase object above it.

The example assumes that the wavetable is ramped smoothly to zero at
either end, and the bottom right portion of the patch shows how to record a
sample (in this case four seconds long) which is ramped smoothly to zero at
either end. Here a regular (and computationally cheaper) line ∼ object suffices.
Although the wavetable should be at least 4 seconds long for this to work, you
may record shorter wavetables simply by cutting the line ∼ object off earlier.
The only caveat is that, if you are simultaneously reading and writing from the

3.10. EXAMPLES 77

adc~ 1

hip~ 5

*~

r cutoff

r phase

bang

delay 5

<−− play the sample

;
cutoff 0 5

cut the

sound off

Wait for the

cutoff to finish

set the upper line~ to start

at the first sample and play

forever (or until next trigger)

<−− record

line~
*~

del 3990

0 10

(OUT)

vline~

vline~

tabwrite~ tab28

tabread4~ tab28

;
phase 1, 4.41e+08 1e+07;
cutoff 1

0, 1 5

start new playback

Figure 3.14: Non-looping sampler.

78 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

same sample, you may have to avoid situations where read and write operations
attack the same portion of the wavetable at once.

The vline ∼ objects surrounding the tabread4 ∼ were chosen over line ∼
because the latter’s rounding of breakpoints to the nearest block boundary (typ-
ically 1.45 msec) can make for audible aperiodicities in the sound if the sample
is repeated more than 10 or 20 times per second, and would prevent you from
getting a nice, periodic sound at higher rates of repetition.

We will return to vline ∼-based sampling in the next chapter, to add trans-
position, envelopes, and polyphony.

3.10.4 Signals to controls

Patch C06.signal.to.control.pd (not pictured) demonstrates conversion from au-
dio signals back to numeric control streams, via a new tilde object introduced
here.

snapshot ∼ : convert audio signal to control messages. This always gives the

most recently computed audio sample (fast-as-possible conversion), so the exact
sampling time varies by up to one audio block.

It is frequently desirable to sense the audio signal’s amplitude rather than
peek at a single sample; patch C07.envelope.follower.pd (also not pictured) in-
troduces another object which does this.

env ∼ : RMS envelope follower. Outputs control messages giving the short-
term RMS amplitude (in dB) of the incoming audio signal. A creation argument
allows you to select the number of samples used in the RMS computation;
smaller numbers give faster (and possibly less stable) output.

3.10.5 Analog-style sequencer

Patch C08.analog.sequencer.pd (figure 3.15) realizes the analog sequencer and
envelope generation described in section 3.7. The “sequence” table, with nine
elements, holds a sequence of frequencies. The phasor~ object at top cycles
through the sequence table at 0.6 Hz. Non-interpolating table lookup (tabread~
instead of tabread4~) is used to read the frequencies in discrete steps. (Such
situations, in which we prefer non-interpolating table lookup, are rare.)

The wrap ∼ object converts the amplitude-9 sawtooth to a unit-amplitude
one as described earlier in Figure 3.8, which is then used to obtain an envelope
function from a second wavetable. This is used to control grain size in a looping
sampler (from section 2.6.4). Here the “sample” consists of six periods of a
sinusoid. The grains are smoothed by multiplying by a raised cosine function
(cos ∼ and + ∼ 1). (This multiplication can cause audible artifacts which will
be discussed in chapter 5.)

Patch C09.sample.hold.pd (not pictured here) shows a sample-and-hold unit,
another useful device for doing control tasks in the audio signal domain.

3.10. EXAMPLES 79

sequence

*~

envelope

sample

wrap~

*~ 100

+~ 1

phasor~

−~ 0.5

cos~

*~

*~ 128

+~ 129

+~ 1

*~ 9

phasor~ 0.6

main loop: sawtooth of amplitude 9

read frequency sequence

9x original frequency sawtooth

multiply by raised−cosine smoothing function

(out)

tabread~ sequence

tabread4~ envelope

tabread4~ sample

multiply by audio−frequency sawtooth

envelope sample

adjust for reading

and center for wavetable

adjust amplitude

Figure 3.15: An analog-synthesizer-style sequencer.

80 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

mtof

stripnote

select

float

t b f

float

f − store pitch below

velocity stored here

off

recall pitch

notein

line~

$1 100 0 1000

b − bang to recall velocity

sel 0

 on

*~

phasor~

−~ 0.5

cos~

*~ +~ 1

cos~

pitch

test for note on or off

test against latest

note−on pitch

filter
note−on

*~

/ 127

envelope generator now controls

amplitude as well as grain size

*~ 2

+~ 0.5

This replaces the tabread4~

in the previous patch.
(OUT)

pit vel

Figure 3.16: A MIDI-style monophonic synthesizer.

3.10.6 MIDI-style synthesizer

Patch C10.monophonic.synth.pd (figure 3.16) also implements a monophonic,
note-oriented synthesizer, but in this case oriented toward MIDI controllability.
Here the tasks of envelope generation and sequencing pitches is handled using
control streams instead of audio signals. Several new control objects are needed
for this example.

notein : MIDI note input. Three outlets present the pitch, velocity, and chan-
nel of incoming MIDI note-on and note-off events (with note-off events appearing
as velocity-zero note-on events.) The outlets appear in Pd’s customary right-
to-left order.

stripnote : filter out note-off messages. This passes (pitch, velocity) pairs

through whenever the velocity is nonzero, dropping the others. Unlike notein,
stripnote does not input or output actual MIDI messages.

trigger , t : copy a message to outlets in right to left order, with type conver-

3.10. EXAMPLES 81

sion. The creation arguments (“b” and “f” in this example) specify two outlets,
one giving bang messages, the other float (i.e., numbers). One outlet is created
for each creation argument. Other types are “l” for list, “s” for symbol, and
“a” to output anything (i.e., a copy of the input message, whatever it is). The
incoming message is converted (as faithfully as possible) into whatever format
is specified by the creation argument. Although the outputs appear in Pd’s
standard right-to-left order, no time elapses between each of the outputs; they
are deterministically ordered and yet instantaneous.

The patch’s control objects feed frequencies to the phasor ∼ object whenever
a note-on message is received. Controlling the amplitude (via the line ∼ object)
is more difficult. When a note-on message is received, the “sel 0” object outputs
the velocity at right (because the input failed to match 0); this is divided by
the maximum MIDI velocity of 127 and packed into a message for line ∼ with
a time of 100 msec.

However, when a note-off is received, it is only appropriate to stop the sound
if the note-off pitch actually matches the pitch the instrument is playing. For
example, suppose the messages received are “60 127”, “72 127”, “60 0”, and “72
0”. When the note-on at pitch 72 arrives the pitch should change to 72, and
then the “60 0” message should be ignored, with the note playing until the “72
0” message.

To accomplish this, first we store the velocity in the upper float object.
Second, when the pitch arrives, it too is stored (the lower float object) and then
the velocity is tested against zero (the bang outlet of “t b f” recalls the velocity
which is sent to “sel 0”). If this is zero, the second step is to recall the pitch and
test it (the select object) against the most recently received note-on pitch. Only
if these are equal (so that bang appears at the left-hand-side outlet of select)
does the message 0 1000 go to the line~ object.

Exercises

1. What frequency would you hear if you synthesized a sine wave at 88000
Hz. at a sample rate of 44100?

2. Draw a block diagram showing how to use thresholding to detect when
one audio signal exceeds another one in value. (You might want to do this
to detect and filter out feedback from speakers to microphones.)

3. Using the techniques of section 3.7, draw a block diagram for generating
two phase-locked sinusoids at 500 and 700 Hz.

4. Two sawtooth waves, of unit amplitude, have frequencies 200 and 300 Hz.,
respectively. What is the periodicity of the sum of the two? What if you
then wrapped the sum back to the range from 0 to 1? Does this result
change depending on the relative phase of the two?

82 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

Chapter 4

Automation and voice
management

It is often desirable to control musical objects or events in aggregates rather
than individually. This might take the form of a series of events spaced in time,
in which the details of the events follow from the larger arc (for instance, notes
in a melody). Or the individuals might occur simultaneously, such as voices
in a chord, or partials in a complex tone. In both cases the properties of the
individual might be inferred from those of the whole.

A rich collection of tools and ideas has arisen in the electronic music reper-
tory for describing individual behaviors from aggregate ones. In this chapter
we cover two general classes of such tools: envelope generators and voice banks.
The envelope generator automates behavior over time, and the voice bank over
aggregates of simultaneous processes (such as signal generators.)

4.1 Envelope Generators

An envelope generator (sometimes, and more justly, called a transient generator)
makes an audio signal that smoothly rises and falls as if to control the loudness of
a musical note as it rises and falls. (Envelope generators were first introduced in
section 1.5.) Amplitude control by multiplication (figure 1.4 is the most direct,
ordinary way to use an envelope generator, but there are many other uses.

Envelope generators have come in many forms over the years, but the simples
and the perennial favorite is the ADSR envelope generator. “ADSR” is an
acronym for “Attack, Decay, Sustain, Release”, the four segments of the ADSR
generator’s output. The ADSR generator is controlled by a control stream called
a “trigger”. Triggering the ADSR generator “on” sets off its attack, decay, and
sustain segments. Triggering it “off” sets off the release segment. Figure 4.1
shows how this can appear in block diagrams.

Figure 4.2 shows some possible outputs of an ADSR generator. In part (a)
we assume that the “on” and “off” triggers are well enough separated that the

83

84 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

trigger

Figure 4.1: ADSR envelope as a block diagram, showing the trigger input (a
control stream) and the audio output.

sustain segment is reached before the “off” trigger is received. There are five
parameters controlling the ADSR generator. First, a level parameter sets the
output value at the end of the attack segment (normally the highest value output
by the ADSR generator.) Second, an attack parameter gives the time duration of
the attack segment, and third, a decay gives the duration of the decay segment.
Fourth, a sustain parameter gives the level of the sustain segment, as a fraction
of the level parameter. Finally, the release parameter gives the duration of the
release segment. These five values, together with the timing of the “on” and
“off” triggers, fully determines the output of the ADSR generator. For example,
the duration of the sustain portion is equal to the time between “on” and “off”
triggers, minus the durations of the attack and decay segments.

Parts (b) and (c) of Figure 4.2 show the result of following an “on” trigger
quickly by an “off” one: (b) during the release segment, and (c) even earlier,
during the attack. The ADSR generator reacts to these situations by canceling
whatever remains of the attack and decay segments and continuing straight to
the release segment. Also, an ADSR generator may be retriggered “on” before
the release segment is finished or even during the attack, decay, or sustain
segments. Part (d) of the figure shows a reattack during the sustain segment,
and part (e), during the decay segment.

The classic use of an ADSR envelope is when using a voltage-control key-
board or a sequencer to make musical notes on a synthesizer. Depressing a key
(for example) would generate an “on” trigger and releasing it, an “off” trig-
ger. The ADSR generator could then control the amplitude of synthesis so that
“notes” would start and stop with the keys. In addition to amplitude, the ADSR
generator can (and often is) made to control the timbre of the notes, which can
then be made to evolve naturally over the course of each note.

4.1. ENVELOPE GENERATORS 85

time

(a)

attack

decay

sustain
release

(b)

(c)

(d)

(e)

Figure 4.2: ADSR envelope output: (a) with “on” and “off” triggers separated;
(b), (c) with early “off” trigger; (d), (e) re-attacked.

86 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

4.2 Linear and Curved Amplitude Shapes

Suppose you wish to fade a signal in over a period of ten seconds—that is, you
wish to multiply it by an amplitude-controlling signal y[n] which rises from 0
to 1 in value over 10R samples, where R is the sample rate. The most obvious
choice would be a linear ramp: y[n] = n/(10R). But this will not turn out to
yield a smooth increase in perceived loudness. Over the first second y[n] rises
from −∞ dB to -20 dB, over the next four by another 14 dB, and over the
remaining five, only by the remaining 6 dB. Over most of the ten second period
the rise in amplitude will be barely perceptible.

Another possibility would be to ramp y[n] exponentially, so that it rises at a
constant rate in dB. You would have to fix the initial amplitude to be inaudible,
say 0 dB (if we fix unity at 100 dB). Now we have the opposite problem: for
the first five seconds the amplitude control will rise from 0 dB (inaudible) to 50
dB (pianissimo); this amount of rise should have only taken up the first second
or so.

The natural progression should perhaps have been: 0-ppp-pp-p-mp-mf-f-ff-
fff, so that each increase of one dynamic marking would take roughly one second,
and would correspond to one ”step” in loudness.

We appear to need some scale in between logarithmic and linear. A some-
what arbitrary choice, but useful in practice, is the quartic curve:

y[n] =
(n

N

)4

,

where N is the number of samples to fade in over (in the example above, it’s
10R). So, over the second (of the ten) we would rise to -80 dB, after five seconds
to -24 dB, and after nine, about -4 dB.

Figure 4.3 shows three amplitude transfer functions:

f1(x) = x (linear),

f2(x) = 102(x−1) (dB to linear),

f3(x) = x4 (quartic).

The second function converts from dB to linear, arranged so that the input
range, from 0 to 1, corresponds to 40 dB. (This input range of 40 dB corresponds
to a reasonable dynamic range, allowing 5 dB for each of 8 steps in dynamic.)
The quartic curve imitates the exponential (dB) curve fairly well for higher
amplitudes, but drops off more rapidly for small amplitudes, reaching true zero
at right (whereas the exponential curve only goes down to 1/100.)

We can think of the three curves as showing transfer functions, from an
abstract control (ranging from 0 to 1) to a linear amplitude. After we choose a
suitable transfer function f , we can compute a corresponding amplitude control
signal; if we wish to ramp over N samples from silence to unity gain, the control
signal would be:

y[n] = f(n/N).

4.2. LINEAR AND CURVED AMPLITUDE SHAPES 87

linear

decibels
quartic

units−−>

amplitude

|
|
|
| ^

0

1

0 1
...

Figure 4.3: Three amplitude transfer functions. The horizontal axis is in linear,
logarithmic, or fourth-root units depending on the curve.

88 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

OUT

FREQUENCY

X

f()−1

1

Figure 4.4: Using a transfer function to alter the shape of amplitude curves.

A block diagram for this is shown in Figure 4.4. Here we are introducing a new
type of block to represent the application of a transfer function. For now we
won’t worry about its implementation; depending on the function desired, this
might be best done arithmetically or using table lookup.

4.3 Continuous and discontinuous control changes

Synthesis algorithms vary widely in their ability to deal with discontinuously
changing controls. Until now in this chapter we have assumed that controls
must change continuously, and the ADSR envelope generator turns out to be
ideally suited to controlling such a parameter. It may even happen that the
maximum amplitude of a note is less than the current value of the amplitude of
its predecessor (using the same generator) and the ADSR envelope will simply
ramp down (instead of up) to the new value for an attack.

This isn’t necessarily desirable, however, in situations where an envelope
generator is in charge of some aspect of timbre: it may be that we don’t want
(for example) the sharpness of a note to decrease during the attack to a milder
one, but rather to jump to a much lower value so as always to be able to rise
during the attack.

This situation also can arise with pitch envelopes: it may be desirable to slide
pitch from one note to the next, or it may be desirable that the pitch trajectory
of each note start anew at a point independent of the previous sound.

Two situations arise when we wish to make discontinuous changes to syn-
thesis parameters: either we can simply make them without disruption (for
instance, making a discontinuous change in pitch); or else we can’t, such as a
change in a wavetable index (which makes a discontinuous change in the out-
put). There are even parameters that can’t possibly be changed continuously;

4.3. CONTINUOUS AND DISCONTINUOUS CONTROL CHANGES 89

time

(a)

(b)

Figure 4.5: The muting technique for hiding discontinuous changes, for example
of an amplitude envelope. In part (a) the envelope (upper graph) is set discon-
tinuously to zero. The muting signal (lower graph) ramps down in advance to
prepare for the change, and then is restored (discontinuously) to its previous
value. In (b), the envelope changes discontinuously between two nonzero val-
ues; the muting signal must both ramp down beforehand and ramp back up
afterward.

for example, a selection among a collection of wavetables. In general, we can’t
set the phase of an oscillator or the amplitude of a signal discontinuously, but
we may change phase increments (such as pitches) almost arbitrarily without
bad results.

In those cases where a parameter change can’t be made continuously for
one reason or another, there are at least two strategies for making the change:
muting and switch-and-ramp.

4.3.1 Muting

The muting technique is to apply an envelope to the output amplitude, which
is quickly ramped to zero before the parameter change and then restored af-
terward. It may or may not be true that the discontinuous changes will result
in a signal that rises smoothly from zero afterward. In Figure 4.5 (part a),
we take the example of an amplitude envelope (the output signal of an ADSR
generator), and assume that the discontinuous change is to start a new note at
amplitude zero.

90 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

To change the ADSR generator’s output discontinuously we reset it. This is
a different operation from triggering it; the result is to make it jump to a new
value, after which we may either simply leave it there or trigger it anew. In the
top of 4.5 (part a) we show the effect of resetting and retriggering an ADSR
generator.

Below the ADSR generator output we see the muting signal, which ramps to
zero to prepare for the discontinuity. The amount of time we allow for muting
should be small (so as to disrupt the previous sound as little as possible) but
not so small as to cause audible artifacts in the output. A working example
of this type of muting was already shown in section 3.10.3; there we allowed 5
msec for ramping down.

Figure 4.5 (part b) shows the situation in which we suppose the discontinuous
change is between two nonzero values. Here the muting signal must not only
ramp down as before (in advance of the discontinuity) but must also ramp back
up afterward. The ramp-down time need not equal the ramp-up time; these
must be chosen, as always, by listening to the output sound.

In general, muting presents the difficulty that you must start the muting
operation in advance of making the desired control change. In real-time settings,
this often requires that we intentionally delay the control change. This is another
reason for keeping the muting time as low as possible. (Moreover, it’s a bad
idea to try to minimize delay by conditionally omitting the ramp-down period
when it isn’t needed; a constant delay is much better than one that varies, even
if it is smaller on average.)

4.3.2 Switch-and-ramp

The switch-and-ramp technique also seeks to remove discontinuities resulting
from discontinuous control changes, but does so in a different way: by synthe-
sizing an opposing discontinuity which cancels the original one out. Figure 4.6
shows an example in which a synthetic percussive sound, an enveloped sinusoid,
starts a note in the middle of a previous one. The attack of the sound derives
not from the amplitude envelope but on the initial phase of the sinusoid, as is
often appropriate for percussive sounds. The lower graph in the figure shows a
compensating audio signal with an opposing discontinuity, which can be added
to the upper one to remove the discontinuity. The advantages of this technique
over muting are, first, that there need be no delay between the decision to make
an attack and the sound of the attack; and second, that any artifacts arising
from this technique are more likely to be hidden by the new sound’s onset.

Figure 4.7 shows how the switch-and-ramp technique can be realized in a
block diagram. The box marked with ellipsis (“...”) may hold any synthesis
algorithm, which we wish to interrupt discontinuously so that it restarts from
zero (as the example of the previous figure did). At the same time we trigger
whatever control changes are necessary (exemplified by the top ADSR genera-
tor), we also reset and trigger another ADSR generator (middle right) to cancel
out the discontinuity. The discontinuity is minus the last value of the synthesis
output just before it is reset to zero.

4.3. CONTINUOUS AND DISCONTINUOUS CONTROL CHANGES 91

time

Figure 4.6: The switch-and-ramp technique for canceling out discontinuous
changes. A discontinuity (upper graph) is measured and canceled out with
a signal having the opposite discontinuity (lower graph), which then decays
smoothly.

snapshot

trigger

...

OUT

+ +

trigger level
reset/

Figure 4.7: Block diagram for the switch-and-ramp technique.

92 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

To do this we measure the level the ADSR generator must now jump to.
This is its own current level (which may not be zero) minus the discontinuity
(or equivalently, plus the synthesis output’s last value). The two are added (by
the +~ object at bottom right), and then a snapshot is taken. The cancelling
envelope generator (at right) is reset discontinuously to this new value, and
then triggered to ramp back to zero. The +~ object at bottom left adds the
synthesizer output to the discontinuity-cancelling signal.

4.4 Polyphony

In music, the term polyphony is usually used to mean “more than one separate
voices singing or playing at different pitches one from another”. When speak-
ing of musical instruments (electronic or otherwise), we use the term to mean
“maintaining several copies of some process in parallel.” We usually call each
copy a “voice” in keeping with this analogy, although the voices needn’t be
playing separately distinguishable sounds.

In this language, a piano is a polyphonic instrument, with 88 “voices”. Each
voice of the piano is normally capable of playing exactly one pitch. There is
never a question of which voice to use to play a note of a given pitch, and no
question, either, of playing several notes simultaneously of the same pitch.

Most polyphonic electronic musical instruments take a more flexible ap-
proach to voice management. Most software synthesis programs (like csound)
use a dynamic voice allocation scheme, so that, in effect, a new voice is created
for every note in the score. In systems such as Max or Pd which are oriented
toward real-time interactive use, a voice bank is allocated in advance, and the
work to be done (playing notes, or whatever) is distributed among the voices in
the bank. This is diagrammed in Figure 4.8.

In this example the several voices each produce one output signal, which are
all added to make the total output of the voice bank. Frequently it will occur
that individual voices need several separate outputs; for instance, they might
output stereo so that voices may be panned individually; or they might have
individual effects sends so that each may have its own send level.

4.5 Voice allocation

It is frequently desirable to automate the selection of voices to associate with
individual tasks (such as notes to play). For example, a musician playing at a
keyboard can’t practically choose which voice should go with each note played.
To automate voice selection we need a voice allocation algorithm, to be used as
shown in Figure 4.9.

Armed with a suitable voice allocation algorithm, the control source need
not concern itself with the detail of which voice is taking care of which task;
algorithmic note generators and sequencers frequently rely on this. On the
other hand, musical writing for ensembles frequently specifies explicitly which

4.6. VOICE TAGS 93

OUT

+

voice 1

voice 2

voice 3

control

Figure 4.8: A voice bank for polyphonic synthesis.

instrument plays which note, so that the notes will connect to each other end-
to-end in a desirable way.

One simple voice allocation algorithm works as shown in Figure 4.10. Here
we suppose that the voice bank has only two voices, and we try to allocate voices
for the tasks a, b, c, and d. Things go smoothly until task d comes along, but
then we see no free voices (they are taken up by b and c). We could now elect
either to drop task d, or else to steal the voice of either task b or c. In practice
the best choice is usually to steal one. In this particular example, we chose to
steal the voice of the oldest task, b.

We can see that, if we know the length of the tasks b and c at the outset
of task d, we may be able to make a better choice of which voice to steal.
In this example it might have been better to steal from c, so that d and b
would be playing together at the end and not d alone. In some situations this
information will be available when the choice must be made, and in some (live
keyboard input, for example) it will not.

4.6 Voice tags

Suppose now that we’re using a voice bank to play notes, as in the example
above, but suppose the notes a, b, c, and d all had the same pitch, and further-
more that all their other parameters were identical. How would we design a
control stream so that, when any one note was turned off, we would know which
one it was?

94 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

OUT

+

voice 1

voice 2

voice 3

allocation

voice

"notes"

Figure 4.9: Polyphonic voice allocation

a

time

b

c

d

voice 1...

voice 2.......

............

...

Figure 4.10: A polyphonic voice allocation algorithm, showing voice stealing.

4.6. VOICE TAGS 95

This question doesn’t come up if the control source is a clavier keyboard
because it’s impossible to play more than one simultaneous note on a single
key. But it could easily arise algorithmically, or simply as a result of merging
two keyboard streams together. Moreover, turning notes off is only the simplest
example of a more general problem, which is how, once having set an task off
in a voice bank, we can get back to the correct voice to guide its evolution as a
function of real-time inputs or any other unpredictable factor.

To deal with situations like this we can add one or more tags to the message
starting a process (such as a note). A tag is any collection of data with which
we can later identify the process, which we can later use to search for the voice
that is allocated for it.

Taking again the example of Figure 4.10, here is one way we might write
those four tasks as a control stream:

start-time end-time pitch ...

1 2 60 ...

2 6 62

4 2 64

5 3 65

In this representation we have no need of tags because each message (each
line of text) contains all the information we need in order to specify the entire
task. (Here we have assumed that the tasks a, . . . , d are in fact musical notes
with pitches 60, 62, 64, and 65.) In effect we’re representing each task as a
single event (section 3.3) in a control stream.

On the other hand, if we suppose now that we do not know in advance the
length of each note, a better representation would be this one:

time tag action parameters

1 a start 60 ...

2 b start 62 ...

3 a end

4 c start 64 ...

5 d start 65 ...

6 c end

8 b end

8 d end

Here each note has been split into two separate events to start and end it.
The labels a, ..., d are used as tags; we know which start goes with which end
since their tags are the same. Note that the tag is not necessarily related at all
to the voice that will be used to play each note.

The MIDI standard does not supply tags; in normal use, the pitch of a note
serves also as its tag (so tags are constantly being re-used.) If two notes having
the same pitch must be addressed separately (to slide their pitches in different

96 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

ways for example), the MIDI channel may be used (in addition to the note) as
a tag.

In real-time music software it is often necessary to pass back and forth be-
tween the event-per-task representation and the tagged representation above,
since the first representation is better suited to storage and graphical represen-
tation, while the second is better suited to real-time operations.

4.7 Encapsulation in Pd

The examples for this chapter will use Pd’s abstraction mechanism, which per-
mits the building of patches that may be reused any number of times. One or
more object boxes in a Pd patch may be subpatches, which are separate patches
encapsulated inside the boxes. These come in two types: one-off subpatches and
abstractions. In either case the subpatch appears as an object box in the parent

patch.
If you type “pd” or “pd my-name” into an object box, this creates a one-off

subpatch. The contents of the subpatch are saved as part of the parent patch,
in one file. If you make several copies of a subpatch you may change them
individually. On the other hand, you can invoke an abstraction by typing into
the box the name of a Pd patch saved to a file (without the “.pd” extension).
In this situation Pd will read that file into the subpatch. In this way, changes
to the file propagate everywhere the abstraction is invoked.

Object boxes in the subpatch (either one-off or abstractions) may create
inlets and outlets on the box in the parent patch. This is done with the following
classes of objects:

inlet , inlet ∼ : create inlets for the object box containing the subpatch. The
inlet ∼ version creates an inlet for audio signals, whereas inlet creates one for
control streams. In either case, whatever shows up on the inlet of the box in
the parent patch comes out of the inlet object in the subpatch.

outlet , outlet ∼ : Corresponding objects for output from subpatches.
Pd provides an argument-passing mechanism so that you can parametrize

different invocations of an abstraction. If in an object box you type “$1”, it is
expanded to mean “the first creation argument in my box on the parent patch”,
and similarly for “$2” and so on. The text in an object box is interpreted at
the time the box is created, unlike the text in a message box. In message boxes,
the same “$1” means “the first argument of the message I just received” and is
interpreted whenever a new message comes in.

An example of an abstraction, using inlets, outlets, and parametrization, is
shown in figure 4.11. In part (a), a patch invokes “plusminus” in an object box,
with a creation argument equal to 5. The number 8 is fed to the plusminus
object, and out comes the sum and difference of 8 and 5.

The plusminus object is not defined by Pd, but is rather defined by the
patch residing in the file named “plusminus.pd”. This patch is shown in part
(b) of the figure. The one inlet and two outlet objects correspond to the inlets

4.8. EXAMPLES 97

inlet

outlet outlet

+ $1 − $1

8

13

plusminus 5

3

(a) (b)

Figure 4.11: Pd’s abstraction mechanism: (a) invoking the abstraction, “plusmi-
nus” with 5 as a creation argument; (b) the contents of the file, “plusminus.pd”.

and outlets of the plusminus object. The two “$1 arguments (to the + and −
objects) are replaced by 5 (the creation argument of the plusminus object).

We have already seen one abstraction in the examples: the output ∼ object
introduced in chapter 1, Figure 1.8(c). This shows an additional feature of
abstractions, that they may display controls as part of their boxes on the parent
patch; see the Pd documentation for a description of this feature.

4.8 Examples

4.8.1 ADSR envelope generator

Patch D01.envelope.gen.pd (figure 4.12) shows how the line~ object may be
used to generate an ADSR envelope to control a synthesis patch (only the ADSR
envelope is shown). The “attack” button, when pressed, sets off two chains of
events. The first (leftmost in the figure) is to set the line~ object on its attack
segment, with a target of 10 (the peak amplitude) over 200 msec (the attack
time). Second, the attack button sets a delay 200 object, so that after the
attack segment is done, the decay segment can start. The decay segment goes
to a target of 1 (the sustain level) after another 2500 msec (the decay time).

The “release” button sends the same line~ object back to zero over 500 more
milliseconds (the release time). Also, in case the delay 200 object happens to
be set at the moment the “release” button is pressed, a stop message is sent to
it. This prevents the ADSR generator from launching its decay segment after
launching its release segment.

In patch D02.adsr.pd (figure 4.13) we encapsulate the ADSR generator in
a Pd abstraction (named adsr) so that it can easily be replicated. The design
of the adsr abstraction makes it possible to control the five ADSR parameters

98 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

attack release

line~

0 500

*~

1 2500

10 200 del 200

stop

(IN)

(OUT)

Figure 4.12: Using a line~ object to generate an ADSR envelope.

trigger

adsr 1 100 200 50 300

osc~ 440

*~

(OUT)

Figure 4.13: Invoking the adsr abstraction.

either by supplying creation arguments or by connecting control streams to its
inlets.

In this example the five creation arguments (1, 100, 200, 50, and 300) specify
the peak level, attack time, decay time, sustain level (as a percentage of peak
level), and release time. There are six control inlets: the first to trigger the
ADSR generator, and the others to update the values of the five parameters.
The output of the abstraction is an audio signal.

This abstraction is realized as shown in figure 4.14. (You can open this patch
by clicking on the adsr object in the patch.) The only signal objects are line~

and outlet~Ṫhe three pack objects correspond to the three message objects
from the earlier figure 4.12. They take care of the attack, decay, and release
segments.

The attack segment goes to a target specified as $1 (the first creation argu-
ment of the abstraction) over $2 milliseconds; these values may be overwritten
by sending numbers to the “peak level” and “attack” inlets. The release seg-
ment is similar except simpler since the target is always zero. The hard part is

4.8. EXAMPLES 99

inlet

inlet

trigger

sel 0
t b

f $1

pack 0 $2

inlet

del $2

line~

f $4

pack 0 $3

inlet inlet

inlet

stop

pack 0 $5

level

* $1

outlet~

and pack with

attack time

if zero
release

decay

back to zero

* 0.01

attack decay sustain

release

attack

moses

t b b

0

optionally

ATTACK:

test for negative trigger

if so, zero the output

... then

recall peak level

peak

... do this

cancel

DECAY

RELEASE: ramp

anyway

to zero

jump

Figure 4.14: Inside the adsr abstraction.

100 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

osc~

*~

line~

line~

osc~

*~

line~line~

sqrt

sqrt

sqrt

sqrt

*~

*~

*~

*~

unpack unpack

r freq

r amp

r freq r amp

LINEAR QUARTIC

;
freq 1760 5000

;
freq 55 5000

sample messages

output~

0dB

mute

output~

0dB

mute

Figure 4.15: Linear and quartic transfer functions for changing amplitude and
pitch.

the decay segment, which again must be set off after a delay equal to the attack
time (the del $2 object). The sustain level is calculated from the peak level
and the sustain percentage (multiplying the two and dividing by 100).

The trigger inlet, if sent a number other than zero, triggers an onset (the
attack and decay segments), and if sent zero, triggers the release segment. Fur-
thermore, the ADSR generator may be reset to zero by sending a negative trigger
(which also generates an onset).

4.8.2 Transfer functions for amplitude control

In section 4.2 we considered using ADSR envelopes to control amplitude, for
which exponential or quartic-curve segments often give more natural-sounding
results than linear ones. Patches D03.envelope.dB.pd and D04.envelope.quartic.pd
(the latter is shown in figure 4.15) demonstrate the use of decibel and quar-
tic segments. In addition to amplitude, in patch D04.envelope.quartic.pd the
frequency of a sound is also controlled, using linear and quartic shapes, for
comparison.

Since converting decibels to linear amplitude units is a costly operation (at
least when compared to an oscillator or a ramp generator), patch D03.envelope.dB.pd
uses table lookup to implement the necessary transfer function. This has the

4.8. EXAMPLES 101

advantage of efficiency, but the disadvantage that we must decide on the range
of admissible values in advance (here from 0 to 120 dB).

For a quartic segment as in patch D04.envelope.quartic.pd no table lookup is
required; we simply square the line~ object’s output signal twice in succession.
To compensate for raising the output to the fourth power, the target values sent
to the line~ object must be the fourth root of the desired ones. Thus, messages
to ramp the frequency or amplitude are first unpacked to separate the target
and time interval, and the target’s fourth root is taken (via two square roots in
succession) and the two are then sent to the line~ object. Here we have made
use of one new Pd object:

pdunpack : unpack a list of numbers (and/or symbols) and distribute them

to separate outlets. As usual the outlets appear right to left. The number and
types of the outlets is determined by the creation arguments. (See also pack, p.
44).

The next two patches, D05.envelope.pitch.pd and D06.envelope.portamento.pd
use an ADSR envelope generator to make a pitch envelope and a simple line~

object, also controlling pitch, to make portamento. In both cases exponential
segments are desirable, and they are calculated using table lookup.

4.8.3 Additive synthesis: Risset’s bell

The abstraction mechanism of Pd, which we used above to make a reusable
ADSR generator, is also useful for making voice banks. Here we will use ab-
stractions to organize banks of oscillators for additive synthesis. There are many
possible ways of organizing the oscillator banks besides the few we’ll show here.

The simplest and most direct organization of the sinusoids is to form partials
to add up to a note. The result is monophonic, in the sense that the patch will
play only one note at a time, which, however, will consist of several sinusoids
whose individual frequencies and amplitudes might depend both on those of the
note we’re playing, and also on their individual placement in a harmonic (or
inharmonic) overtone series.

For example, patch D07.additive.pd (figure 4.16) uses a bank of 11 copies of
an abstraction named “partial” (figure 4.17) in an imitation of a well-known
bell instrument by Jean-Claude Risset. As described in [DJ85, p. 94], the
bell sound has 11 partials, each with its own relative amplitude, frequency, and
duration.

For each note, the partial abstraction computes a simple (quartic) ampli-
tude envelope consisting only of an attack and a decay segment; there is no
sustain or release segment. This is multiplied by a sinusoid, and the product is
added into a summing bus. Two new object classes are introduced to implement
the summing bus:

catch~ : define and output a summing bus. The creation argument (“sum-
bus” in this example) gives the summing bus a name so that throw~ objects
below can refer to it. You may have as many summing busses (and hence catch~
objects) as you like but they must all have different names.

102 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

catch~ sum

s frequency

s duration

40

* 100

mtof

72

duration, tenths
of a second

pitch

partial 1 1 0.56 0

<−− click to play

s trigger

partial 0.67 0.9 0.56 1

partial 1 0.65 0.92 0

partial 1.8 0.55 0.92 1.7

partial 2.67 0.325 1.19 0

partial 1.67 0.35 1.7 0

partial 1.46 0.25 2 0

partial 1.33 0.2 2.74 0

partial 1.33 0.15 3 0

partial 1 0.1 3.76 0

partial 1.33 0.075 4.07 0

(out)

Figure 4.16: A Pd realization of Jean-Claude Risset’s bell instrument. The bell
sound is made by summing 11 sinusoids, each made by a copy of the partial

abstraction.

4.8. EXAMPLES 103

sqrt

trigger

*~
line~

*~

*~

0 $1

sqrt

r trigger

float $1

r duration

r frequency

t b b

throw~ sum

$1 5

del 5

* 0.1

+ $4

float $2

* actual duration

float $3

*

osc~

plus detune

add to global

summing bus

arguments:

relative
frequency

times global
frequency

ATTACK

DECAY

relative
duration

quartic amplitude
curve

$1 amplitude;
$2 relative duration;
$3 relative frequency;
$4 detune

attack time

5 msec

Figure 4.17: The partial abstraction used by Risset’s bell instrument from
figure 4.16.

104 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

throw~ : add to a summing bus. The creation argument selects which sum-
ming bus to use.

The control interface is crude: number boxes control the “fundamental”
frequency of the bell and its duration. Sending a “bang” message to the s

trigger object starts a note. (The note then decays over the period of time
controlled by the duration parameter; there is no separate trigger to stop the
note.) There is no amplitude control except via the output~ object.

The four arguments to each invocation of partial abstraction specify:

1. amplitude. The peak amplitude of the partial at its peak, at the end of
the attack and the beginning of the decay of the note

2. relative duration. This is multiplied by the overall note duration (con-
trolled in the main patch) to determine the duration of the decay portion
of the sinusoid. Individual partials may thus have different decay times,
so that some partials die out faster than others, under the main patch’s
overall control.

3. relative frequency. As with the relative duration, this controls each par-
tial’s frequency as a multiple of the overall frequency controlled in the
main patch.

4. detune. A frequency in Hz. to be added to the product of the global
frequency and the relative frequency.

Inside the partial abstraction, the amplitude is simply taken directly from the
$1 argument (multiplying by 0.1 to adjust for the high individual amplitudes);
the duration is calculated from the r duration object, multiplying it by the $2
argument, and the frequency is equal to fp + d where f is the global frequency
(from the r frequency object), p is the relative frequency of the partial, and d
is the detune frequency.

4.8.4 Additive synthesis: spectral envelope control

The next patch example, D08.table.spectrum.pd(figure 4.18), shows a very dif-
ferent application of additive synthesis from the previous patch. Here the si-
nusoids are managed by the spectrum-partial.pd abstraction shown in figure
4.19. Each partial computes its own frequency as in the previous patch. Each
partial also computes its own amplitude periodically (when triggered by the r

poll-table object), using a tabread4 object. The contents of the table (which
has a nominal range of 50 dB) are converted to linear units and used as an
amplitude control in the usual way.

A similar example, patch D09.shepard.tone.pd(not pictured), makes a Shep-
ard tone using the same technique. In this example the frequencies of the
sinusoids sweep over a fixed range, finally jumping from the end back to the be-
ginning and repeating. The spectral envelope is arranged to have a peak at the
middle of the pitch range and drop off to inaudibility at the edges of the range

4.8. EXAMPLES 105

s pitch

51.8

0

s whammybar spectrum−partial 1

loadbang

metro 30

s poll−table

spectrum−partial 2

spectrum−partial 3

send bangs to "poll−table"

needed by the abstraction

0 12 24 36 48 60 72 84 96 108 120

spectrum−tab

Figure 4.18: Additive synthesis for a specified spectral envelope, drawn in a
table.

106 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

osc~

r poll−table

+ 50

dbtorms

0

pack 0 30

line~

throw~ sum−bus

*~

r pitch

mtof

f

* $1

ftom

− r whammybar

pitch to frequency

then get the frequency of this specific partial

... and then convert back to pitch.

... at which time we get the pitch back...

tabread4 spectrum−tab

$1: partial number

calling patch bangs this every 30 msec.

get the strength from the table

and transpose by shifting table index.

but we want true zero when

the table value is 0 or less.

The vertical scale is dB from 1 to 50,
moses 1

Figure 4.19: The spectrum-partial abstraction used in figure 4.18.

4.8. EXAMPLES 107

so that we hear only the continuous sweeping and not the jumping. The result
is the famous auditory conundrum of an infinitely ascending or descending tone.

The general technique of synthesizing to a specified spectral envelope can
be generalized in many ways: the envelope may be made to vary in time either
as a result of a live analysis of another signal, or by calculating from a set
of compositional rules, or by cross-fading between a collection of pre-designed
spectral envelopes, or by frequency-warping the envelopes, or in many other
ways.

4.8.5 Polyphonic synthesis: sampler

We move now to an example using dynamic voice allocation as described in
section 4.5. In the additive synthesis examples shown previously, all the voices
are always used for a fixed purpose. In the present example, we allocate voices
from a bank as needed to play notes in a control stream.

Patch D11.sampler.poly.pd(figure 4.20) shows the polyphonic sampler, which
uses the abstraction sampvoice (shown in figure 4.21). The techniques for
altering the pitch and other parameters in a one-shot sampler are shown in patch
D10.sampler.notes.pd(not shown) which in turn is derived from the original
one-shot sampler from the previous chapter (C05.sampler.oneshot.pd, shown in
figure 3.14).

The sampvoice objects in figure 4.20 are arranged in a different kind of
summing bus from the ones before, in which each one adds its own output to
the signal on its inlet, and puts the sum on its outlet. At the bottom of the eight
objects, the outlet therefore holds the sum of all eight. This has the advantage
of being more explicit than the throw~ / catch~ busses, and is preferable if
visual clutter is not at issue.

The main job of the patch, though, is to distribute the “note” messages to
the sampvoice objects. To do this we must introduce some new Pd objects:

pdmod : Integer modulus. For instance, 17 mod 10 gives 7, and -2 mod 10

gives 8. There is also an integer division object named pddiv ; dividing 17 by
10 via pddiv gives 1, and -2 by 10 gives -1.

poly : Polyphonic voice allocator. Creation arguments give the number of

voices in the bank and a flag (1 if voice stealing is needed, 0 if not). The inlets
are a numeric tag at left and a flag at right indicating whether to start or stop
a voice with the given tag (nonzero numbers meaning “start” and zero, “stop”.)
The outputs are, at left, the voice number, the tag again at center, and the
start/stop flag at right. In MIDI applications, the tag can be pitch and the
start/stop flag can be the note’s velocity.

makenote : Supply delayed note-off messages to match note-on messages. The
inlets are a tag and start/stop flag (“pitch” and “velocity” in MIDI usage) and
the desired duration in milliseconds. The tag/flag pair are repeated to the two
outlets as they are received; then, after the delay, the tag is repeated with flag
zero to stop the note after the desired duration.

108 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

sampvoice

r note

unpack 0 0 0 0 0 0 0

t b f

f + 1

mod 1e+06

makenote 64

poly 8 1

stripnote

pack 0 0 0 0 0 0 0 0

route 1 2 3 4 5 6 7 8

(OUT)

counter to

supply later

allocate voice

note−off

get rid of
note−off

route to a voice depending
on voice number from poly

generate tags

abstraction

for each

one "sampvoice"

voice, each

adding its

own output

to a sum (left

inlets and

outlets)
sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

Figure 4.20: A polyphonic sampler demonstrating voice allocation and use of
tags.

4.8. EXAMPLES 109

*~

outlet~

makefilename sample%d

set $1

tabread4~ sample1

dbtorms

unpack

sqrt

sqrt

line~

*~

*~

*~

bang

delay 5
unpack 0 0 0 0 0 0 0

f

f f f f f

mtof

/ 261.62

* 4.41e+08

+

delay

pack 0 0 0 0 0

t b b b

+ 1

* 44.1

0 5 1 5 0, $1 $2$3, $4 1e+07 $5 0 $1

inlet

inlet~

+~

delay for
note end

mute

vline~ vline~

amplitude
envelope

wavetable

index

starting

store parameters first in

read
point

ending
read
point

attack decay
mute and

unmute

select
wavetable

add to

summing

bus

mute to

delay for

take effect

floats below until muted

Figure 4.21: The sampvoice abstraction used in the polyphonic sampler of
figure 4.20.

110 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

The “note” messages contain fields for pitch, amplitude, duration, sample
number, start location in the sample, rise time, and decay time. For instance,
the message,

60 90 1000 2 500 10 20

(sent to “note” via the r note object) means to play a note at pitch 60 (MIDI
units), amplitude 90 dB, one second long, from the wavetable named “sample2”,
starting at a point 500 msec into the wavetable, with rise and decay times of 10
and 20 msec.

After unpacking the message into its seven components, the first job is to
create a tag for the note. To do this, first the t b f object outputs a bang after
the last of the seven parameters appear separately. The combination of the +, f,
and mod objects act as a counter which repeats after a million steps, essentially
generating a unique number corresponding to the note.

The next step is to use the poly to determine which voice to play which
note. The poly object expects separate note starts and stops as input. So the
tag and duration are first fed to the makenote object, whose output contains
a flag (“velocity”) at right and the tag again at left. For each tag makenote
receives, two pairs of numbers are output, one to start the note, and another,
after a delay equal to the note duration, to stop the note.

Having treated poly to this separated input, we now have to strip the note
stop output, since we really only need combined “note” messages with duration
fields. The stripnote object does this job. Finally, the voice number we have
calculated is prepended to the seven parameters we started with (the pack

object), so that the output of the pack object looks like this:

4 60 90 1000 2 500 10 20

where the “4” is the voice number output by the poly object. The voice number
is used to route the note message to the desired voice using the route object.
The desired voice (i.e., the sampvoice object) then gets the original list of 7
numbers shown above.

Inside the sampvoice object (figure 4.21), the message is then used to control
the tabread4~ and surrounding line~ and vline~ objects. The control takes
place with a delay of 5 msec as in the previous sampler example. Here, however,
we must store the seven parameters of the note (whereas, earlier, there were no
parameters.) This is done using the six f objects, plus the right inlet of the
rightmost delay object. These values are used after the delay of 5 msec. This
works in tandem with the “mute” mechanism described earlier, via the line~

object.
After the 5 msec are up, the vline~ object in charge of generating the

wavetable index is given its marching orders (and, simultaneously, the wavetable
number is set for the tabread4~ object and the amplitude envelope generator
is set on its attack.) The wavetable index must be set discontinuously to the
starting index, then ramped to an ending index over an appropriate time dura-
tion to obtain the needed transposition. The starting index in samples is just

4.8. EXAMPLES 111

44.1 times the starting location in milliseconds, plus one to allow for four-point
table interpolation. This becomes the third number in a packed list generated
by the pack object at the center of the voice patch.

We arbitrarily decide that the ramp will last ten thousand seconds (this is
the “1e+07” appearing in the message box sent to the wavetable index genera-
tor), assuming that this is at least as long as any note we will play. Then the
ending index is the starting index plus the number of samples to ramp through.
At a transposition factor of one, we should move by 441 million samples in the 10
million milliseconds; and proportionally more or less depending on the transpo-
sition factor. This transposition factor is computed by the mtof object, dividing
by 261.62 (the frequency corresponding to MIDI note 60) so that inputting 60
results in a transposition factor of one.

This and all the other necessary parameters are combined in one message
via the pack object so that the following message boxes can easily generate the
needed control messages. The only unfamiliar treatment is by the makefilename
object, which converts numbers such as “2” to symbols such as “sample2” so
that the tabread4~ object’s wavetable may be set.

At the bottom of the voice patch we see how the summing bus is treated
from the inside; an inlet~ object picks up the sum of all the preceding voices,
the output of the current voice is added in, and the result is sent on to the next
voice via the outlet~ object.

112 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

Chapter 5

Modulation

Having taken a two-chapter detour into aspects of control and organization in
electronic music, we now return to describing audio synthesis and processing
techniques. So far we have considered additive and wavetable-based methods.
In this chapter we will introduce three types of modulation, called amplitude

modulation, frequency modulation, and waveshaping, all of which are useful for
building synthetic sounds with certain, characteristic families of spectra. We
will first need some terminology for speaking about spectra, which we introduce
in the next section.

5.1 Taxonomy of spectra

Figure 5.1 introduces a way of visualizing the spectrum of an audio signal. The
spectrum shows how the signal’s power is distributed into frequencies. (There
is a real mathematical definition of the idea, but it requires much mathematical
background that can’t be assumed here.)

Part (a) of the figure shows the spectrum of a harmonic signal, which is
a periodic signal whose fundamental frequency is in the range of perceptible
pitches, roughly between 50 and 4000 Hz. The FOURIER SERIES (page 11)
gives a description of a periodic signal as a sum of sinusoids. The frequencies
of the sinusoids are in the ratio 0 : 1 : 2 : · · ·. (The constant term in the Fourier
series may be thought of as a sinusoid,

a0 = a0 cos(0 · ωn),

whose frequency is zero.)
For a harmonic signal, the power shown in the spectrum is concentrated on

a discrete subset of the frequency axis (a discrete set consists of isolated points,
only finitely many per unit). We call this a discrete spectrum. Furthermore, the
frequencies where the signal’s power lies are in the 0 : 1 : 2 · · · ratio that arises
from a periodic signal. (Note that it’s not necessary for all of the harmonic
frequencies to be present; some harmonics may have zero amplitude.)

113

114 CHAPTER 5. MODULATION

frequency

amplitude

(a.) HARMONIC

(b.) INHARMONIC

(c.) CONTINUOUS

spectral
envelope

Figure 5.1: A taxonomy of timbres. The spectral envelope describes the shape
of the spectrum. The sound may be discretely or continuously distributed in
frequency; if discretely, it may be harmonic or inharmonic.

5.1. TAXONOMY OF SPECTRA 115

The graph of the spectrum shows the amplitudes of the partials of the sig-
nals. Knowing the amplitudes and phases of all the partials would allow us to
reconstruct the original signal.

Part (b) of the figure shows a spectrum which is also discrete, so that the
signal can again be considered as a sum of a series of partials. In this case,
however, there is no fundamental frequency, i.e., no audible common submultiple
of all the partials. We call this an inharmonic signal. (We’ll use the terms
harmonic and inharmonic to describe the signals’ spectra, as well as the signals
themselves.)

In dealing with discrete spectra, we report each partial’s RMS amplitude
(section 1.1), not its peak amplitude. So each component sinusoid,

a cos(ωn + φ),

only counts as having amplitude a/2 as long as the angular frequency ω is
nonzero. On the other hand, for a DC component, where ω = φ = 0, the RMS
amplitude is a —with no corresponding division by two. The decision to use
RMS and not peak amplitude will simplify our analysis of the effects of various
modulation algorithms later in this chapter. A deeper reason for this convention
will become apparent in chapter 7.

Part (c) of the figure shows a third possibility, which is that the spectrum
might not be concentrated into a discrete set of frequencies, but instead might
be spread out among all possible frequencies. This can be called a continuous, or
noisy spectrum. Spectra don’t have to fall into either the discrete or continuous
categories; they may be mixtures of the two.

Each of the three spectra in the figure shows a continuous curve called the
spectral envelope. In general, sounds don’t have a single, well-defined spectral
envelope; there may be many ways to draw a smooth-looking curve through a
spectrum. On the other hand, a spectral envelope may be specified intentionally
by an electronic musician. In that case, it is usually clear how to make a
spectrum conform to the specified spectral envelope. For a discrete spectrum,
for example, we could simply read off, from the spectral envelope, the desired
amplitude of each partial and make it so.

For discrete spectra, the pitch is primarily encoded in the frequencies of
the partials. Harmonic signals have a pitch determined by their fundamental
frequency; for inharmonic ones, the pitch may be clear, ambiguous, or absent
altogether, according to complex and incompletely understood rules. A noisy
spectrum may also have a perceptible pitch if the spectral envelope contains one
or more narrow peaks.

In this model the timbre (and the loudness) are mostly encoded in the spec-
tral envelope. The distinction between continuous and discrete spectra is also a
distinction in timbre. The timbre, as well as the pitch, may evolve over the life
of a sound.

We have been speaking of spectra here as static entities, not considering
whether they change in time or not. If a signal’s pitch and timbre are changing
over time, we would like to think of the pitch and spectrum as descriptions of
the signal’s momentary behavior, which can also change over time.

116 CHAPTER 5. MODULATION

This way of viewing sounds is greatly oversimplied. The true behavior of
audible pitch and timbre has many aspects which can’t be explained in terms of
this model. For instance, the timbral quality called “roughness” is sometimes
thought of as being encoded in rapid changes in the spectral envelope over time.
This model is useful nonetheless in discussions about how to construct discrete
or continuous spectra for a wide variety of musical purposes, as we will begin
to show in the rest of this chapter.

5.2 Multiplying audio signals

We have been routinely adding audio signals together, and multiplying them by
slowly-varying signals (used as amplitude envelopes for example) since chapter
1. In order to complete our understanding of the algebra of audio signals we
now consider the situation where we multiply two audio signals neither of which
may be assumed to change slowly. The key to understanding what happens is
the:

COSINE PRODUCT FORMULA

cos(a) cos(b) =
1

2
[cos(a + b) + cos(a − b)].

To see why this formula holds, we can use the formula for the cosine of a sum
of two angles:

cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

to evaluate the right hand side of the cosine product formula; it immediately
collapses to the left hand side.

We can use this formula to see what happens when we multiply two SINU-
SOIDS (page 1):

cos(αn + φ) cos(βn + ξ) =

=
1

2
[cos ((α + β)n + (φ + ξ)) + cos ((α − β)n + (φ − ξ))].

In words, multiply two sinusoids and you get a result with two partials, one
at the sum of the two original frequencies, and one at their difference. (If the
difference α − β happens to be negative, simply switch α and β in the formula
and the difference will then be positive.) These components are called sidebands.

This gives us a very easy to use tool for shifting the component frequencies
of a sound, called ring modulation, which is shown in its simplest form in Figure
5.2. An oscillator provides a carrier signal, which is simply multiplied by the
input. In this context the input is called the modulating signal. The term “ring
modulation” is often used more generally to mean multiplying any two signals
together, but here we’ll just consider using a sinusoidal carrier signal.

Figure 5.3 shows a variety of results that may be obtained by multiplying
a (modulating) sinusoid of angular frequency α and RMS amplitude a, by a
(carrier) sinusoid of angular frequency β and amplitude 1:

[2a cos(αn)] · [cos(βn)] .

5.2. MULTIPLYING AUDIO SIGNALS 117

OUT

X

−1

1
IN

Figure 5.2: Block diagram for ring modulating an input signal with a sinusoid.

(For simplicity we’re omitting the phase term here.) Each part of the figure
shows both the modulation signal and tbe result in the same spectrum. The
modulating signal appears as a single frequency, α, at amplitude a. The product
in general has two component frequencies, each at an amplitude of a/2.

Parts (a) and (b) of the figure show “general” cases where α and β are
nonzero and different from each other. The component frequencies of the output
are α + β and α − β. In part (b), since α − β < 0, we get a negative frequency
component. Since cosine is an even function, we have

cos((α − β)n) = cos((β − α)n)

so the negative component is exactly equivalent to one at the positive frequency
β − α, at the same amplitude. We still refer to the two resulting peaks as
sidebands, even when they both happen to lie to the right of the original peak.

In the special case where α = β, the second (difference) sideband has zero
frequency. In this case phase will be significant so we rewrite the product with
explicit phases, replacing β by α, to get:

2a cos(αn + φ) cos(αn + ξ) =

= a cos (2αn + (φ + ξ)) + a cos (φ − ξ).

The second term has zero frequency; its amplitude depends on the relative phase
of the two sinusoids and ranges from +a to −a as the phase difference φ − ξ
varies from 0 to π radians. This situation is shown in part (c) of Figure 5.3.

Finally, part (d) of the figure shows a carrier signal whose frequency is zero.
Its value is just the constant a. In this case we get only one sideband, of
amplitude a/2 as usual.

We can use the distributive rule for multiplication to find out what happens
when we multiply signals together which consist of more than one partial each.
For example, in the situation above we can replace the signal of frequency α
with a sum of several sinusoids, such as:

a1 cos(α1n) + · · · + ak cos(αkn).

118 CHAPTER 5. MODULATION

frequency

amplitude

a

a/2a/2

a

a/2

(a)

a

a/2a/2

−

−

+

(b)

a

a/2

(c)

(d)

z

=

= 0

IN OUTOUT

Figure 5.3: Sidebands arising from multiplying two sinusoids of frequency α and
β. Part (a) shows the case where α > β > 0; part (b) shows the case where
β > α but β < 2α, so that the lower sideband is reflected about the f = 0 axis.
Part (c) shows the situation when α = β; in this one special case the amplitude
of the zero-frequency sideband depends on the phases of the two sinusoids. In
part (d), α is zero, so that only one sideband appears.

5.2. MULTIPLYING AUDIO SIGNALS 119

frequency

amplitude

(a)

(b)

(c)

Figure 5.4: Result of ring modulation of a complex signal by a pure sinusoid:
(a) the original signal’s spectrum and spectral envelope; (b) modulated by a
relatively low modulating frequency (1/3 of the fundamental); (c) modulated
by a higher frequency, 10/3 of the fundamental.

Multiplying by the signal of frequency β gives partials at frequencies equal to:

α1 + β, α1 − β, . . . , αk + β, αk − β.

As before if any frequency is negative we take its absolute value.
Figure 5.4 shows the result of multiplying a complex periodic signal (with

several components tuned in the ratio 0:1:2:· · ·) by a sinusoid. Both the spectral
envelope and the component frequencies of the result transform by relatively
simple rules.

The resulting spectrum is essentially the original spectrum combined with
its reflection about the vertical axis. This combined spectrum is then shifted to
the right by the modulating frequency. Finally, if any components of the shifted
spectrum are still left of the vertical axis, they are reflected about it to make
positive frequencies again.

In part (b) of the figure, the modulating frequency (the frequency of the
sinusoid) is below the fundamental frequency of the complex signal. In this case

120 CHAPTER 5. MODULATION

the shifting is by a relatively small distance, so that re-folding the spectrum
at the end almost places the two halves on top of each other. The result is a
spectral envelope roughly the same as the original (although half as high) and
a spectrum twice as dense.

A special case, not shown, is modulation by a frequency exactly half the
fundamental. In this case, pairs of partials will fall on top of each other, and
will have the ratios 1/2 : 3/2 : 5/2 :· · · - an odd-partial-only signal an octave
below the original. This is a very simple and effective octave divider for a
harmonic signal, asuming you know or can find its fundamental frequency. If
you want even partials as well as odd ones (for the octave-down signal), simply
mix the original signal with the modulated one.

Part (c) of the figure shows the effect of using a modulating frequency much
higher than the fundamental frequency of the complex signal. Here the unfolding
effect is much more clearly visible (only one partial, the leftmost one, had to be
reflected to make its frequency positive.) The spectral envelope is now widely
displaced from the original; this displacement is often a more strongly audible
effect than the relocation of partials.

In another special case, the modulating frequency may be a multiple of the
fundamental of the complex periodic signal; in this case the partials all land
back on other partials of the same fundamental, and the only effect is the shift
in spectral envelope.

5.3 Waveshaping

Another approach to modulating a signal, called waveshaping, is simply to pass
it through a suitably chosen nonlinear function. A block diagram for doing this
is shown in Figure 5.5. The function f() (called the transfer function) distorts
the incoming waveform into a different shape. The new shape depends on the
shape of the incoming wave, on the transfer function, and also—importantly—
on the amplitude of the incoming signal. Since the amplitude of the input
waveform affects the shape of the output waveform (and hence the timbre), this
gives us an easy way to make a continuously varying family of timbres, simply
by varying the input level of the transformation. For this reason, it is customary
to include a leading amplitude control as part of the waveshaping operation, as
shown in the block diagram.

The amplitude of the sinusoid is called the waveshaping index. In many
situations a small index leads to relatively little distortion (hence a more nearly
sinusoidal output) and a larger one gives a more distorted, hence richer, timbre.

Figure 5.6 shows a familiar example of waveshaping, in which f() amounts to
a clipping function. This example shows clearly how the input amplitude—the
index—can affect the output waveform. The clipping function passes its input
to the output unchanged as long as it stays in the interval between -0.3 and +0.3.
So when the input (in this case a sinusoid) does not exceed 0.3 in absolute value,
the output is the same as the input. But when the input grows past the 0.3
limit, it is limited to 0.3; and as the amplitude of the signal increases the effect

5.3. WAVESHAPING 121

OUT

f()

IN

X

Figure 5.5: Block diagram for waveshaping an input signal using a nonlinear
function f(). An amplitude adjustment step precedes the function lookup, to
take advantage of the different effect of the wavetable lookup at different am-
plitudes.

of this clipping action is progressively more severe. In the figure, the input is
a decaying sinusoid. The output evolves from a nearly square waveform at the
beginning to a pure sinusoid at the end. This effect will be well known to anyone
who has played an instrument through an overdriven amplifier. The louder the
input, the more distorted will be the output. For this reason, waveshaping is
also sometimes called distortion.

Figure 5.7 shows a much simpler and easiest to analyse situation, in which
the transfer function simply squares the input:

f(x) = x2

For a sinusoidal input,
x[n] = a cos(ωn + φ)

we get

f(x[n]) =
a2

2
(1 + cos(2ωn + 2φ))

If the amplitude a equals one, this just amounts to ring modulating the sinusoid
by a sinusoid of the same frequency, whose result we described in the previous
section: the output is a DC (zero-frequency) signal plus a signal at twice the
original frequency. However, in this waveshaping example, unlike the situation
in ring modulation, the amplitude of the output grows as the square of the
input.

Keeping the same transfer function, we now consider the effect of sending in
a combination of two sinusoids with amplitudes a and b, and angular frequencies

122 CHAPTER 5. MODULATION

(a)

(b)

(c)

0.3

−0.3

1

−1

0.3

−0.3

Figure 5.6: Clipping as an example of waveshaping. The input (a) is a sinusoid
of varying amplitude, and the waveshaping function (b) clips its input to the
interval between -0.3 and +0.3. The output is shown in (c).

5.3. WAVESHAPING 123

(a)

(b)

(c)

1

−1

1

1

−1

1

Figure 5.7: Waveshaping using a quadratic transfer function f(x) = x2. The
input (a) yields an output (c) at twice the frequency.

124 CHAPTER 5. MODULATION

α and β. For simplicity, we’ll omit the initial phase terms. We set:

x[n] = a cos(αn) + b cos(βn)

and plugging this into f gives

f(x[n]) =
a2

2
(1 + cos(2αn))

+
b2

2
(1 + cos(2βn))

+ab [cos((α + β)n) + cos((α − β)n)]

The first two terms are just what we would get by sending the two sinusoids
through separately. The third term is the product of the two input terms, which
comes from the middle, cross term in the expansion,

f(x + y) = x2 + 2xy + y2

This effect, called intermodulation, becomes more and more dominant as the
number of terms in the input increases; if there are k sinusoids in the input
there are only k “straight” terms in the product, but there are (k2 − k)/2
intermodulation terms.

As compared to ring modulation, which is a linear function of its input signal,
waveshaping is nonlinear. While we were able to analyze linear processes by
considering their action separately on all the components of the input, in this
nonlinear case we also have to consider the interactions between components.
The results are far more complex—sometimes sonically much richer, but, on the
other hand, harder to understand or predict.

In general, we can show that a periodic input, no matter how complex, will
repeat at the same period: if the period is τ so that

x[n + τ] = x[n]

then we immediately get

f(x[n + τ]) = f(x[n]).

(In some special cases the output can repeat at a submultiple of τ , so that we
get a harmonic of the input as a result; we’ll see this happen later.)

Combinations of periodic tones at consonant intervals give rise to distortion
products at subharmonics. For instance, if two periodic signals x and y are a
musical fourth apart (periods in the ratio 4:3), then the sum of the two repeats
at the lower rate given by the common subharmonic. In equations we would
have:

x[t + τ/3] = x[t]

y[t + τ/4] = y[t]

5.3. WAVESHAPING 125

which implies
x[t + τ] + y[t + τ] = x[t] + y[t]

and so the distorted sum f(x + y) would repeat after a period of τ :

f(x + y)[n + τ] = f(x + y)[n].

This has been experienced by every electric guitarist who has set the amplifier
to “overdrive” and played the open B and high E strings together: the distortion
product is pitched the same as the low E string, two octaves below the high one.

To get a somewhat more explicit analysis of the effect of waveshaping on
an incoming signal, it is sometimes useful to write the function f as a finite or
infinite power series:

f(x) = f0 + f1x + f2x
2 + f3x

3 + · · ·

If the input signal x[n] is a sinusoid, a cos(ωn), we can consider the action of
the above terms separately:

f(x[n]) = f0 + af1 cos(ωn) + a2f2cos
2(ωn) + a3f3cos

3(ωn) + · · ·

Since the higher order terms are multiplied by higher powers of the amplitude
a, a lower value of a will weight the earlier terms more heavily, and a higher
value will make the higher-order terms more prominent.

The individual terms’ spectra can be found by applying the cosine product
formula repeatedly:

1 = cos(0)

x[n] = cos(ωn)

x2[n] =
1

2
+

1

2
cos(2ωn)

x3[n] =
1

4
cos(−ωn) +

2

4
cos(ωn) +

1

4
cos(3ωn)

x4[n] =
1

8
cos(−2ωn) +

3

8
cos(0) +

3

8
cos(2ωn) +

1

8
cos(4ωn)

x5[n] =
1

16
cos(−3ωn)+

4

16
cos(−ωn)+

6

16
cos(ωn)+

4

16
cos(3ωn)+

1

16
cos(5ωn)

and so on. The relative weights of the components will be recognized as Pas-
cal’s triangle. Each kth row can be approximated by a Gaussian curve whose
standard deviation (a measure of width) is proportional to the square root of k.

The negative-frequency terms (which have been shown separately here for
clarity) are to be combined with the positive ones; the spectral envelope is folded
into itself in the same way as in the ring modulation example of Figure 5.4.

As long as the coefficients fk are all positive numbers or zero, then so are
all the amplitudes of the sinusoids in the expansions above. In this case all the
phases stay coherent as a varies and so we get a widening of the spectrum (and
possibly a drastically increasing amplitude) with increasing values of a. On the

126 CHAPTER 5. MODULATION

other hand, if some of the fk are positve and others negative, the different ex-
pansions will interfere destructively; this will give a more complicated-sounding
spectral evolution.

Note also that the successive expansions all contain only even or only odd
partials. If the transfer function (in series form) happens to contain only even
powers:

f(x) = f0 + f2x
2 + f4x

4 + · · ·
then the result, having only even partials, will sound an octave higher than the
incoming sinusoid. If only odd powers show up in the expansion of f(x), then
the output will contain only odd partials. Even if f can’t be expressed exactly
as a power series (for example, the clipping function of Figure 5.3), it is still
true that if f is an even function, i.e., if

f(−x) = f(x)

you will get only even harmonics and if f is an odd function,

f(−x) = −f(x)

you get odd harmonics.
Many mathematical tricks have been proposed to use waveshaping to gen-

erate specified spectra. It turns out that you can generate pure sinusoids at
any harmonic of the fundamental by using a Chebyshef polynomial as a trans-
fer function [Leb79], and from there you can go on to build any desired static
spectrum (example 5.5.4 demonstrates this.) Generating families of spectra by
waveshaping a sinusoid of variable amplitude turns out to be trickier, although
several interesting special cases have been found, one of which is developed here
in chapter [?].

5.4 Frequency and phase modulation

If a sinusoid is given a frequency which varies slowly in time we hear it as having
a varying pitch. But if the pitch changes so quickly that our ears can’t track the
change—for instance, if the change itself occurs at or above the fundamental
frequency of the sinusoid—we hear a timbral change. The timbres so generated
are rich and widely varying. The discovery by John Chowning of this possibility
[Cho73] revolutionized the field of computer music. Here we develop frequency

modulation, usually called FM, as a special case of waveshaping [Leb79]; the
treatment here is adapted from an earlier publication [Puc01].

The FM technique, in its simplest form, is shown in figure 5.8 part (a).
A frequency-modulated sinusoid is one whose frequency varies sinusoidally, at
some angular frequency ωm, about a central frequency ωc, so that the instan-
taneous frequencies vary between (1 − r)ωc and (1 + r)ωc, with parameters ωm

controlling the frequency of variation, and r controlling the depth of variation.
The parameters ωc, ωm, and r are called the carrier frequency, the modulation

frequency, and the index of modulation, respectively.

5.4. FREQUENCY AND PHASE MODULATION 127

It is customary to use a simpler, essentially equivalent formulation in which
the phase, instead of the frequency, of the carrier sinusoid is modulated sinu-
soidally. (This gives an equivalent result since the instantaneous frequency is
just the change of phase, and since the sample-to-sample change in a sinusoid is
just another sinusoid.) The phase modulation formulation is shown in part (b)
of the figure. If the carrier and modulation frequencies don’t themselves vary
in time, the resulting signal can be written as

x[n] = cos(a cos(ωmn) + ωcn)

The parameter a, which takes the place of the earlier parameter r, is also called
the index of mosulation; it too controls the extent of frequency variation relative
to the carrier frequency ωc. If r = 0, there is no frequency variation and the
expression reduces to the unmodified, carrier sinusoid:

x[n] = cos(ωcn)

To analyse the resulting spectrum we can write,

x[n] = cos(ωcn) ∗ cos(a cos(ωmn))

− sin(ωcn) ∗ sin(a cos(ωmn)),

so we can consider it as a sum of two waveshaping generators, each operating
on a sinusoid of frequency ωm and with a waveshaping index a, and each ring
modulated with a sinusoid of frequency ωc. The waveshaping function f is given
by f(x) = cos(x) for the first term and by f(x) = sin(x) for the second.

Returning to Figure 5.4, we can see at a glance what the spectrum will look
like. The two harmonic spectra, of the waveshaping outputs

cos(r cos(ωmn))

and
sin(r cos(ωmn))

have, respectively, harmonics tuned to

0, 2ωm, 4ωm, . . .

and
ωm, 3ωm, 5ωm, . . .

and each is multiplied by a sinusoid at the carrier frequency. So there will be
a spectrum centered at the carrier frequency ωc, with sidebands at both even
and odd multiples of the modulation frequency ωm, contributed respectively by
the sine and cosine waveshaping terms above. The index of modulation r, as
it changes, controls the relative strength of the various partials. The partials
themselves are situated at the frequencies

ωc + mωm

128 CHAPTER 5. MODULATION

N

0

OUT

frequency

−1

1

modulation
frequency

X

frequency
carrier

+

index of
modulation

−1

1

(a)

carrier

+

OUT

−1

1

modulation
frequency

X
index of
modulation

(b)

X

1

Figure 5.8: Block diagram for frequency modulation (FM) synthesis: (a) the
classic form; (b) realized as phase modulation.

5.5. EXAMPLES 129

where

m = . . . − 2,−1, 0, 1, 2, . . .

As with any situation where two periodic signals are multiplied, if there is some
common supermultiple of the two periods, the resulting product will repeat at
that longer period. So if the two periods are kτ and mτ , where k and m are
relatively prime, they both repeat after a time interval of kmτ . In other words,
if the two have frequencies which are both multiples of some common frequency,
so that ωm = kω and ωc = mω, again with k and m relatively prime, the result
will repeat at a frequency of the common submultiple ω. On the other hand, of
no common submultiple ω can be found, or if the only submultiples are lower
than any discernable pitch, then the result will be inharmonic.

Much more about FM can be found in textbooks [Moo90, p. 316] [DJ85]
[Bou00] and research publications; some of the possibilities are shown in the
following examples.

5.5 Examples

5.5.1 Ring modulation and spectra

The first Pd example for this chapter, E01.spectrum.pd, serves to introduce a
spectrum measurement tool we’ll use often. Here we will skip that and start
with the second example, E02.ring.modulation.pd, which shows the effect of
ring modulating a harmonic spectrum (which was worked out theoretically in
section 5.2 and shown in Figure 5.4). In the example we consider a signal whose
harmonics (from 0 through 5) all have unit amplitude. The partials may be
turned on and off separately using toggle switches. When they are all on, the
spectral envelope peaks at DC (because the constant signal is twice as strong
as the other sinusoids), has a flat region from harmonics 1 through 5, and then
descends to zero.

In the signal generation portion of the patch (part (a) of the figure), we sum
the six partials and multiply the sum by the single, modulating oscillator. (The
six signals are summed implicitly by connecting them all to the same inlet of
the *~ object.) The value of “fundamental” at the top is computed to line up
well with the spectral analysis, whose result is shown in part (b) of the figure.

The spectral analysis is done using techniques which won’t be described until
chapter ??, but in sum, the output shows the location of the sinusoids (assuming
a discrete spectrum) on the horizontal axis and their magnitudes on the vertical
one. So the presence of a peak at DC of magnitude one in the spectrum of the
input signal predicts, ala figure 5.3, that there should be a peak in the output
spectrum, at the modulating frequency, of height 1/2. Similarly, the two other
sinusoids in the input signal, which have height 1/2 in the spectrum, give rise
to two peaks each, of height 1/4, in the output. One of these four has been
reflected about the left edge of the figure (the f = 0 axis.)

130 CHAPTER 5. MODULATION

r fundamental

osc~

*~

osc~

*~

osc~

*~

* 2

osc~

*~

osc~

*~

osc~

*~

* 0 * 1 * 3 * 4 * 5

<−− On/Off

*~

partials

osc~

200 modulation

frequency

1 2 3 4 5 6 7 0
−− partial number −−

SPECTRUM

0

1

0.5

(out)

.

(a)

(b)

Figure 5.9: Ring modulation of a complex tone by a sinusoid: (a) its realization;
(b) a measured spectrum

5.5. EXAMPLES 131

fiddle~ 2048

unpack

osc~

moses 1

*~

mtof

*

0.5

0.5

15

pd pd

*~ 2

loadbang

pd looper

pd delay

on/off for original
<−−and processed sounds

<−− multiplier

ring modulation

extra gain

(out)

+~

Figure 5.10: Lowering the pitch of a sound by an octave by determinating its
pitch and modulating at half the fundamental.

5.5.2 Octave divider and formant adder

As suggested in Section 5.2, when considering the result of modulating a complex
harmonic (i.e., periodic) signal by a sinusoid, an interesting special case is to
set the modulating oscillator to 1/2 the fundamental frequency, which drops
the resulting sound an octave with only a relatively small deformation of the
spectral envelope. Another is to modulate by a sinusoid at several times the
fundamental frequency, which in effect displaces the spectral envelope without
changing the fundamental frequency of the result. This is demonstrated in Patch
E03.octave.divider.pd(Figure 5.10). The signal we process here is a recorded,
spoken voice.

The subpatches pd looper and pd delay hide details. The first is a looping
sampler as introduced in Chapter 2. The second is a delay of 1024 samples,
which uses objects that are introduced later in chapter 7. We will introduce one
object class here.

fiddle~ : pitch tracker. The one inlet takes a signal to analyze, and messages
to change settings. Depending on its creation arguments fiddle~may have a
variable number of outlets offering various information about the input signal.
As shown here, with only one creation argument to specify window size, the
third outlet attempts to report the pitch of the input, and the amplitude of

132 CHAPTER 5. MODULATION

+~

/ 100

50

clip~ −1 1

225

osc~ 200

*~

loadbang

50

loadbang

<−− frequency of second tone

osc~ 300

225

<−− before clipping

amplitude of sum

(out)

Figure 5.11: Nonlinear distortion of a sum of two sinusoids to create a difference
tone.

that portion of the input which repeats (at least approximately) at the reported
pitch. These are reported as a list of two numbers. The pitch, which is in MIDI
units, is reported as zero if none could be identified.

In this patch the third outlet is unpacked into its pitch and amplitude com-
ponents, and the pitch component is filtered by the moses object so that only
successful pitch estimates (nonzero ones) are considered. These are converted
to units of frequency by the mtof object. Finally, the frequency estimates are
either reduced by 1/2 or else multiplied by 15, depending on the selected mul-
tiplier, to provide the modulation frequency. In the first case we get an octave
divider, and in the second, additional high harmonics that deform the vowels.

5.5.3 Waveshaping and difference tones

Patch E04.difference.tone.pd(Figure 5.11) introduces waveshaping, demonstrat-
ing the nonlinearity of the process. Two sinusoids (300 and 225 Hz, or a ratio
of 4 to 3) are summed and then clipped, using a new object class:

clip~ : signal clipper. When the signal lies between the limits specified by

the arguments to the clip~ object, it is passed through unchanged; but when
it falls below the lower limit or rises above the upper limit, it is replaced by the
lower or upper limit, respectively. The effect of clipping a sinusoidal signal was
shown graphically in Figure 5.6.

As long as the amplitude of the sum of sinusoids is less than 50 percent,
the sum can’t exceed one in absolute value and the clip~ object passes the
pair of sinusoids through unchanged to the output. As soon as the amplitude

5.5. EXAMPLES 133

/ 100

0

*~

osc~ 220

pack 0 50

line~

<− index

*~ 128

tabread4~ E05−tab

+~ 129

hip~ 5

(out)

E05−tab

Figure 5.12: Using Chebychev polynomials as waveshaping transfer functions.

exceeds 50 percent, however, the nonlinearity of the clip~ object brings forth
distortion products (at frequencies 300m + 225n for integers m and n), all of
which happening to be multiples of 75, give rise to a tone whose fundamental
is 75. Seen another way, the shortest common period of the two sinudusoids is
1/75 second (which is four periods of the 300 Hx, tone and three periods of the
225 Hz, tone), so the result has period 1/75 second.

The 225 Hz. tone in the patch may be varied. If it is moved slightly away
from 225, a beating sound results. Other values may find other common sub-
harmonics, and still others may give rise to rich, inharmonic tones.

5.5.4 Waveshaping using Chebychev polynomials

Patch E05.chebychev.pd(Figure 5.12) demonstrates how you can use waveshap-
ing to generate pure harmonics. We’ll limit ourselves to a specific example here;
for more details see [Leb79]. In this example we would like to generate the pure
fifth harmonic,

cos(5ωn)

by waveshaping a sinusoid
x[n] = cos(ωn)

We just need to find a suitable transfer function f(x). Our technique is to use
the formula for the waveshaping function f(x) = x5 (page 125), which gives
first, third and fifth harmonics:

16x5 = cos(5ωn) + 5 cos(3ωn) + 10 cos(ωn)

134 CHAPTER 5. MODULATION

Next we add a suitable multiple of x3 to cancel the third harmonic:

16x5 − 20x3 = cos(5ωn) − 5 cos(ωn)

and then a multiple of x to cancel the first harmonic:

16x5 − 20x3 + 5x = cos(5ωn)

So for our waveshaping function we choose

f(x) = 16x5 − 20x3 + 5x

This procedure allows us to isolate any desired harmonic; the resulting functions
f are known as Chebychev polynomials.

To incorporate this in a waveshaping instrument, we simply build a patch
that works as in Figure 5.5, computing the expression

x[n] = f(a[n] cos(ωn))

where a[n] is a suitable index which may vary as a function of the sample number
n. When a happens to be one in value, out comes the pure fifth harmonic. Other
values of a give varying spectra which, in general, have first and third harmonics
as well as the fifth.

By suitably combining Chebychev polynomials we can fix any desired su-
perposition of components in the output waveform (again, as long as the wave-
shaping index is one). But the real promise of waveshaping—that by simply
changing the index we can manufacture spectra that evolve in a variety of in-
teresting ways—is not addressed, at least directly, in the Chebychev picture.

5.5.5 Waveshaping using an exponential function

We return now to the spectra computed on Page 125, corresponding to wave-
shaping functions of the form f(x) = xk. We note with pleasure that not only
are they all in phase (so that they can be superposed with easily predictable
results) but also that the spectra spread out increasingly with k. Also, in a
series of the form,

f(x) = f0 + f1x + f2x
2 + · · · ,

a higher index of modulation will lend more relative weight to the higher power
terms in the expansion; as we saw seen earlier, if the index of modulation is a,
the terms are xk multiplied by f0, af1, a2f2, and so on.

Now suppose we wish to arrange for different terms in the above expansion
to dominate the result in a predictable way as a function of the index a. To
choose the simplest possible example, suppose we wish f0 to be the largest term
for 0 < a < 1, then for it to be overtaken by the more quickly growing af1 term
for 1 < a < 2, which is then overtaken by the a2f2 term for 2 < a < 3 and
so on, so that the nth term takes over at an index equal to n. To make this
happen we just require that

f1 = f0, 2f2 = f1, 3f3 = f2, . . .

5.5. EXAMPLES 135

and so fixing f0 at 1, we get f1 = 1, f2 = 1/2, f3 = 1/6, and in general,

fk =
1

1 · 2 · 3 · ... · k

These are just the coefficients of the power series for the function

f(x) = ex

where e ≈ 2.7 is Euler’s constant.

Before plugging in ex as a transfer function it’s wise to plan how we will deal
with signal amplitude, since ex grows quickly as a function of x. If we’re going
to plug in a sinusoid of amplitude a, the maximum output will be ea, occuring
whenever the phase is zero. A simple and natural choice is simply to divide by
ea to reduce the peak to one, giving:

f(a cos(ωn))

ea
= ea(cos(ωn)−1)

This is realized in Patch E06.exponential.pd. Resulting spectra for a = 0, 4,
and 16 are shown in Figure 5.13. As the waveshaping index rises, progressively
less energy is present in the fundamental; the energy is increasingly spread over
the partials.

5.5.6 Sinusoidal waveshaping: evenness and oddness

Another interesting class of waveshaping transfer functions is the sinusoids:

f(x) = cos(x + φ)

which include the cosine and sine functions (by choosing φ = 0 and φ = −π/2,
respectively.) These functions, one being even and the other odd, give rise to
even and odd harmonic spectra:

cos(a cos(ωn)) = J0(a)−2J2(a) cos(2ωn)+2J4(a) cos(4ωn)−2J6(a) cos(6ωn)±· · ·

sin(a cos(ωn)) = 2J1(a) cos(ωn) − 2J3(a) cos(3ωn) + 2J5(a) cos(5ωn) ∓ · · ·

The functions Jk(a) are the Bessel functions of the first kind, which engineers
sometimes use to solve problems about vibrations or heat flow on discs. For
other values of φ, we can expand the expression for f :

f(x) = cos(x) cos(φ) − sin(x) sin(φ)

so the result is a mix between the even and the odd harmonics, with φ con-
trolling the relative amplitudes of the two. This is demonstrated in Patch
E07.evenodd.pd, shown in Figure 5.14.

136 CHAPTER 5. MODULATION

0

1

0

0.25

1 2 3 4 5 6 7 0

−− partial number −−

0

0.25

a=4

a=16

a=0

Figure 5.13: Spectra of waveshaping output using an exponential transfer func-
tion. Indices of modulation of 0, 4, and 16 are shown; note the different vertical
scales.

5.5. EXAMPLES 137

*~

cos~

+~ 0.1

0

0.1

0.25

osc~

symmetry

even

odd

mixed

(frequency)
|

|
(index)

(OUT)
|

Figure 5.14: Using an additive offset to a cosine transfer function to alter the
symmetry between even and odd. With no offset the symmetry is even. For odd
symmetry, a quarter cycle is added to the phase. Smaller offsets give a mixture
of even and odd.

5.5.7 Phase modulation and FM

Patch E08.phase.mod.pd, shown in Figure 5.15, shows how to use Pd to realize
true frequency modulation (part a) and phase modulation (part b). These cor-
respond to the block diagrams of Figure 5.8. To accomplish phase modulation,
the carrier oscillator is split into its phase and cosine lookup components. The
signal is of the form

x[t] = cos(ωcn + a cos(ωmn))

where ωc is the carrier frequency, ωm is the modulation frequency, and a is the
index of modulation—all in angular units.

We can predict the spectrum by expanding the outer cosine:

x[t] = cos(ωcn) cos(a cos(ωmn)) − sin(ωcn) sin(a cos(ωmn))

Plugging in the expansions from example 5.5.6 and simplifying yields:

x[t] = J0(a) cos(ωcn)

+J1(a) cos((ωc + ωm)n +
π

2
) + J1(a) cos((ωc − ωm)n +

π

2
)

+J2(a) cos((ωc + 2ωm)n + π) + J2(a) cos((ωc − 2ωm)n + π)

+J3(a) cos((ωc + 3ωm)n +
3π

2
) + J3(a) cos((ωc − 3ωm)n +

3π

2
) + · · ·

So the components are centered about the carrier frequency ωc with sidebands
extending in either direction, each spaced ωm from the next. The amplitudes
are functions of the index of modulation, and don’t depend on the frequencies.

138 CHAPTER 5. MODULATION

*~

cos~

+~

modulation
carrier

frequency

frequency
modulation

phasor~
|

|

|
index

(OUT)

*~

+~

carrier

frequency

frequency
modulation

|

|

|
index
modulation

(OUT)

osc~osc~

osc~

(a) (b)

Figure 5.15: Frequency modulation (a) and phase modulation (b) compared.

Figure 5.16 shows some two-operator phase modulation spectra, measured using
Patch E09.FM.spectrum.pd.

Phase modulation can thus be seen simply as a form of ring modulated
waveshaping. So we can use the strategies described in section 5.2 to generate
particular combinations of frequencies. For example, if the carrier frequency is
half the modulation frequency, you get a sound with odd harmonics exactly as
in the octave dividing example (5.5.2).

Frequency modulation need not be restricted to purely sinusoidal carrier or
modulation oscillators. One well-trodden path is to effect phase modulation on
the phase modulation spectrum itself. There are then two indices of modulation
(call them a and b) and two frequencies of modulation (ωm and ωp) and the
waveform is:

x[n] = cos(ωcn + a cos(ωmn) + b cos(ωpn))

To analyze the result, just rewrite the original FM series above, replacing ωcn
everywhere with ωcn + b cos(ωpn). The third positive sideband becomes for
instance:

J3(a) cos((ωc + 3ωm)n +
3π

2
+ b cos(ωpn))

This is itself just another FM spectrum, with its own sidebands of frequency

ωc + 3ωm + kωp, k = 0,±1,±2, . . .

having amplitude J3(a)Jk(b) and phase (3+k)π/2 [Leb77]. Patch E10.complex.FM.pd
(not shown here) illustrates this by graphing spectra from a two-modulator FM
instrument.

Since early times [Sch77] researchers have sought combinations of phases,
frequencies, and modulation indices, for simple and compact phase modulation

5.5. EXAMPLES 139

2 4 0

−− partial number −−

0

0.5

6 8 10 12 14

2 4 0
0

0.25

6 8 10 12 14

2 4 0
0

0.25

6 8 10 12 14
a=0.84

a=0.38

a=0.15

Figure 5.16: Spectra from phase modulation at three different indices. The
indices are given as multiples of 2π radians.

140 CHAPTER 5. MODULATION

instruments, that manage to imitate familiar instrumental sounds. This became
a major industry with the introduction of the Yamaha DX7 synthesizer.

Exercises

1. A sound has fundamental 440. How could it be ring modulated to give
a tone at 110 Hz with only odd partials? How could you then fill in the
even ones if you wanted to?

2. What carrier and modulation frequencies would you give a two-operator
FM instrument to give frequencies of 618, 1000, and 2618 Hz? (This is a
prominent feature of Chowning’s Stria [DJ85].)

3. Suppose you wanted to make FM yet more complicated by modulating
the modulating oscillator, as in:

cos(ωcn + a cos(ωmn + b cos(ωpn)))

How would the spectrum differ from that of the simple two-modulator
example (section 5.5.7)?

4. A sinusoid at a frequency ω is ring modulated by another sinusoid at
exactly the same frequency. At what phase differences will the DC com-
ponent of the result disappear?

Chapter 6

Designer spectra

As suggested at the beginning of the previous chapter, a powerful way to syn-
thesize musical sounds is by specfying—and then realizing—specific trajectories
of pitch (or more generally, frequencies of partials), along with trajectories of
spectral envelope.1 The spectral envelope is used to determine the amplitude
of the individual partials, as a function of their frequencies, and is thought of
as controlling the sound’s (possibly time-varying) timbre.

A simple example of this would be to imitate a plucked string by constructing
a sound with harmonically spaced partials in which the spectral envelope starts
out rich but then dies away exponentially with higher frequencies decaying faster
than lower ones, so that the timbre mellows over time. Spectral-evolution models
for various acoustic instruments have been proposed [GM77] [RM69] . A more
complicated example is the spoken or sung voice, in which vowels appear as
spectral envelopes, dipthongs and many consonants appear as time variations
in the spectral envelopes, and other consonants appear as spectrally shaped
noise.

Spectral envelopes may be obtained from analysis of recorded sounds (see
chapter ??) or from purely synthetic criteria. To specify a spectral envelope from
scratch for every possible frequency would be tedious, and in most cases you
would want to describe them in terms of their salient features. The most popular
way of doing this is to specify the size and shape of the spectral envelope’s
peaks, which are called formants. Figure 6.1 shows a spectral envelope with
two formants. Although the shapes of the two peaks in the spectral envelope
are different, they can both be roughly described by giving the coordinates of
each apex (which give the formant’s center frequency and amplitude) and each
formant’s bandwidth. A typical measure of bandwidth would be the width of
the peak at a level 3 decibels below its apex. Note that if the peak is at (or
near) the f = 0 axis, we pretend it falls off to the left at the same rate as (in
reality) it falls off to the right.

Suppose we wish to generate a harmonic sound with a specified collection

1This chapter loosely follows the treatment from an earlier publication [Puc01].

141

142 CHAPTER 6. DESIGNER SPECTRA

frequency

amplitude

1

1
b

2
b

(f
1

, a)

(f , a)
2 2

Figure 6.1: A spectral envelope showing the frequencies, amplitudes, and band-
widths of two formants.

of formants. Independently of the fundamental frequency desired, we wish the
spectrum to have peaks with prescribed center frequencies, amplitudes, and
bandwidths. Returning to the phase modulation spectra shown in Figure 5.16,
we see that, at small indices of modulation at least, the result has a single,
well-defined spectral peak. We can imagine adding several of these, all shar-
ing a fundamental (modulating) frequency but with carriers tuned to different
harmonics to select the various desired center frequencies, and with indices of
modulation chosen to give the desired bandwidths. This was first explored by
Chowning [Cho89] who arranged formants generated by phase modulation to
synthesize singing voices. In this chapter we’ll establish a general framework for
building harmonic spectra with desired, possibly time-varying, formants.

6.1 Carrier/modulator model

In the previous chapter (see figure 5.4, page 119), we showed how to use ring
modulation to modify the spectrum of a periodic signal, placing spectral peaks
in specified locations. To do so we need to be able to generate periodic signals
whose spectra have maxima at DC and fall off monotonically with increasing
frequency. If we can make a signal with a formant at frequency zero—and no
other formants besides that one—we can use ring modulation to displace the
formant to any desired harmonic. The ring modulation product will be of the
form

x[n] = cos(ωcn)f(a cos(ωmn))

6.1. CARRIER/MODULATOR MODEL 143

−1

1

modulation
frequency

frequency
carrier

−1

1

X

index of
modulation

X

−1

1

OUT

Figure 6.2: Ring modulated waveshaping for formant generation

where ωc (the carrier frequency) is set to the formant center frequency and
f(acos(ωmn)) is a signal with fundamental frequency ωm, produced using a
waveshaping function f and index a. This second term is the signal we wish
to give a formant at DC with a controllable bandwidth. A block diagram for
synthesizing this signal is shown in Figure 6.2.

Much earlier in section 2.4 we introduced the technique of timbre stretching,
as part of the discussion of wavetable synthesis. This technique, which is capable
of generating complex, variable timbres, can be fit into the same framework. The
enveloped wavetable output for one cycle is:

x(φ) = T (cφ) ∗ W (aφ),

where φ, the phase, satisfies −π ≤ φ ≤ π. Here T is a function stored in a
wavetable, W is a windowing function, and c and a are the wavetable stretching
and a modulation index for the enveloping wavetable. Figure 6.3 shows how to
realize this in block diagram form. Comparing this to figure 2.7, we see that
the only significant new feature is the addition of an index to the waveshaping
function.

In this setup, as in the previous one, the first term specifies the placement
of energy in the spectrum—in this case, with the parameter c acting to stretch

144 CHAPTER 6. DESIGNER SPECTRA

−1

1

OUT

frequency

X

1

X

1

0

N

X

stretch

−1

index

−N −M M

Figure 6.3: Wavetable synthesis generalized as a variable spectrum generator

out the wavetable spectrum. This is the role that was previously carried out by
the choice of ring modulation carrier frequency ωc.

Both of these (ring modulated waveshaping and stretched wavetable synthe-
sis) can be considered as particular cases of a more general approach which is
to compute functions of the form,

x[n] = c(ωn)ma(ωn)

where c is a periodic function describing the carrier signal, and ma is a periodic
modulator function which depends on an index a. The modulation functions
we’re interested in will usually take the form of pulse trains, and the index a will
control the width of the pulse; higher values of a will give narrower pulses. In the
wavetable case, the modulation function must reach zero at phase wraparound
points to suppress any discontinuities in the carrier function when the phase
wraps around. The carrier signal will give rise to a single spectral peak (a
formant) in the ring modulated waveshaping case; for wavetables, there may be
a much more complicated spectrum.

In the next section we will further develop the two forms of modulating
signal we’ve introduced here, and in the following one we’ll look more closely at
the carrier signal.

6.2. PULSE TRAINS 145

(a)

(b)

(c)

Figure 6.4: Pulse width modulation using the Hanning window function: a. the
function W (φ) = (1 + cos(φ))/2; b. the function repeated at a duty cycle of
100% (modulation index a = 1); c. the function at a 50% duty cycle (a = 2).

6.2 Pulse trains

In the wavetable formulation, the pulse train can be made by a stretched
wavetable:

Ma(φ) = W (aφ),

where −π ≤ φ ≤ π is the phase. The function W should be zero at and beyond
the points −π and π, and rise to a maximum at 0. A possible choice for the
function W is

W (φ) =
1

2
(cos(φ) + 1)

which is graphed in part (a) of Figure 6.4. This is known as the Hanning window

function; it will come up again in chapter ??.
Realizing this as a repeating waveform, we get a succession of (appropriately

sampled) copies of the function W , whose duty cycle is 1/a (parts b and c of
the figure). If you don’t wish the copies to overlap we require a to be at least 1.
If you want overlap the best strategy is to duplicate the block diagram (Figure
6.3) out of phase, as described in Section 2.4 and realized in Section 2.6.5.

146 CHAPTER 6. DESIGNER SPECTRA

In the ring modulated waveshaping formulation, the shape of the formant is
determined by a modulation term

m[n] = f(a cos(ωmn))

For small values of the index a, the modulation term varies only slightly from
the constant value f(0), so most of the energy is concentrated at DC. As a
increases, the energy spreads out among progressively higher harmonics of the
fundamental ωm. Depending on the function f , this spread may be orderly
or disorderly. An orderly spread may be desirable and then again may not,
depending on whether our goal is a predictable spectrum or a wide range of
different (and perhaps hard-to-predict) spectra.

A waveshaping function that gives well-behaved, simple and predictable re-
sults was already developed in section 5.5.5. Using the function

f(x) = ex

and normalizing suitably, we get the spectra shown in figure 5.13. A slight
rewriting of the waveshaping modulator for this choice of f (and taking the
renormalization into account) gives:

ma(ωn) = ea·(cos(ωn)−1))

= e−[b sin ω

2]
2

where b2 = 2a so that b is proportional to the bandwidth. This can be rewritten
as

ma(ωn) = g(b sin
ω

2
n)

g(x) = e−x2

Except for a missing normalization factor, this is a Gaussian distribution, some-
times called a “bell curve”. The amplitudes of the harmonics are given by Bessel
“I” type functions.

Another good choice is the (again unnormalized) Cauchy distribution:

h(x) =
1

1 + x2

which gives rise to a spectrum of exponentially falling harmonics:

h(b sin(ωn/2)) = G ·
(

1

2
+ H cos(ωn) + H2 cos(2ωn) + · · ·

)

where G and H are functions of the index b (exact formulas are given in [?]).
In both this and the Gaussian case above, the bandwidth (counted in peaks,

i.e., units of ω) is roughly proportional to the index b, and the amplitude of the
DC term (the peak of the spectrum) is roughly proportional to 1/(1 + b) . For
either waveshaping function (g or c), if b is larger than about 2, the waveshape of

6.2. PULSE TRAINS 147

(a)

(b)

Figure 6.5: Audio signals resulting from multiplying a cosine (partial number
6) by pulse trains: (a). windowing function from the wavetable formulation; (b)
waveshaping output using the Gaussian lookup function.

ma(ωn) is approximately a (forward or backward) scan of the transfer function,
and so this and the earlier example (the “wavetable formulation”) both look
like pulses whose widths decrease as the specified bandwidth increases.

Before considering more complicated carrier signals to go with the modu-
lators we’ve seen so far, it is instructive to see what multiplication by a pure
sinusoid gives us as waveforms and spectra. Figure 6.5 shows the result of
multiplying two different pulse trains by a sinusoid at the sixth partial:

cos(6ωn)Ma(ωn)

where the index of modulation a is two in both cases. In part (a) Ma is the
stretched Hanning windowing function; part (b) shows waveshaping via the
unnormalized Cauchy distribution. One period of each waveform is shown.

In both cases we see, in effect, the sixth harmonic (the carrier signal) en-
veloped into a wave packet centered at the middle of the cycle, where the phase
of the sinusoid is zero. Changing the frequency of the sinusoid changes the cen-
ter frequency of the formant; changing the width of the packet (the proportion
of the waveform during which the sinusoid is strong) changes the bandwidth.
Note that the stretched Hanning window function is zero at the beginning and
end of the period, unlike the waveshaping packet.

Figure 6.6 shows how the specific shape of the formant depends on the
method of production. The stretched wavetable form (part (a) of the figure)
behaves well in the neighborhood of the peak, but somewhat oddly starting at
four partials’ distance from the peak, past which we see what are called sidelobes:
spurious extra peaks at lower amplitude than the central peak. As the analysis of
Section 2.4 predicts, the entire formant, sidelobes and all, stretches or contracts

148 CHAPTER 6. DESIGNER SPECTRA

inversely as the pulse train is contracted or stretched in time.
The first, strongest sidelobes on either side are about 37 dB lower in ampli-

tude than the main peak. Further sidelobes drop off slowly when expressed in
decibels; the amplitudes decrease as the square of the distance from the center
peak so that the sixth sidelobe to the right, three times further than the first
one from the center frequency, is about twenty decibels further down. The effect
of these sidelobes is often audible as a slight buzziness in the sound.

This formant shape may be made arbitrarily fat (i.e., high bandwidth), but
there is a limit on how thin it can be made, since the duty cycle of the waveform
cannot exceed 100%. At this maximum duty cycle the formant strength drops to
zero at two harmonics’ distance from the center peak. If a still lower bandwidth
is needed, waveforms may be made to overlap as described in section 2.6.5.

Parts (b) and (c) of the figure show formants generated using ring modu-
lated waveshaping, with Gaussian and Cauchy transfer functions. The index of
modulation is two in both cases (the same as for the Hanning window of part
(a)), and the bandwidth is comparable to that of the Hanning example. In these
examples there are no sidelobes, and moreover, the index of modulation may be
dropped all the way to zero, giving a pure sinusoid; there is no lower limit on
bandwidth. On the other hand, since the waveform does not reach zero at the
ends of a cycle, this type of pulse train cannot be used to window an arbitrary
wavetable, as the Hanning pulse train could.

The Cauchy example is particularly easy to build designer spectra from,
since the shape of the formant is a perfect Isosocles triangle, when graphed in
decibels. On the other hand, the Gaussian example gathers more energy to the
neighborhood of the formant, and drops off faster at the tails, and so has a
cleaner sound.

6.3 Movable ring modulation

We turn now to the carrier signal and consider how to make it more controllable.
In particular, we would like to be able to slide theh spectral energy continuously
up and down. Simply sliding the frequency of the carrier oscillator will not
accomplish this, since the spectra won’t be harmonic except when the carrier is
at an integer multiple of the fundamental frequency.

In the stretched wavetable approach we can accomplish this simply by sam-
pling a sinusoid and transposing it to the desired “pitch”. The transposed pitch
isn’t heard as a periodicity since the wavetable itself is read periodically at
the fundamental frequency. Instead, the sinusoid is transposed as a spectral
envelope.

Figure 6.7 shows a carrier signal produced in this way, tuned to produce a
formant at 1.5 times the fundamental frequency. The signal has no outright dis-
continuity at the phase wraparound frequency, but it does have a discontinuity
of slope, which, if not removed by applying a suitable modulation signal, would
have very audible high-frequency components.

Using this idea we can make a complete description of how to use the block

6.3. MOVABLE RING MODULATION 149

PARTIAL NUMBER

0 2 4 6 ...

AMPLITUDE (dB)

20

40

60

80

100

Hanning

20

40

60

80

100

Gaussian

20

40

60

80

100

Cauchy

Figure 6.6: Spectra of three ring-modulated pulse trains: (a). the Hanning
window function, 50% duty cycle (corresponding to an index of 2); (b), a wave-
shaping pulse train using a Gaussian transfer function; (c) the same, with a
Cauchy transfer function. Amplitudes are in decibels.

150 CHAPTER 6. DESIGNER SPECTRA

Figure 6.7: Waveform for a wavetable-based carrier signal tuned to 1.5 times
the fundamental. Two periods are shown.

diagram of Figure 6.3 to produce a desired formant. The wavetable lookup on
the left hand side would hold a sinusoid (placed symmetrically so that the phase
is zero at the center of the wavetable). The right-hand-side wavetable would
contain a Hanning window function (or perhaps another appropriate windowing
function as will be developed in chapter ??). If we desire the fundamental
frequency to be ω, the formant center frequency to be ωf , and the bandwidth
to be ωb, we set the “stretch” parameter to the center frequency quotient ωf/ω
and the index of modulation to the bandwidth quotient ωb/ω.

The output signal is simply a sample of a cosine wave at the desired center
frequency, repeated at the (unrelated in general) desired period, and windowed
to take out the discontinuities at period boundaries.

Although we aren’t able to derive this result yet (we will need to do Fourier
analysis, developed in chapter ??), it will turn out that, in the main lobe of the
formant, the phases are all zero at the center of the waveform (i.e., all cosines if
the waveform runs from −π to π). This means we may superpose any number
of these formants to build a more complex spectrum and the amplitudes of the
partials will combine by addition. (The sidelobes don’t behave quite this well:
they are alternately of opposite sign and will produce cancellation patterns; but
we usually can just treat them as a small, uncontrollable, residual signal.)

This method leads to an interesting generalization, which is to take a se-
quence of recorded wavetables, align all their component phases to those of
cosines, and use them in place of the cosine function as the carrier signal. The
phase alignment is necessary to allow coherent cross-fading between samples so
that the spectral envelope can change smoothly. If, for example, we use succes-
sive snippets of a vocal sample as input, we get a strikingly effective vocoder.
This will also require Fourier analysis to carry out, so we will postpone this to
chapter ??.

Another technique for making carrier signals that can be slid continuously
up and down in frequency while maintaining a fundamental frequency is simply
to cross-fade between harmonics. The carrier signal is then:

c(φ) = c(ωn) = p cos(kωn) + q cos((k + 1)ωn)

6.4. PHASE-ALIGNED FORMANT (PAF) GENERATOR 151

where p + q = 1 and k is an integer, all three chosen so that

(k + q) ∗ ω = ωf

so that the spectral center of mass of the two cosines is placed at ωf . (Note
that we make the amplitudes of the two cosines add to one instead of setting
the total power to one; we do this because the modulator will operate phase-
coherently on them.) To accomplish this we simply set k and q to be the integer
and fractional part, respectively, of the center frequency quotient ωf/ω.

The obvious way of making a control interface for this synthesis technique
would be to use ramps to update ω and ωf , and then to compute q and k as
audio signals from the ramped, smoothly varying ω and ωf . Oddly enough,
despite the fact that k, p, and q are discontinuous functions of ωf/ω, the carrier
c(φ) turns out to vary continuously with ωf/ω, and so if the desired center
frequency is ramped from value to value the result is a continuous sweep in
center frequency. However, more work is needed if discontinuous changes in
center frequency are needed. This is not an unreasonable thing to wish for,
being analogous to changing the frequency of an oscillator discontinuously.

There turns out to be a good way to accomodate this. The trick to updating
k and q is to note that c(φ) = 1 whenever φ is a multiple of 2π, regardless of the
choice of p, q, and k as long as p + q = 1. Hence, we may make discontinuous
changes in p, q, and n once per period (right when the phase is a multiple of
2π), without making discontinuities in the carrier signal.

In the specific case of FM, if we wish we can now go back and modify the
original formulation:

p cos(nω2t + r cos(ω1t))+

+q cos((n + 1)ω2t + r cos(ω1t)).

This is how to add glissandi (which are heard as dipthongs) to Chowning’s
original phase-modulation-based vocal synthesis technique.

6.4 Phase-aligned formant (PAF) generator

Combining the two-cosine carrier signal with the waveshaping pulse generator
gives the phase-aligned formant generator, usually called by its acronym, PAF.
The combined formula is,

x[n] = g (a sin(ωn/2))
︸ ︷︷ ︸

modulator

[p cos(kωn) + q cos((k + 1)ωn)]
︸ ︷︷ ︸

carrier

Here the function g may be either the Gaussian or Cauchy waveshaping func-
tions, ω is the fundamental frequency, a is a modulation index controlling band-
width, and k, p, and q control the formant center frequency.

Figure 6.8 shows the PAF as a block diagram. The block diagram is sep-
arated into a phase generation step, a carrier, and a modulator. The phase
generation step outputs a sawtooth signal at the fundamental frequency.

152 CHAPTER 6. DESIGNER SPECTRA

S/H

trigger

phase

fundamental
frequency

1

0

0 1

index

−10 10

X

X k

WRAP

0 1

X

WRAP

0 1

k+1

X X p q

+ X

OUT

modulator

phase generator

carrier

Figure 6.8: The PAF generator as a block diagram.

6.4. PHASE-ALIGNED FORMANT (PAF) GENERATOR 153

The modulator is done by standard waveshaping, with a slight twist added.
The formula for the modulator signals in the PAF call for an incoming sinusoid
at half the fundamental frequency, i.e.,

sin(
ω

2
)

and this nominally would require us to use a phasor tuned to half the funda-
mental frequency. However, since the waveshaping function is even, we may
substitute the absolute value of the sinusoid:

∣
∣
∣sin(

ω

2
)
∣
∣
∣

which repeats at the frequency ω (the first half cycle is the same as the second
one.) We can compute this simply by using a half-cycle sinusoid as a wavetable
lookup function (with phase running from −π/2 to π/2), and it is this rectified
sinusoid that we pass to the waveshaping function.

Although we picture the wavetable function over both negative and positive
values (reaching from -10 to 10), in actuality we’re only using the positive side for
lookup, ranging from 0 to b, the index of modulation. If the index of modulation
exceeds the input range of the table (here set to stop at 10 as an example), the
table lookup address should be clipped. The table should extend far enough into
the tail of the waveshaping function so that the effect of clipping is inaudible.

The carrier signal is a weighted sum of two cosines, whose frequencies are
increased by multiplication (by k and k +1, respectively) and wrapping. In this
way all the lookup phases are controlled by the same sawtooth oscillator.

The quantities k, q, and the wavetable index b (labeled “index” in the fig-
ure), are calculated as shown in Figure 6.9. They are functions of the specified
fundamental frequency, the formant center frequency, and the bandwidth, which
are the original parameters of the algorithm. The quantity p, not shown in the
figure, is just 1 − q.

As described in the previous section, the quantities k, p, and q may only
change at phase wraparound points, that is to say, at periods of 2π/ω. Since
the calculation of k, etc., depends on the value of the parameter ω, it follows
that ω itself may only be updated when the phase is a multiple of 2π; otherwise,
a change in ω could send the center frequency (k + q)ω to an incorrect value for
a (very audible) fraction of a period. In effect, all the parameter calculations
should be synchronized to the phase of the original oscillator.

Having the oscillator’s phase control the updating of its own frequency is
the first example we have seen of feedback, which in general means using any
process’s output as one of its inputs. When processing digital audio signals at
a fixed sample rate (as we’re doing), it is never possible to have the process’s
current output as an input, since at the time we would need it we haven’t
yet calculated it. The best we can hope for is to use the previous sample of
output—in effect, adding one sample of delay. In block environments (such
as Max, Pd, and Csound) the situation becomes more complicated, but we will
delay discussing that until the next chapter (and avoid dealing with the problem
in the examples at the end of this one).

154 CHAPTER 6. DESIGNER SPECTRA

frequency

WRAP

center

S/H

trigger

phase

bandwidth

frequency
fundamental

/

S/H

trigger

phase

frequency
fundamental

/

− k

p

index

Figure 6.9: Calculation of the time-varying parameters a (the waveshaping in-
dex), k, and q for use in the block diagram of Figure 6.8.

The amplitude of the central peak in the spectrum of the PAF generator is
roughly 1/(1 + b); in other words, close to unity when the index b is smaller
than one, and falling off inversely with larger values of b. For values of b less
than about ten, the loudness of the output does not vary greatly, since the
introduction of other partials, even at lower amplitudes, offsets the decrease of
the center partial’s amplitude. However, if using the PAF to generate formants
with specified peak amplitudes, the output should be multiplied by 1 + b (or
even, if necessary, a better approximation of the correction factor, whose exact
value depends on the waveshaping function). This amplitude correction should
be ramped, not sampled-and-held.

Since the expansion of the waveshaping (modulator) signal consists of all co-
sine terms (i.e., since they all have initial phase zero), as do the two components
of the carrier, it follows from the cosine product formula that the components
of the result are all cosines as well. This means that any number of PAF gen-
erators, if they are made to share the same oscillator for phase generation, will
all be in phase and combining them gives the sum of the individual spectra. So
we can make a multiple-formant version as shown in figure 6.10.

Figure 6.11 shows a possible output of a pair of formants generated this way;
the first formant is centered halfway between partials 3 and 4, and the second
at partial 12, with lower amplitude and bandwidth. The Cauchy waveshaping
function was used, which generates linearly sloped spectra (viewed in dB). The

6.4. PHASE-ALIGNED FORMANT (PAF) GENERATOR 155

frequency

X

OUT

fundamental

+

phase

generation

index 1

modulator 1 carrier 1

p1, q1

k1,

X

modulator 2 carrier 2

index 2

k2,

p2, q2

Figure 6.10: Block diagram for making a spectrum with two formants using the
PAF generator.

156 CHAPTER 6. DESIGNER SPECTRA

PARTIAL NUMBER

0 2 4 6 ...

20

40

60

80

100

.

(dB)

AMPLITUDE

Figure 6.11: Spectrum from a two-formant PAF generator.

two superpose additively, so that the spectral envelope curves smoothly from
one formant to the other. The lower formant also adds to its own reflection
about the vertical axis, so that it appars slightly curved upward there.

The PAF generator can be altered if desired to make inharmonic spectra by
sliding the partials upward or downward in frequency. To do this, add a second
oscillator to the phase of both carrier cosines, but not to the phase of the
modulation portion of the diagram, nor to the controlling phase of the sample-
and-hold units. It turns out that the sample-and-hold strategy for smooth
parameter updates still works; and furthermore, mutiple PAF generators sharing
the same phase generation portion will still be in phase with each other.

Our technique for superposing spectra does not work as predictably for phase
modulation as it does for the PAF generator; the partials of the phase modu-
lation output have complicated phase relationships and they seem difficult to
combine coherently. In general, phase modulation will give more complicated
patterns of spectral evolution, whereas PAF is easier to predict and turn to
specific desired effects.

6.5 Examples

6.5.1 Wavetable pulse train

Patch F01.pulse.pd (Figure 6.12) generates a variable-width pulse train using
stretched wavetable lookup. Figure 6.13 shows two intermediate products of
the patch and its output. The patch carries out the job in the simplest possible
way, which places the pulse at phase π instead of phase zero; this will be fixed
in later patch examples by adding 0.5 to the phase and wrapping.

6.5. EXAMPLES 157

line~

107

cos~

pack 0 50

28

<−frequency

−~ 0.5

*~

/ 10

clip~ −0.5 0.5

...in tenths

smooth it

add 1

increase amplitude of sawtooth

clip to range −1/2 to 1/2

cosine wave lookup (−1/2 and 1/2 give −1)

+~ 1

+~ 1

*~ 0.5

add one (range now from 0 to 2)

...and now from 0 to 1

<−index

(OUT)

phasor~

0−centered sawtooth

Figure 6.12: Example patch F01.pulse.pd, which synthesizes a pulse train using
stretched wavetable lookup.

158 CHAPTER 6. DESIGNER SPECTRA

output

phase

clipped

0.5

−0.5

1

0.5

−0.5

0

(a)

(b)

(c)

Figure 6.13: Intermediate audio signals from Figure 6.12: (a) the result of
multiplying the phasor by the “index”; (b) the same, clipped to lie between -0.5
and 0.5; (c) the output.

6.5. EXAMPLES 159

The initial phase is adjusted to run from -0.5 to 0.5 and then scaled by a
multiplier of at least one, resulting in the signal of Figure 6.13 part (a); this
corresponds to the output of the *~object, five from the bottom in the patch
shown. The graph in part (b) shows the result of clipping the sawtooth wave
back to the interval between -0.5 and 0.5, using the clip~ object. If the scaling
multiplier were at its minimum (one), the sawtooth would only range from -
0.5 to 0.5 anyway and the clipping would have no effect. For any value of the
scaling multiplier greater than one, the clipping output sits at the value -0.5,
then ramps to 0.5, then sits at 0.5. The higher the multiplier, the faster the
waveform ramps and the more time it spends clipped at the bottom and top.

The cos~ object then converts this waveform into a pulse. Inputs of both
-0.5 and 0.5 go to -1 (they are one cycle apart); at the midpoint of the waveform,
the input is 0 and the output is thus 1. The output therefore sits at -1, traces a
full cycle of the cosine function, then comes back to rest at -1. The proportion
of time the waveform spends tracing the cosine function is one divided by the
multiplier; so it’s 100% for a multiplier of 1, 50% for 2, and so on. Finally, the
pulse output is adjusted to range from 0 to 1 in value; this is graphed in part
(c) of the figure.

6.5.2 Simple formant generator

The next three patch examples demonstrate the sound of the varying pulse
width, graph its spectrum, and contrast the waveshaping pulse generator. Skip-
ping to patch example F05.ring.modulation.pd (Figure 6.14), we show the sim-
plest way of combining the pulse generator with a ring modulating oscillator to
make a formant. The pulse train from the previous example is contained in the
pd pulse-train subpatch. It is multiplied by an oscillator whose frequency
is controlled as a multiple of the fundamental frequency. If the multiple is an
integer, a harmonic sound results. No attempt is made to control the relative
phases of the components of the pulse train and of the carrier sinusoid.

The next patch example, F06.packets.pd(Figure 6.15), shows how to combine
the stretched wavetable pulse train with a sampled sinusoid to realize movable
formants, as described in section 6.3. The pulse generator is as before, but now
the carrier signal is a broken sinusoid. Since its phase is the fundamental phase
times the center frequency quotient, the sample-to-sample phase increment is
the same as for a sinusoid at the center frequency. However, when the phase
wraps around, the carrier phase jumps to a different place in the cycle, as was
illustrated in Figure 6.7. Although the relative bandwidth must be at least
one, the relative center frequency (the quotient between center frequency and
fundamental) may be as low as zero if desired.

6.5.3 Two-cosine carrier signal

Patch F08.two.cosines.pd (figure 6.16) shows how to make a carrier signal that
cross-fades between harmonics to make continuously variable center frequencies.
The center frequency quotient (the center frequency divided by the fundamental)

160 CHAPTER 6. DESIGNER SPECTRA

0

pd pulse−train

<−− bandwidth

*~

<−− modulation frequency as
multiple of fundamental

modulating oscillator

RING MODULATED PULSE TRAINS

0

osc~

* r freq

<−− pulse train

generator from before

|

(OUT)

Figure 6.14: Excerpts from patch example F05.ring.modulation.pd combining
ring modulation with a stretched wavetable pulse generator

cos~

−~ 0.5

*~

clip~ −0.5 0.5

bandwidth

+~ 1

cos~

*~

*~

phasor~ 100

center

fundamental)

*~ 0.5

raised
cosine

|
(frequency)

pulse

carrier

frequency

(as multiple of

fundamental)

(as multiple of

|

|

phase signal

magnified

Figure 6.15: Using stretched wavetable synthesis to make a formant with mov-
able center frequency.

6.5. EXAMPLES 161

cos~

*~

fundamental

frequency

cos~

wrap~

−~

+~

−~

*~

+~

subtract to get the integer part "k"

multiply phase by k and k+1

synthesize two partials "c1" and "c2"

the fractional part "q"

c2 − c1

q * (c2 − c1)

q * c2 + (1−q) * c1

phasor~

center frequency

(relative to fundamental)

line~
|

|

|
OUT

Figure 6.16: Cross-fading between sinusoids to make movable center frequencies.

appears as the output of a line~ object. This is separated into its fractional part
(using the wrap~ object) and its integer part (by subtracting the fractional part
from the original). These are labelled as q and k to agree with the treatment in
section 6.3.

The phase—a sawtooth wave at the fundamental frequency—is multiplied
by both k and k+1 (the latter by adding the original sawtooth into the former),
and the cosines of both are taken; they are therefore at k and k + 1 times the
fundamental frequency and have no discontinuities at phase wrapping points.
The next several objects in the patch compute the weighted sum pc1 + qc2,
where c1, c2 are the two sinusoids and p = 1 − q, by evaluating an equivalent
expression, c1 + q(c2 − c1). This gives us the desired movable-frequency carrier
signal.

Patch F09.declickit.pd (not shown here) shows how, by adding a samphold~

object after the line~ object controlling center frequency, you can avoid dis-
continuities in the output signal even if the desired center frequency changes
discontinuously. In the particular example shown, the frequency quotient (i.e.,
carrier divided by fundamental) alternates between 4 and 13.5. At ramp times
below about 20 msec there are audible artifacts when using the line~ object
alone which disappear when the samphold~ object is added. (A disadvantage
of sample-and-holding the frequency quotient is that, for very low fundamental
frequencies, the changes can be heard as discrete steps. So in situations where
the fundamental frequency is low and the center frequency need not change very
quickly, it may be better to omit the sample-and-hold step.)

162 CHAPTER 6. DESIGNER SPECTRA

cos~

*~

cos~

wrap~−~

+~

−~

*~ +~

samphold~

54

center

line~

pack 0 50

phasor~

29

fundamental

72

line~

*~

pack 0 50

cos~

−~ 0.25

+~ 100

tabread4~ bell−curve

*~

waveshaper

mtof

expr 1/$f1

mtof

frequency

*~

bandwidth

mtof

*~

*~ 25

divide by

range for table

offset to middle

C.F. relative

to fundamental

(MIDI units)

ring mod

*~ 0.5 fundamental

of table

|

(OUT)

Figure 6.17: The phase-aligned formant (PAF) synthesis algorithm.

The next two patch examples demonstrate using the crossfading-oscillators
carrier as part of the classic two-modulator phase modulation technique. The
same modulating oscillator is added separately to the phases of the two cosines.
The resulting spectra can be made to travel up and down in frequency, but
because of the complicated phase relationships between neighboring peaks in
the phase modulation spectrum, no matter how you align two such spectra you
can never avoid getting phase cancellations where they overlap.

6.5.4 The PAF generator

Patch F12.paf.pd (Figure 6.17) is a realization of the PAF generator, described
in section 6.4. The control inputs specify the fundamental frequency, the center

6.5. EXAMPLES 163

t b b

f + 1

0
until

t f f

tabwrite bell−curve

expr exp(−$f1*$f1)

sel 199

expr ($f1−100)/25

bell−curve

Figure 6.18: Filling in the wavetable for Figure 6.17.

frequency, and the bandwidth, all in “MIDI” units. The first steps taken in
the realization are to divide center frequency by fundamental (to get the center
frequency quotient) and the bandwidth by fundamental to get the index of
modulation for the waveshaper. The center frequency quotient is sampled-and-
held so that it is only updated at periods of the fundamental.

The one oscillator (the phasor~ object) runs at the fundamental frequency.
This is used both to control a samphold~ object which synchronizes updates
to the center frequency quotient (labeled “C.F. relative to fundamental” in the
figure), and to compute phases for both cos~ objects which operate as shown
earlier in Figure 6.16.

The waveshaping portion of the patch uses a half period of a sinusoid as
a lookup function (to compensate for the frequency doubling because of the
symmetry of the lookup function). To get a half-cycle of the sine function we
multiply the phase by 0.5 and subtract 0.25, so that the adjusted phase runs
from -0.25 to +0.25, once each period. This scans the positive half of the cycle
defined by the cos~ object.

The amplitude of the half-sinusoid is then adjusted by an index of modulation
(which is just the quotient of bandwidth to fundamental frequency). The table
(“bell-curve”) has a Gaussian (unnormalized as before) sampled from -4 to 4
over 200 points (25 points per unit), so the center of the table, at point 100,
corresponds to the central peak of the bell curve. Outside the interval from -4
to 4 the Gaussian is negligibly small.

Figure 6.18 shows how the Gaussian wavetable is prepared. One new control
object is needed:

until : When the left, “start” inlet is banged, output sequential bangs (with
no elapsed time between them) iteratively, until the right, “stop” inlet is banged.

164 CHAPTER 6. DESIGNER SPECTRA

The stopping bang message must originate somehow from the until object’s
outlet; otherwise, the outlet will send bang messages forever, freezing out any
other object which could break the loop.

As used here, a loop driven by an until object counts from 0 to 199, inclu-
sive. The loop count is maintained by the “f” and “+ 1” objects, each of which
feeds the other. But since the “+ 1” object’s output goes to the right inlet of
the “f”, its result (one greater) will only emerge from the “f” the next time it
is banged by “until”. So each bang from “until” increments the value by one.

The way the loop is started up matters: the upper “t b b” object (short for
“trigger bang bang”) must first send the number zero to the “f”, thus initializing
it, and then set the until object sending bangs, incrementing the value, until
stopped. To stop it when the value reaches 199, a select object matches that
value and, when it sees the match, bangs the “stop” inlet of the until object.

Meanwhile, for every number from 0 to 199 which comes out of the “f”
object, we create an ordered pair of messages to the tabwrite object. First,
at right, the index itself, from 0 to 199. Then for the left inlet, the first expr

object adjusts the index to range from -4 to 4 (which previously ranged from 0
to 199) and the second one evaluates the Gaussian function.

In this patch we have not fully addressed the issue of updating the car-
rier/fundamental quotient at the appropriate times. Whenever the carrier fre-
quency is changed the sample-and-hold step properly delays the update of the
quotient. But if, instead or in addition, the fundamental itself changes abruptly,
then for a fraction of a period the phasor~ object’s frequency and the quotient
are out of sync. Pd does not allow the samphold~ output to be connected back
into the phasor~ input without the inclusion of an explicit delay (see the next
chapter) and there is no simple way to modify the patch to solve this problem.

Assuming that we did somehow clock the phasor~ object’s input synchronously
with its own wraparound points, we would then have to do the same for the
bandwidth/fundamental quotient on the right side of the patch as well. In this
scenario there is no problem updating that value continuously.

A practical solution to this updating problem has been simply to rewrite the
entire patch as its own Pd object; this also turns out to use much less CPU time
than the pictured patch, and is the more practical solution overall—as long as
you don’t want to experiment with making embellishments or other changes to
the algorithm.

Such embellishments might include: adding an inharmonic upward or down-
ward shift in the partials; allowing to switch between smooth and sampled-and-
held center frequency updates; adding separate gain controls for even and odd
partials; introducing gravel by irregularly modulating the phase; allowing mix-
tures of two or more waveshaping functions; making more percussive attacks by
aligning the phase of the oscillator with the timing of an amplitude envelope
generator.

One final detail about amplitude is in order: since the amplitude of the
strongest partial decreases roughly as 1/(1 + b) where b is the index of modula-
tion, it is sometimes (but not always) desirable to correct the amplitude of the
output by multiplying by 1 + b. This is only an option if b is smoothly updated

6.5. EXAMPLES 165

(as in this patch example), not if it is sampled-and-held. One situation in which
this is appropriate is in simulating plucked strings (by setting center frequency
to the fundamental, starting with a high index of modulation and dropping it
exponentially); it would be appropriate to hear the fundamental dropping, not
rising, in amplitude as the string decays.

166 CHAPTER 6. DESIGNER SPECTRA

Chapter 7

Time shifts

At 5:00 some afternoon, put on your favorite recording of the Ramones’ string
quarter number 5. The next Saturday, play the same recording at 5:00:01, one
second later in the day. The two playings should sound the same, with any
differences more likely to be of context or environment than to be intrinsic to
the sound. Shifting the whole thing one second (or, if you like, a few days and
a second) has no physical effect on the sound.

But now suppose you played it at 5:00 and 5:00:01 on the same day (on two
different playback systems, since the music lasts much longer than one second.)
Now the sound is much different. Moreover, the difference, whatever it is, clearly
resides in neither of the two individual sounds, but rather in the interference

between the two. This interference can be perceived in at least four different
ways:

Canons: combining two copies of a signal with a time shift sufficient for the
signal to change appreciably, we might hear the two as separate musical
streams, in effect comparing the signal to its earlier self. If the signal is a
melody, the time shift might be comparable to the length of one or several
notes.

Echos: At time shifts between about 30 milliseconds and about a second, the
later copy of the signal can sound like an echo of the first one. An echo may
reduce the intelligibility of the signal (especially if it consists of speech),
but usually won’t change the overall “shape” of melodies or phrases.

Filtering: At time shifts below about 30 milliseconds, the copies are too close
together in time to be perceived separately, and the dominant effect is
that some frequencies are enhanced and others suppressed. This changes
the spectral envelope of the sound.

Altered room quality: If the second copy is altered to be much quieter than
the first, and moreover if we add a third, or even a thousand more delayed
copies at reduced amplitudes, they can mimic the echos that arise in a
room or other acoustic space.

167

168 CHAPTER 7. TIME SHIFTS

Z=a+bi

a

b

|Z|

arg(Z)

Figure 7.1: A number, Z, in the complex plane. The axes are for the real part
a and the imaginary part b.

The overall quality of a given arrangement of delayed copies of a signal may
combine two or more of these affects.

Mathematically, the effect of a time shoft on a signal can be described as a
phase change of each of the signal’s sinusoidal components. The phase shift of
each component is different depending on its frequency (as well as on the amount
of time shift). In the rest of this chapter we will often consider superpositions
of sinusoids at different phases. Heretofore we have been content to use real-
valued sinusoids in our analysis, but in this and later chapters the formulas will
become more complicated and we will need more powerful mathematical tools
to manage them. So in a preliminary section of this chapter we will develop the
additional background needed.

7.1 Complex numbers

Complex numbers are written as:

Z = a + bi

where a and b are real numbers and i =
√
−1. (In this book we’ll use capital

letters to denote complex numbers and lowercase for real numbers.) Since a
complex number has two real components, we use a Cartesian plane (in place
of a number line) to graph it, as shown in Figure 7.1. The quantities a and b
are called the real and imaginary parts of Z, written as:

a = re(Z),

b = im(Z)

7.1. COMPLEX NUMBERS 169

If Z is a complex number, its magnitude, written as |Z|, is just the distance
in the plane from the origin to the point (a, b):

|Z| =
√

(a2 + b2)

and its argument, written as arg(Z), is the angle from the positive a axis to the
point (a, b):

arg(Z) = arctan

(
b

a

)

If we know the magnitude and argument of a complex number (say they are r
and θ, for instance) we can reconstruct the real and imaginary parts:

a = r cos(θ)

b = r sin(θ)

A complex number may be written in terms of its real and imaginary parts a
and b (this is called rectangular form), or alternatively in polar form, in terms
of r and θ:

Z = r · [cos(θ) + i sin(θ)]

The rectangular and polar formulations are equivalent, and the equations above
show how to compute a and b from r and θ and vice versa.

The main reason we use complex numbers in electronic music is because they
magically encode sums of angles. We frequently have to add angles together in
order to talk about the changing phase of an audio signal as time progresses (or
as it is shifted in time, as in this chapter). It turns out that, if you multiply two
complex numbers, the argument of the product is the sum of the arguments of
the two factors. To see how this happens, we’ll multiply two numbers Z1 and
Z2, written in polar form:

Z1 = r1 · [cos(θ1) + i sin(θ1)]

Z2 = r2 · [cos(θ2) + i sin(θ2)]

giving:
Z1Z2 = r1r2 · [cos(θ1) cos(θ2) − sin(θ1) sin(θ2)

+i (sin(θ1) cos(θ2) + cos(θ1) sin(θ2))]

Here the minus sign in front of the sin(θ1) sin(θ2) term comes from multiplying i
by itself, which gives −1. We can spot the cosine and sine summation formulas
in the above expression, and so it simplifies to:

Z1Z2 = r1r2 · [cos(θ1 + θ2) + i sin(θ1 + θ2)]

And so, by inspection, it follows that the product Z1Z2 has magnitude r1r2 and
argument θ1 + θ2.

We can use this property of complex numbers to add and subtract angles
(by multiplying and dividing complex numbers with the appropriate arguments)
and then to take the cosine and sine of the result by extracting the real and
imaginary parts of the result.

170 CHAPTER 7. TIME SHIFTS

7.1.1 Sinusoids as geometric series

Recall the formula for a (real-valued) sinusoid from page 1:

x[n] = a cos(ωn + φ)

This is a sequence of cosines of angles (called phases) which increase arithmeti-
cally with the sample number n. The cosines are all adjusted by the factor a.
We can now re-write this as the real part of a much simpler and easier to manip-
ulate sequence of complex numbers, by using the properties of their arguments
and magnitudes.

Suppose that our complex number Z happens to have magnitude one, so
that it can be written as:

Z = cos(ω) + i sin(ω)

Then for any integer n, the number Zn must have magnitude one as well (be-
cause magnitudes multiply) and argument nθ (because arguments add). So,

Zn = cos(nω) + i sin(nω)

This is also true for negative values of n, so for example,

1

Z
= Z−1 = cos(ω) − i sin(ω)

Figure 7.2 shows graphically how the powers of Z wrap around the unit circle,
which is the set of all complex numbers of magnitude one. They form a geometric
sequence:

. . . , Z0, Z1, Z2, . . .

and taking the real part of each term we get a real sinusoid with initial phase
zero and amplitude one:

. . . , cos(0), cos(ω), cos(2ω), . . .

The sequence of complex numbers is much easier to manipulate algebraically
than the sequence of cosines.

Furthermore, suppose we multiply the elements of the sequence by some
(complex) constant A with magnitude a and argument φ. This gives

. . . , A,AZ,AZ2, . . .

The magnitudes are all a and the argument of the nth term is φ + nω, so the
sequence is equal to

a · [cos(φ) + i sin(φ)],

a · [cos(ω + φ) + i sin(ω + φ)],

· · · , a · [cos(nω + φ) + i sin(nω + φ)], . . .

7.1. COMPLEX NUMBERS 171

Z

Z 2

1

Z −1

2

A
AZ

AZ

Figure 7.2: The powers of a complex number Z with |Z| = 1, and the same
sequence multiplied by a constant A.

and so the real part is just the real-valued sinusoid:

re(AZn) = a · [cos(nω + φ)]

The complex amplitude A encodes both the amplitude (equal to its magnitude
a) and the inital phase (its argument φ); the unit-magnitude complex number
Z controls the frequency which is just its argument ω.

Figure 7.2 also shows the sequence A,AZ,AZ2, . . .; in effect this is the same
sequence as 1, Z, Z2, . . ., but amplified and rotated according to the amplitude
and initial phase. In a complex sinusoid of this form, A is called the complex

amplitude.

Using complex numbers to represent the amplitudes and phases of sinusoids
can clarify manipulations that otherwise might seem unmotivated. For instance,
in Section 1.6 we looked at the sum of two sinusoids with the same frequency.
In the language of this chapter, we let the two sinusoids be written as:

X[n] = AZn, Y [n] = BZn

where A and B encode the phases and amplitudes of the two signals. The sum
is then equal to:

X[n] + Y [n] = (A + B)Zn

which is a sinusoid whose amplitude equals |A + B| and whose phase equals
arg(A + B). This is clearly a much easier way to manipulate amplitudes and
phases than using series of sines and cosines. Eventually, of course, we will take
the real part of the result; this can usually be left to the very last step of the
calculation.

172 CHAPTER 7. TIME SHIFTS

7.2 Time shifts and phase changes

Starting from any (real or complex) signal X[n], we can make other signals by
time shifting the signal X by a (positive or negative) integer d:

Y [n] = X[n − d]

so that the dth sample of Y is the 0th sample of X and so on. If the integer
d is positive (or zero), then Y is a delayed copy of X. If d is negative, then
Y anticipates X; this can be done to a recorded sound but isn’t practical as a
real-time operation.

Time shifting is a linear operation (considered as a function of the input
signal X); if you time shift a sum X1 + X2 you get the same result as if you
time shift them separately and add afterward.

Time shifting has the further property that, if you time shift a sinusoid of
frequency ω, the result is another sinusoid of the same frequency—time shift-
ing never introduces frequencies that weren’t present in the signal before it was
shifted. This property, called time invariance, makes it easy to analyze the ef-
fects of time shifts—and linear combinations of them—by considering separately
what the operations do on individual sinusoids.

Furthermore, the effect of a time shift on a sinusoid is simple: it just changes
the phase. If we use a complex sinusoid, the effect is even simpler. If for instance

X[n] = AZn

then
Y [n] = X[n − d] = AZ(n−d) = Z−dAZn = Z−dX[n]

so time shifting a complex sinusoid by d samples is the same thing as scaling it
by Z−d—it’s just an amplitude change by a particular complex number. Since
|Z| = 1 for a sinusoid, the amplitude change does not change the magnitude of
the sinusoid, only its phase.

The phase change is equal to −dω, where ω = arg(Z) is the angular fre-
quency of the sinusoid. This is exactly what we should expect since the sinusoid
advances ω radians per sample and it is offset (i.e., delayed) by d samples.

7.3 Delay networks

If we consider our digital audio samples X[n] to correspond to successive mo-
ments in time, then time shifting the signal by d samples corresponds to a delay

of d/R time units, where R is the sample rate. (If d is negative, then we are
saying that the output predicts the input; this isn’t practical in systems, such
as Pd, that schedule computations in order of time.)

Figure 7.3 shows one example of a linear delay network : an assembly of delay
units, possibly with amplitude scaling operations, combined using addition and
subtraction. The output is a linear function of the input, in the sense that
adding two signals at the input is the same as processing each one separately

7.3. DELAY NETWORKS 173

IN

OUT

d

+

Figure 7.3: A delay network. Here we add the incoming signal to a delayed copy
of itself.

and adding the results. Moreover, they are time invariant, i.e., they create no
new frequencies in the output that weren’t present in the input.

In general there are two ways of thinking about delay networks. We can
think in the time domain, in which we draw waveforms as functions of time (or
of the index n), and consider delays as time shifts. Alternatively we may think
in the frequency domain, in which we dose the input with a sinusoid (so that its
output is a sinusoid at the same frequency) and report the amplitude and/or
phase change brought by the network, as a function of the frequency (encoded
in the complex number Z). We’ll now look at the delay network of Figure 7.3
in each of the two ways in turn.

Figure 7.4 shows the network’s behavior in the time domain. We invent some
sort of suitable test function as input (it’s a rectangular pulse eight samples wide
in this example) and graph the input and output as functions of the sample
number n. This particular delay network adds the input to a delayed copy of
itself.

A frequently used test function is an impulse, which is a pulse lasting only
one sample. The utility of this is that, if we know the output of the network for
an impulse, we can find the output for any other digital audio signal—because
any signal x[n] is a sum of impulses, one of height x[0], the next one occurring
one sample later and having height x[1], and so on. Later, when the networks
get more complicated, we will move to using impulses as input signals to show
their time-domain behavior.

On the other hand, we can analyze the same network in the frequency domain
by considering a (complex-valued) test signal,

X[n] = Zn

where Z has unit magnitude and argument ω. We already know that the output

174 CHAPTER 7. TIME SHIFTS

input

output

n

d

Figure 7.4: The time domain view ot the delay network of Figure 7.3. The
output is the sum of the input and its time shifted copy.

is another complex sinusoid with the same frequency, that is,

HZN

for some complex number H (which we want to find.) So we write the output
directly as the sum of the input and its delayed copy:

Zn + Z−dZn = (1 + Z−d)Zn

and find by inspection that:
H = 1 + Z−d

We can understand the frequency-domain behavior of this delay network by
studying how the complex number H varies as a function of the angluar fre-
quency ω. We are especially interested in its argument and magnitude—which
tell us the relative phase and amplitude of the sinusoid that comes out. We will
work this example out in detail to show how the arithmetic of complex numbers
can predict what happens when sinusoids are combined additively.

Figure 7.5 is a graph, in the complex plane, showing how the quantities 1
and Z−d combine additively. To add complex numbers we add their real and
complex parts separately. So the complex number 1 (real part 1, imaginary part
0) is added coordinate-wise to the complex number Z−d (real part cos(−dω),
imaginary part sin(−dω)). This is shown graphically by making a parallelogram,
with corners at the origin and at the two points to be added, and whose fourth
corner is the sum H.

As the figure shows, the result can be understood by symmetrizing it about
the real axis: instead of 1 and Z−d, it’s easier to sum the quantities Zd/2 and

7.3. DELAY NETWORKS 175

Z

Z

1

Z −d/2

d/2

A

AZ

−d

d/2

real

imaginary

Figure 7.5: Analysis, in the complex plane, of the frequency-domain behavior of
the delay network of Figure 7.3. The complex number Z encodes the frequency
of the input. The delay line output is the input times Z−d. The total (complex)
gain is H. We find the magnitude and argument of H by symmetrizing the sum,
rotating it by d/2 times the angular frequency of the input.

Z−d/2, because they are symmetric about the real (horizontal) axis. To do this
we rewrite the gain as:

H = Z−d/2(Zd/2 + Z−d/2)

The first term is a phase shift of −dω/2. The second term is best understood
in rectangular form:

Zd/2 + Z−d/2

= (cos(ωd/2) + i sin(ωd/2)) + (cos(ωd/2) − i sin(ωd/2))

= 2 cos(ωd/2)

This real-valued quantity may be either positive or negative; its absolute value
gives the magnitude of the output:

|H| = 2| cos(ωd/2)|

The quantity |H| is called the gain of the delay network at the angular frequency
ω, and is graphed in Figure 7.6. The frequency-dependent gain of a delay
network (that is, the gain as a function of frequency) is called the network’s
frequency response.

Since the network has greater gain at some frequencies than at others, it may
be considered as a filter, that can be used to separate certain components of a
sound from others. Because of the shape of this particular gain expression as
a function of ω, this kind of delay network is called a (non-recirculating) comb

filter.

176 CHAPTER 7. TIME SHIFTS

2
d

gain

d
4

2

Figure 7.6: Gain of the delay network of Figure 7.3, shown as a function of
angular frequency ω.

The output of the network is a sum of two sinusoids of equal amplitude, and
whose phases differ by ωd. The resulting output amplitude can therefore be
checked against the prediction of Section 1.6—and they agree. The result also
agrees with common sense: if the angular frequency ω is set so that an integer
number of periods fit into d samples, i.e., if ω is a multiple of 2π/d, the output
of the delay is exactly the same as the original signal, and so the two combine
to make an output with twice the original amplitude. If the delay is half the
period, on the other hand (so that ω = π/d) the delay output is out of phase
and cancels the input exactly.

This particular delay network has an interesting application: if we have a
periodic (or nearly periodic) incoming signal, whose fundamental frequency is
ω radians per sample, we can tune the comb filter so that the peaks in the
gain are aligned at even harmonics and the odd ones fall where the gain is
zero. To do this we choose d = π/ω, i.e., set the delay time to exactly one half
period of the incoming signal. In this way we get a new signal whose harmonics
are 2ω, 4ω, 6ω, . . ., and so it now has a new fundamental frequency at twice
the original one. Except for a factor of two, the amplitudes of the remaining
harmonics still follow the spectral envelope of the original sound. So we have
a tool now for raising the pitch of an incoming sound by an octave without
changing its spectral envelope. This octave doubler is the reverse of the octave
divider introduced back in Chapter 5.

The time domain and frequency domain pictures are complementary ways
of looking at the same delay network. When the delays inside the network
are smaller than the ear’s ability to resolve events in time—less than about 20
milliseconds—the time domain picture becomes less relevant to our understand-
ing of the delay network, and we turn mostly to the frequency-domain picture.
On the other hand, when delays are greater than about 50 milliseconds, the
peaks and valleys of plots showing gain versus frequency (such as that of Fig-
ure 7.6) become crowded so closely together that the frequency-domain view
becomes less important. Both are nonetheless valid over the entire range of
possible delay times.

7.4. RECIRCULATING DELAY NETWORKS 177

IN

d

+

X g

OUT

Figure 7.7: Block diagram for a recirculating comb filter. Here d is the delay
time in samples and g is the feedback coefficient.

7.4 Recirculating delay networks

It is sometimes desirable to connect the outputs of one or more delays in a
network back into their own or each others’ inputs. Instead of getting one or
several echos of the original sound as in the simple example above, we can po-
tentially get an infinite number of echos, each one feeding back into the network
to engender yet others.

The simplest example of a recirculating network is the recirculating comb

filter whose block diagram is shown in Figure 7.7. As with the earlier, simple
comb filter, the input signal is sent down a delay line whose length is d samples.
Unlike the simple comb filter, the delay line’s output is also inserted back in
its input; the delay’s input is now the sum of the original input and the delay
output. The output is multiplied by a number g before feeding it back into its
input.

The time domain behavior of the recirculating comb filter is shown in Figure
7.8. Here we consider the effect of sending an impulse into the network. We
get back the original impulse, plus a series of echos, each in turn d samples
after the previous one, and multiplied each time by the gain g. In general, a
delay network’s output given an impulse as input is called the network’s impulse

response.
Note that we have chosen a gain g that is less than one in absolute value.

If we chose a gain greater than one (or less than -1), each echo would have a
larger magnitude than the previous one. Instead of falling exponentially as they
do in the figure, they would grow exponentially. A recirculating network whose
output eventually falls toward zero after its input terminates is called stable;
one whose output grows without bound is called unstable.

We can also analyse the recirculating comb filter in the frequency domain.

178 CHAPTER 7. TIME SHIFTS

input

d

output

n

Figure 7.8: Time-domain analysis of the recirculating comb filter, using an
impulse as input.

The situation is now complicated enough that it is almost prohibitively hard
to analyze using real sinusoids, and so we get the first real payoff for having
introduced complex numbers, which greatly simplify the analysis.

If, as before, we feed the input with the signal,

X[n] = Zn

with |Z| = 1, we can write the output as

Y [n] = (1 + gZ−d + g2Z−2d + · · ·)X[n]

Here the terms in the sum come from the series of discrete echos. It follows that
the amplitude of the output is:

H = 1 + gZ−d + (gZ−d)
2

+ · · ·

This is a geometric series; we can sum it using the standard technique: first
multiply both sides by gZ−d to give:

gZ−dH = gZ−d + (gZ−d)
2

+ (gZ−d)
3

+ · · ·

and subtract from the original equation to give:

H − gZ−dH = 1,

and, solving for H,

H =
1

1 − gZ−d

7.4. RECIRCULATING DELAY NETWORKS 179

A faster (but slightly less intuitive) method to get the same result is to
examine the recirculating network itself to yield an equation for H, as follows.
Since we named the input X[n] and the output Y [n], the signal going into the
delay line is X[n] +Y [n], and passing this through the delay line and multiplier
gives

(X[n] + Y [n])gZ−d

This is just the output signal again, so:

Y [n] = (X[n] + Y [n])gZ−d

and dividing by X[n] and using H = Y [n]/X[n] gives:

H = (1 + H)gZ−d

This is equivalent to the earlier equation for H.
Now we would like to make a graph of the frequency response (the gain as a

function of frequency) as we did for non-recirculating comb filters in Figure 7.6.
This again requires that we make a preliminary picture in the complex plane.
We would like to estimate the magnitude of H equal to:

|H| =
1

|1 − gZ−d|

where we used the multiplicative property of magnitudes to conclude that the
magnitude of a (complex) reciprocal is the reciprocal of a (real) magnitude.
Figure 7.9 shows the situation graphically. The gain |H| is the reciprocal of
the length of the segment reaching from the point 1 to the point gZ−d. Figure
7.10 shows a graph of the frequency response |H| as a function of the angular
frequency ω = arg(Z).

Figure 7.9 can be used to analyze how the frequency response |H(ω)| should
behave qualitatively as a function of g. The height and bandwidth of the peaks
both depend on g. The maximum value that |H| can attain is when

Z−d = 1

This occurs at the frequencies ω = 2π/d, 4π/d, . . . as in the simple comb filter
above. At these maxima it reaches

|H| =
1

1 − g

The next important question is the bandwidth of the peaks in the frequency
response. So we would like to find a particular frequency, arg(W), giving rise
to a value of |H| that is, say, 3 decibels below the maximum. To do this, we
return to Figure 7.9, and try to find W so that the distance from the point 1 to
the point

1 − W−d

180 CHAPTER 7. TIME SHIFTS

−d

−d

1

−d

1−g

real

imaginary

gW

gZ

1−gW

Figure 7.9: Diagram in the complex plane for approximating the output gain
|H| of the recirculating comb filters at three different frequencies: 0, arg(W),
and arg(Z). The frequency arg(W) is chosen to give a gain about 3 dB below
the peak.

2
d

gain

d
4

5

Figure 7.10: Frequency response of the recirculating comb filter with g = 0.8.
The peak gain is 1/(1 − g) = 5. Peaks are much narrower than for the simple
comb filter.

7.5. POWER CONSERVATION AND COMPLEX DELAY NETWORKS 181

is about
√

2 times the distance from 1 to g (since
√

2:1 is a ratio of approximately
3 decibels).

We do this by arranging for the imaginary part of W−d to be roughly 1− g
or its negative, making a nearly isosocles right triangle between the points 1,
1−g, and W−d. (Here we’re supposing that g is at least 2/3 or so; otherwise this
approximation isn’t very good). The hypoteneuse of a right isococles triangle is
always

√
2 times the leg, and so the gain drops by that factor compared to its

maximum.
We now make another approximation, that the imaginary part of W−d is

approximately the angle in radians it cuts from the real axis:

±(1 − g) ≈ im(W−d) ≈ arg(W−d)

So the region of each peak reaching within 3 decibels of the maximum value is
about

(1 − g)/d

(in radians) to either side of the peak. The bandwidth narrows (and the filter
peaks become sharper) as g approaches its maximum value of 1. .

As with the non-recirculating comb filter of section 7.3, the teeth of the comb
are closer together for larger valuse of the delay d. On the other hand, a delay of
d = 1 (the shortest possible) gets only one tooth (at zero frequency) below the
Nyquist frequency π (the next tooth, at 2π, corresponds again to a frequency
of zero by foldover).

So the recirculating comb filter with d = 1 is just a low-pass filter. Delay
networks with one-sample delays will be the basis for designing many other
kinds of digital filters in chapter 8.

7.5 Power conservation and complex delay net-
works

The same techniques will work to analyze any delay network, although for more
complicated networks it becomes harder to characterize the results, or to design
the network to have specific, desired properties. Another point of view can
sometimes be usefully brought to the situation, particularly when flat frequency
responses are needed, either in their own right or else to ensure that a complex,
recirculating network remains stable at feedback gains close to one.

The central fact we will use is that if any delay network, with either one or
many inputs and outputs, is constructed so that its output power (averaged over
time) always equals its input power, that network has to have a flat frequency
response. This is almost a tautology; if you put in a sinusoid at any frequency
on one of the inputs, you will get sinusoids of the same frequency at the outputs,
and the sum of the power on all the outputs will equal the power of the input,
so the gain, suitably defined, is exactly one.

In order to work with power-conserving delay networks we will need an
explicit definition of “total average power”. If there is only one signal (call it

182 CHAPTER 7. TIME SHIFTS

OUT

d
1

IN

d d d
2 3 4

Figure 7.11: First fundamental building block for unitary delay networks: delay
lines in parallel.

x[n]), the average power is given by:

P (x[n]) =
[

|x[0]|2 + |x[1]|2 + · · · + |x[N − 1]|2
]

/N

where N is a large enough number so that any fluctuations in amplitude get
averaged out. This definition works as well for complex-valued signals as for
real-valued ones. The average total power for several digital audio signals is
just the sum of the individual signal’s powers:

P (x1[n] + · · · + xr[n]) = P (x1[n]) + · · · + P (xr[n])

where r is the number of signals to be combined. With this definition, since the
individual signals’ power is perserved by delaying them, so is the power of the
sum.

It turns out that a wide range of interesting delay networks has the property
that the total power output equals the total power input; they are called unitary.
First, we can put any number of delays in parallel, as shown in Figure 7.11.
Whatever the total power of the inputs, the total power of the outputs has to
be the same.

A second family of power-preserving transformations is composed of rota-
tions and reflections of the signals x1[n], ... , xr[n], considering them, at each
fixed time point n, as r numbers, or as a point in an r-dimensional space. The
rotation or reflection must be one that leaves the origin (0, . . . , 0) fixed.

For each sample number n, the total contribution to the average signal power
is proportional to

|x1|2 + · · · + |xr|2

This is just the Pythagorean distance from the origin to the point (x1, . . . , xr).
Since rotations and reflections are distance-preserving transformations, the dis-
tance from the origin before transforming must equal the distance from the
origin afterward. This shows that the total power of the transformed signals
must equal the total power of the original ones.

7.5. POWER CONSERVATION AND COMPLEX DELAY NETWORKS 183

IN

+

c

x x

+

x x

c

IN

OUT

−s s

(a) (b)

c

c s

−s

− OUT −

Figure 7.12: Second fundamental building block for unitary delay networks:
rotating two digital audio signals. Part (a) shows the transformation explicitly;
(b) shows it as a matrix operation.

Figure 7.12 shows a rotation matrix operating on two signals. In part (a)
the transformation is shown explicitly. If the input signals are x1[n] and x2[n],
the outputs are:

y1[n] = cx1[n] + sx2[n]

y2[n] = −sx1[n] + cx2[n]

where c, s are given by
c = cos(θ)

s = sin(θ)

for an angle of rotation θ. Considered as points on the Cartesian plane, the
point (y1, y2) is just the point (x1, x2) rotated counter-clockwise by the angle θ.
The two points are thus at the same distance from the origin:

|y1|2 + |y2|2 = |x1|2 + |x2|2

and so the two output signals have the same total power as the two input signals.
For an alternative description of rotation in two dimensions, consider com-

plex numbers X = x1 + x2i and Y = y1 + y2i. The above transformation
amounts to setting

Y = XZ

where Z is a complex number with unit magnitude and argument θ. Since
|Z| = 1, it follows that |X| = |Y |.

184 CHAPTER 7. TIME SHIFTS

IN
IN

OUT

(a) (b)

+ −

X

a

X

a

OUT

R
1

R
2

R
3

R
4

Figure 7.13: Details about rotation (and reflection) matrix operations: (a) ro-
tation by the angle θ = π/4, so that a = cos(θ) = sin(θ) =

√

1/2 ≈ 0.7071; (b)
combining two-dimensional rotations to make higher-dimensional ones.

If we perform a rotation on a pair of signals and then invert one (but not
the other) of them, the result is a reflection. This also preserves total signal
power, since we can invert any or all of a collection of signals without changing
the total power. In two dimensions, a reflection appears as a transformation of
the form

y1[n] = cx1[n] + sx2[n]

y2[n] = sx1[n] − cx2[n]

Special and useful rotation and reflection matrices are obtained by setting
the θ = ±π/4, so that s = c =

√

1/2. This allows us to simplify the computation
as shown in Figure 7.13 (part a) because each signal need only be multiplied by
the one quantity c = s.

Any rotation or reflection of more than two input signals may be accom-
plished by repeatedly rotating and/or reflecting them in pairs. For example,
in part (b) of Figure 7.13, four signals are combined in pairs, in two succesive
stages, so that in the end every signal input feeds into all the outputs. We could
do the same with eight signals (using three stages) and so on. Furthermore, if
we use the special angle π/4, all the input signals will contribute equally to each
of the outputs.

Any combination of delays and rotation matrices, applied in succession to
a collection of audio signals, will result in a flat frequency response, since each
individual operation does.

7.5. POWER CONSERVATION AND COMPLEX DELAY NETWORKS 185

R

+

X

−

c

X c d

(a) (b)

d 1 d j ...

...

...
...

IN

x 1 x

1 y y

OUT

w w

k

k

1 j

Figure 7.14: Flat frequency response in recirculating networks: (a) in general,
using a rotation matrix R; (b). the “allpass” configuration.

This already allows us to generate an infinitude of flat-response delay net-
works, but so far, none of them are recirculating. A third operation, shown
in Figure 7.14, allows us to make recirculating networks that still enjoy flat
frequency responses.

Part (a) of the figure shows the general layout. The transformation R is
assumed to be any combination of delays and mixing matrices that are power
preserving in the aggregate. The input signals x1, . . . xk are collectively labeled
as a compound signal X, and similarly the output signals y1, . . . yk are shown as
Y . Some other signals w1, . . . wj (where j is not necessarily equal to k) appear
at the output of the transformation R and are fed back to its input.

If R is indeed power preserving, the total input power (the power of the
signals X plus that of the signals W) must equal the output power (the power
of the signals Y plus W), and subtracting the power of W from the equality, we
find that the input and the output power are equal.

If we let j = k = 1 so that X, Y , and W each represent a single signal, and
let the transformation R be a rotation by θ, followed by a delay of d samples on
the W output, the result is the well-known allpass filter. With some juggling,
and letting c = cos(θ), we arrive at the network shown in part (b) of the figure.
Allpass filters have many applications, some of which we will visit later in this
book.

186 CHAPTER 7. TIME SHIFTS

7.6 Artificial reverberation

Reverberation in real, natural spaces arises from a complicated pattern of sound
reflections off the walls and other objects that define the space. It is a great over-
simplification to imitate this process by recirculating, discrete delay networks.
Nonetheless, this approach of modeling reverberation using recirculating delay
lines can, with much work, be made to give good results.

The central idea is to idealize any room (or other reverberant space) as
a parallel collection of delay lines that model the memory of the air inside
the room. At each point on the walls of the room, many straight-line paths
terminate, each corresponding to a possible line of sight ending at that point;
the sound then reflects into many other paths, each one originating at that
point, and leading eventually to some other point on a wall.

Although the wall (and the air we passed through to get to the wall) absorbs
some of the sound, a fraction of the incident power is reflected. If this fraction
is close to one, the room reverberates for a long time; if it is exactly one, the
reverberation lasts forever. If at any frequency the walls reflect more energy
overall than they receive, the sound will feed back unstably; this never happens
in real rooms (conservation of energy prevents it), but can happen in an artificial
reverberator if it is not designed correctly.

To make an artificial reverberator using a delay network, we must fill two
two competing demands simultaneously. First, the delay lines must be long
enough to prevent coloration in the output as a result of from comb filtering.
(Even if we move beyond the simple comb filter of section 7.4, the frequency
response tends to have peaks and valleys whose spacing varies inversely with
total delay time.) On the other hand, we should not hear individual echos; the
echo density should ideally be at least one thousand per second.

To accomplish both of these aims, we assemble some number of delay lines
and connect their outputs back to their inputs. The feedback path—the connec-
tion from the outputs back to the inputs of the delays—should have an aggregate
gain that varies gently as a function of frequency, and never exceeds one for any
frequency. A good starting point is to give the feedback path a flat frequency
response and a gain slightly less than one; this is done using rotation matrices.

Ideally this is all we should need to do, but in reality we will not always want
to use the thousands of delay lines it would take to model the paths between
every possible pair of points on the walls. In practice we usually use between
four and sixteen delay lines to model the room. This simplification sometimes
reduces the echo density below what we would wish, so we might use more delay
lines at the input of the recirculating network to increase the density.

Figure 7.15 shows a class of reverberator designs that use this principle. The
incoming sound, shown as two separate signals in this example, is first thickened
by progressively delaying one of the two signals and then intermixing them using
a rotation matrix. At each stage the number of echoes of the original signal is
doubled; typically we would use between 6 and 8 stages to make between 64
and 256 echos, all with a total delay of between 30 and 80 milliseconds. The
figure shows three such stages.

7.6. ARTIFICIAL REVERBERATION 187

+

d 1

d

IN

R

d 2

d 3

7 d d 8 9

1

R

R

2

3

R
9

+

OUT

X X X g

Figure 7.15: Reverberator design using power-preserving transformations and
recirculating delays.

188 CHAPTER 7. TIME SHIFTS

Next comes the recirculating part of the reverberator. After the original
thickening, if any, the input signal is fed into a bank of parallel delay lines,
and their outputs are again mixed using a rotation matrix. The mixed outputs
are attenuated by a gain g ≤ 1, and fed back into the delay lines to make a
recirculating network.

The value g controls the reverberation time. If the average length of the
recirculating delay lines is d, then any incoming sound is attenuated by a factor
of g after a time delay of d. The gain after a time t is thus approximately

gt/d

which in decibels gives:

20
t

d
log10(g).

The usual measure of reverberation time (RT) is the time at which the gain
drops by sixty decibels:

20
RT

d
log10(g) = −60

RT =
−3d

log10(g)

If g is one, this formula gives ∞, since the logarithm of one is zero.
The framework shown above is the basis for most modern reverberator de-

signs. Many extensions of this underlying design have been proposed. The most
important next step is to introduce filters in the recirculation path so that high
frequencies can be made to decay more rapidly than low ones; this is readily
accomplished with a very simple low-pass filter, but we will not work this out
here, having not yet developed the needed filter theory.

In general, to use this framework to design a reverberator involves making
many complicated choices of delay times, gains, and filter coefficients. Moun-
tains of literature have been published on this topic; Barry Blesser has published
a good overview [?]. Much more is known about reverbertor design and tuning
that has not been published; detailed reverberator designs are often kept secret
for commercial reasons. In general, the design process involves painstaking and
lengthy tuning by trial, error, and critical listening.

7.6.1 Controlling reverberators

Artificial reverberation is used almost universally in recording or sound rein-
forcement to sweeten the overall sound. However, and more interestingly, re-
verberation may be used as a sound source in its own right. The special case
of infinite reverberation (i.e., reverberation with the gain set so that the rever-
beration time is infinite) is very useful as a way of grabbing live sounds and
extending them in time.

To make this work in practice it is necessary to open the input of the re-
verberator only for a short period of time, during which the input sound is not
varying too rapidly. If an infinite reverberator’s input is left open the sound will

7.6. ARTIFICIAL REVERBERATION 189

X

reverb
feedback

IN

OUT

(a)

(b)

time

input
gain1

1
feedback

t t 1 2

t 3

Figure 7.16: Controlling a reverberator to capture sounds pointilistically: (a)
the network; (b) examples of how to control the input gain and feedback to
capture two sounds at times t1 and t2, and to hold them until a later time t3.

collect and quickly become an indecipherable mass. To “infinitely reverberate”
a note of a live instrument, it is best to wait until after the attack portion of
the note and then allow perhaps 1/2 second of the note’s steady state to enter
the reverberator. It is possible to build chords from a monophonic instrument
by repeatedly opening the input at different moments of stable pitch.

Figure 7.16 shows how this can be done in practice. The two most impor-
tant controls are an input gain to the reverberator, and its feedback gain. To
capture a sound, we set the feedback gain to one (infinite reverberation time)
and momentarily open the input at time t1. To add other sounds to an already
held one, we simply reopen the input gain at the appropriate moments (at time
t2 in the figure, for example.) Finally, we can erase the recirculating sound, thus
both fading the output and emptying the reverberator, by setting the feedback
gain to a value less than one (as at time t3). The further we reduce the feedback

190 CHAPTER 7. TIME SHIFTS

gain, the faster the output will decay.

7.7 Variable and fractional shifts

Like any audio synthesis or processing technique, delay networks become much
more powerful and interesting if their characteristics can be made to change over
time. The gain parameters (such as g in the recirculating comb filter) may be
controlled by envelope generators, varying them while avoiding clicks or other
artifacts. The delay times (such as d before) are not so easy to vary smoothly
for two reasons.

First, we have only defined time shifts for integer values of d, since for
fractional values of d an expression such as x[n − d] is not determined if x[n]
is only defined for integer values of n. To make fractional delays we will have
to introduce some suitable interpolation scheme. And if we wish to vary d
smoothly over time, it will not give good results simply to hop from one integer
to the next.

Second, even once we have achieved perfectly smoothly changing delay times,
the artifacts caused by varying delay time become noticeable even at very small
relative rates of change; while in most cases you may ramp an amplitude control
between any two values over 30 milliseconds without trouble, changing a delay
by only one sample out of every hundred makes a very noticeable shift in pitch—
so much so, that one frequently will vary a delay deliberately in order to hear
the artifacts, and only incidentally getting from one specific delay time value to
another one.

The first matter (fractional delays) can be dealt with using an interpolation
scheme, in exactly the same way as for wavetable lookup (Section 2.5). For
example, suppose we want to estimate a delay of d = 1.5 samples. For each n
we want to estimate a value for x[n−1.5]. We could do this using standard four-
point interpoation, putting a cubic polynomial through the four “known” points
(0, x[n]), (1, x[n-1]), (2, x[n-2]), (3, x[n-3]), and then evaluating the polynomial
at the point 1.5. Doing this repeatedly for each value of n gives the delayed
signal.

This four-point interpolation scheme can be used for any delay of at least
one sample. Delays of less than one sample can’t be calculated this way because
we need two input points more recent than the desired delay. This was possible
in the above example, but for a delay of 0.5 samples, for instance, we would
need the value of x[n + 1], which is in the future.

The accuracy of the estimate could be further improved by using higher-
order interpolation schemes. However, there is a trade-off between quality and
computational efficiency. Furthermore, if we move to higher-order interpolation
schemes, the minimum possible delay will increase, causing trouble in some
situations.

The second matter to consider is the artifacts—whether wanted or unwanted—
that arise from changing delay lines. In general, a discontinuous change in delay
time will give rise to a discontinuous change in the output signal, since it is in

7.7. VARIABLE AND FRACTIONAL SHIFTS 191

input

time

output timeD

Figure 7.17: A variable length delay line, whose output is the input from some
previous time. The output samples can’t be newer than the input samples,
nor older than the length D of the delay line. The slope of the input/output
relationship controls the momentary transposition of the output.

effect interrupted at one point and made to jump to another. If the input is a
sinusoid, the result is a discontinuous phase change.

If it is desired to change the delay line occasionally between fixed delay times
(for instance, at the beginnings of musical notes), then we can use the techniques
for managing sporadic discontinuities that were introduced in section 4.3. In
effect these techniques all work by muting the output in one way or another. On
the other hand, if it is desired that the delay time change continuously—while
we are listening to the output—then we must directly address the question of
artifacts that result from the changes.

Figure 7.17 shows the relationship between input and output time in a vari-
able delay line. The delay line is assumed to have a fixed maximum length D.
At each sample of output (corresponding to a point on the horizontal axis), we
output one (possibly interpolated) sample of the delay line’s input. The vertical
axis shows which sample (integer or fractional) to use from the input signal.
Letting n denote the output sample number, the vertical axis shows the quan-
tity n − d[n], where d[n] is the (time-varying) delay in samples. If we denote

192 CHAPTER 7. TIME SHIFTS

the input sample location by:

y[n] = n − d[n]

then the output of the delay line is:

z[n] = x[y[n]]

where the signal x is evaluated at the point y[n], interpolating appropriately in
case y[n] is not an integer. This is exactly the formula for wavetable lookup
(page 23). We can use all the properties of wavetable lookup of recorded sounds
to predict the behavior of variable delay lines.

There remains one difference between delay lines and wavetables: the ma-
terial in the delay line is constantly being refreshed. Not only can we not read
into the future, but, if the the delay line is D samples in length, we can’t read
further than D samples into the past either:

0 < d[n] < D

or, negating this and adding n to each side,

n > y[n] > n − D.

This last relationship appears as the region between the two diagonal lines in
Figure 7.17; the function y[n] must stay within this strip.

Returning to Section 2.2, the Momentary Transposition Formulas for Waveta-
bles predict that the sound emerging from the delay line will be transposed by
a factor t[n] given by:

t[n] = y[n] − y[n − 1] = 1 − (d[n] − d[n − 1])

If d[n] does not change with n, the transposition factor is 1 and the sound
emerges from the delay line at the same speed as it went in. But if the delay
time is increasing as a function of n, the resulting sound is transposed downward,
and if d[n] decreases, upward.

This is called the Doppler effect, and it occurs in nature as well. The air that
sound travels through can sometimes be thought of as a delay line. Changing the
length of the delay line corresponds to moving the listener toward or away from
a stationary sound source; the Doppler effect from the changing path length
works precisely the same in the delay line as it would be in the physical air.

Returning to Figure 7.17, we can predict that there is no pitch shift at the
beginning, but then when the slope of the path decreases the pitch will drop for
an interval of time before going back to the original pitch (when the slope returns
to one). The delay time can be manipulated to give any desired transposition,
but the greater the transposition, the less long we can maintain it before we run
off the bottom or the top of the diagonal region.

7.8. ACCURACY AND FREQUENCY RESPONSE OF INTERPOLATING DELAY LINES193

7.8 Accuracy and frequency response of inter-
polating delay lines

Since they are in effect doing wavetable lookup, variable delay lines introduce
distortion to the signals they operate on. Moreover, a subtler effect comes out
in the case the delay line is not changing in length: the frequency response, in
real situations, is never perfectly flat for a delay line whose length is not an
integer.

If the delay time is changing from sample to sample, the distortion results
of section 2.5 apply. To use them, we suppose that the delay line input can
be broken down into sinusoids and consider separately what happens to each
individual sinusoid. We can use table 2.5 to predict the RMS level of all the
combined distortion products for an interpolated variable delay line.

We’ll assume here that we want to use four-point interpolation. For sinu-
soids with periods longer than 32 samples (that is, for frequencies below 1/16
of the Nyquist frequency) the distortion is 96 dB or better—unlikely ever to
be noticeable. At a 44 kHz. sample rate, these periods would correspond to
frequencies up to about 1400 Hz. At higher frequencies the quality degrades,
and above 1/4 the Nyquist frequency the distortion products, which are only
down about 50 dB, should start to become readily audible.

The situation for a complex tone will depend primarily on the amplitudes and
frequencies of its higher partials. Suppose, for instance, that a tone’s partials
above 5000 Hz. are at least 20 dB less than its strongest partial, and that
above 10000 Hz they are down 60 dB. Then as a rough estimate, the distortion
products from the range 5000-10000 will each be limited to about -68 dB and
those from above 10000 Hz. will be limited to about -75 dB (because the worst
figure in the table is about -15 dB and this must be added to the strength of
the partial involved.)

If the high-frequency content of the input signal does turn out to give un-
acceptable distortion products, in general it is more effective to increase the
sample rate than the number of points of interpolation. For periods greater
than 4 samples, doubling the period (such as by doubling the sample rate)
decreases distortion by about 24 dB.

The 4-point interpolating delay line’s frequency response is nearly flat up
to half the Nyquist frequency, but thereafter it can dive quickly. Suppose (to
pick the worst case) that the delay is set halfway between two integers, say 1.5.
Cubic interpolation gives:

x[1.5] =
−x[0] + 9x[1] + 9x[2] − x[3]

8

Now let x[n] be a (real-valued) unit-amplitude sinusoid with angular frequency
ω, whose phase is zero at 1.5:

x[n] = cos(ω · (n − 1.5))

194 CHAPTER 7. TIME SHIFTS

2

gain
1

Figure 7.18: Gain of a four-point interpolating delay line with a delay halfway
between two integers. The DC gain is one.

and compute x[1.5] using the above formula:

x[1.5] =
9 cos(ω/2) − cos(3ω/2)

4

This is the peak value of the sinusoid that comes back out of the delay line,
and since the peak amplitude going in was one, this shows the frequency re-
sponse of the delay line. This is graphed in Figure 7.18. At half the Nyquist
frequency (ω = π/2) the gain is about -1 dB, which is a barely perceptible drop
in amplitude. At the Nyquist frequency itself, however, the gain is zero.

As with the results for distortion, the frequency response improves radically
with a doubling of sample rate. If we run our delay at a sample rate of 88200
Hz. instead of the standard 44100, we will get only about 1 dB of rolloff all the
way up to 20000 Hz.

7.9 Pitch shifting

A favorite use of variable delay lines is to alter the pitch of an incoming sound
using the Doppler effect. It may be desirable to alter the pitch in a variable way
(either randomly or periodically, for example), or alternatively, to maintain a
fixed musical interval of transposition over a length of time.

Returning to Figure 7.17, we see that, using a single variable delay line, we
can maintain any desired pitch shift for a limited interval of time, but if we
wish to sustain a fixed transposition we will always eventually land outside the
diagonal strip of admissible delay times. In the simplest scenario, we simply
vary the transposition up and down so as to remain in the strip.

This works, for example, if we wish to apply vibrato to a sound as shown in
figure 7.19. Here the delay function is

d[n] = a0 + a cos(ωn)

7.9. PITCH SHIFTING 195

input

time

output time

Figure 7.19: Vibrato using a variable delay line. Since the pitch shift alternates
between upward and downward, it is possible to maintain it without drifting
outside the strip of admissible delay.

196 CHAPTER 7. TIME SHIFTS

input

time

output time

Figure 7.20: Piecewise linear delay functions to maintain a constant transpo-
sition (except at the points of discontinuity). The outputs are enveloped as
suggested by the bars above each point, to smooth the output at the points of
discontinuity in delay time.

where a0 is the average delay, a is the amplitude of variation about the average
delay, and ω is an angular frequency. The momentary transposition, which
depends on the sample number n, is approximately

t = 1 + aω cos(ωn)

This ranges in value between 1 − aω and 1 + aω.
Suppose, on the other hand, that we wish to maintain a constant trans-

position over a longer interval of time. In this case we caon’t maintain the
transposition forever, but it is still possible to maintain it over fixed intervals
of time broken by discontinuous changes, as shown in Figure 7.20.

The delay time is the output of a suitably normalized sawtooth function,
and the output of the variable delay line is enveloped as suggested in the figure
to avoid discontinuities.

This is accomplished as shown in Figure7.21. The output of the sawtooth
generator is used in two ways. First it is adjusted to run batween the bounds d0

and d0 +w, and this adjusted sawtooth controls the delay time, in samples. The
initial delay d0 should be at least enough to make the variable delay feasible;
for four-point interpolation this must be at least one sample. Larger values of

7.9. PITCH SHIFTING 197

0

OUT

X

1

+

X N

1

0
0 N

X

w

d
0

f

IN

delay
time

Figure 7.21: Using a variable delay line as a pitch shifter. The sawtooth wave
creates a smoothly increasing or decreasing delay time. The output of the delay
line is enveloped to avoid discontinuities. Another copy of the same diagram
should run 180 degrees (π radians) out of phase with this one.

198 CHAPTER 7. TIME SHIFTS

d0 add a constant, additional delay to the output; this is usually offered as a
control in a pitch shifter since it is essentially free. The quantity w is sometimes
called the window size.

The sawtooth output is also used to envelope the output in exatly the same
way as in the enveloped wavetable sampler of Figure 2.7. The envelope is zero
at the points where the sawtooth wraps around, and in between, rises smoothly
to a maximum value of 1 (for unit gain).

If the frequency of the sawtooth wave is f (in cycles per second), then its
value sweeps from 0 to 1 every R/f samples (where R is the sample rate). The
difference between successive samples is thus f/R. If we let x[n] denote the
output of the sawtooth oscillator, then

x[n + 1] − x[n] =
f

R

(except at the wraparound points). If we adjust the output range of the
wavetable oscillator to the value w (as is done in the figure) we get a new
slope:

w · x[n + 1] − w · x[n] =
wf

R

Adding the constant d0 has no effect on this slope. The Momentary Transposi-
tion is then calculated as:

t = 1 − wf

R

To complete the design of the pitch shifter we must add the other copy halfway
out of phase. This gives rise to a delay reading pattern as shown in Figure 7.22.

The pitch shifter can transpose either upward (using negative sawtooth fre-
quencies, as in the figure) or downward, using positive ones. Pitch shift is
usuappy controlled by changing f with w fixed. To get a desired transposition
interval t, set

f =
(t − 1)R

w

The window size w should be chosen small enough, if possible, so that the two
delayed copies (w/2 samples apart) do not sound as distinct echoes. However,
very small values of w will force f upward; values of f greater than about 5
result in very audible modulation. So if very large transpositions are required,
the value of w may need to be increased. Typical values range from 30 to 100
milliseconds (about R/30 to R/10 samples).

Although the frequency may be changed at will, even discontinuously, w
must be handled more carefully. The most common choice is to mute the output
while changing w discontinuously; alternatively, w may be ramped continuously
but this causes hard-to-predict Doppler shifts.

The choice of envelope is usually one half cycle of a sinusoid. If we assume on
average that the two delay outputs have neither positive nor negative correlation,
the signal power from the two delay lines, after enveloping, will add to a constant
(since the sum of squares of the two envelopes is one).

7.9. PITCH SHIFTING 199

input

time

output time

Figure 7.22: The pitch shifter’s delay reading pattern using two delay lines, so
that one is at maximum amplitude exactly when the other is switching.

200 CHAPTER 7. TIME SHIFTS

18 <−− delay time

delread~ delay1

tabplay~ G01−tab

metro 1000

loadbang

write to delay line

+~

delwrite~ delay1 1000

(msec)

read from delay line

OUT
|

input signal

Figure 7.23: Example patch G01.delay.pd, showing a noninterpolating delay
with a delay time controlled in milliseconds.

Many variations exist on this pitch shifting algorithm. One widely used
variant is to use a single delay line, with no enveloping at all. In this situation
it is necessary to choose the point at which the delay time jumps, and the
point it jumps to, so that the output stays continuous. For example, one could
wait for the output signal to pass through zero (a “zero crossing”) and jump
discontinuously to another one. Using only one delay line has the advantage
that the signal output sounds more “present”. A disadvantage is that, since the
delay time is a function of input signal value, the output is no longer a linear
function of the input.

7.10 Examples

7.10.1 Fixed, noninterpolating delay line

Patch G01.delay.pd (Figure 7.23) applies a simple delay line to an input signal.
Two new objects are needed:

delwrite~ : define and write to a delay line. The first creation argument gives
the name of the delay line (and two delay lines may not share the same name).
The second creation argument is the length of the delay line in milliseconds.
The inlet takes an audio signal and writes it continuously into the delay line.

delread~ : read from (or “tap”) a delay line. The first creation argument
gives the name of the delay line (which should agree with the name of the corre-

7.10. EXAMPLES 201

60

50

<−− pitch

<−− delay time

write to delay line

read from delay line

add the original and the delayed signal

mtof 1

*~

+~

*~ 0.7 feedback gain

*~

adsr 1 100 1000 0 1000phasor~

delread~ G02−del 160

delwrite~ G02−del 2000OUT
|

input

signal

Figure 7.24: Recirculating delay (still noninterpolating).

sponding delwrite~ object; this is how Pd knows which delwrite~ to associate
with the delread~ object). The second (optional) creation argument gives the
delay time in milliseconds. This may not be negative and also may not exceed
the length of the delay line as specified to the delwrite~ object. Incoming num-
bers (messages) may be used to change the delay time dynamically. However,
this will make a discontinuous change in the output, which should therefore be
muted if the delay time changes.

This example simply pairs one delwrite~ and one delread~ object to make
a simple, noninterpolating delay. The input signal is a looped recording. The
delayed and the non-delayed signal are added to make a non-recirculating comb
filter. At delay times below about 10 milliseconds, the filtering effect is most
prominent, and above that, a discrete echo becomes audible. There is no mut-
ing protection on the delay output, so clicks are possible when the delay time
changes.

7.10.2 Recirculating comb filter

Patch G02.delay.loop.pd (Figure 7.24) shows how to make a recirculating delay
network. The delay is again accomplished with a delwrite~/delread~ pair.
The output of the delread~ object is multiplied by a feedback gain of 0.7
and fed into the delwrite~ object. An input (supplied by the phasor~ and
associated objects) is added into the delwrite~ input; this sum becomes the
output of the network. This is the recirculating comb filter of Section 7.4.

The network of tilde objects does not have any cycles, in the sense of ob-
jects feeding either directly or indirectly (via connections through other ob-

202 CHAPTER 7. TIME SHIFTS

hip~ 10

10

line~

pack 0 100

2

60

line~

pack 0 100

* 0.01

30

line~

pack 0 100

*~

cos~

48

mtof

* 0.5

clip~ −0.2 0.2

* 0.01

+~

*~

*~

/ 100

hip~ 5

+~ 1

osc~ 0

+~ 1.46

<−− timbre

<−− pitch

<−− cycle frequency (hundredths)

<−− cycle depth (msec)

<−− feedback

vd~ G03−del

delwrite~ G03−del 1000

clip~ −1 1

|

OUT

osc~

(hundredths)

Figure 7.25: The flanger: an interpolating, variable delay line.

jects) to themselves. The feedback in the network occurs implicitly between the
delwrite~and delread~ objects.

7.10.3 Variable delay line

The next example, Patch G03.delay.variable.pd (Figure 7.25), is another recir-
culating comb filter, this time using a variable-length delay line. One new object
is introduced here:

vd~ : Read from a delay line, with a time-varying delay time. As with the
delread~ object, this reads from a delay line whose name is specified as a
creation argument. Instead of using a second argument and/or control messages
to specify the delay time, in the case of the vd~ object the delay in milliseconds
is specified by an incoming audio signal. The delay line is read using four-point
(cubic) interpolation; the minimum achievable delay is one sample.

Here the objects on the left side, from the top down to the clip~ -0.2 0.2

object, form a waveshaping network; the index is set by the “timbre” control,
and the waveshaping output varies between a near sinusoid and a bright, buzzy
sound. The output is added to the output of the vd~ object. The sum is then

7.10. EXAMPLES 203

high pass filtered (the hip~ object at lower left), multiplied by a feedback gain,
clipped, and written into the delay line at bottom right. There is a control at
right to set the feedback gain; here, in contrast with the previous example, it is
possible to specify a gain greater than one in order to get unstable feedback. For
this reason the second clip~ object is inserted within the delay loop (just above
the delwrite~ object) so that the signal cannot exceed 1 in absolute value.

The length of the delay is controlled by the signal input to the vd~ object. An
oscillator with variable frequency and gain, in the center of the figure, provides
the delay time. The oscillator is added to one to make it nonnegative before
multiplying it by the “cycle depth” control, which effectively sets the range of
delay times. The minimum possible delay time of 1.46 milliseconds is added so
that the true range of delay times is between the minimum and the same plus
twice the “depth”. The reason for this minimum delay time is taken up in the
discussion of the next example.

Comb filters with variable delay times are sometimes called flangers. As the
delay time changes the peaks in the frequency response move up and down in
frequency, so that the timbre of the output changes constantly in a characteristic
way.

7.10.4 Order of execution and lower limits on delay times

When using delays (as well as other state-sharing tilde objects in Pd), the
order in which the delwrite~ and delread~ operations are done can affect the
outcome of the computation. Although the tilde objects in a patch may have
a complicated topology of audio connections, in reality Pd executes them all in
a sequential order, one after the other, to compute each block of audio output.
This linear order is guaranteed to be compatible with the audio interconnections,
in the sense that no tilde object’s computation is done until all its inputs, for
that same block, have been computed.

Figure 7.26 shows two examples of tilde object topologies and their transla-
tion into a sequence of computation. In part (a) there are four tilde objects, and
because of the connections, the object a must produce its output before either
of b or c can run; and both of those in turn are used in the computation of
d . So the possible orderings of these four objects are a-b-c-d and a-c-b-d.
These two orderings will have exactly the same result unless the computation
of b and c somehow affect each other’s output (as delays might).

Part (b) of the figure shows a cycle of tilde objects. This network cannot be
sorted into a compatible sequential order, since each of a and b requires the
other’s output to be computed first. In general, a sequential ordering of the tilde
objects is possible if and only if there are no cycles anywhere in the network of
tilde objects and their audio signal interconnections. Pd reports an error when
such a cycle appears. (Note that the situation for control interconnections
between objects is more complicated and flexible; see the Pd documentation for
details.)

To see the effect of the order of computation on a delwrite~/delread~ pair,
we can write explicitly the input and output signals in the two possible orders,

204 CHAPTER 7. TIME SHIFTS

a~

b~ c~

d~

a~ b~

(a)

(b)

Figure 7.26: Order of execution of tilde objects in Pd: (a), an acyclic network.
The objects may be executed in either the order a-b-c-d or a-c-b-d. In part (b),
there is a cycle, and there is thus no compatible linear ordering of the objects
because each one would need to be run before the other.

with the minimum possible delay. If the write operation comes first, at a block
starting at sample number n, the operation can be written as:

x[n], . . . , x[n + B − 1] −→ delwrite~

where B is the block size (as in Chapter 3). Having put those particular samples
into the delay line, a following delread~ is able to read the same values out:

delread~ −→ x[n], . . . , x[n + B − 1]

On the other hand, suppose the delread~ object comes before the delwrite~.
Then the samples x[n], . . . , x[n + B − 1] have not yet been stored in the delay
line, so the most recent samples that may be read belong to the previous block:

delread~ −→ x[n − B], . . . , x[n − 1]

x[n], . . . , x[n + B − 1] −→ delwrite~

Here the minimum delay we can possibly obtain is the block size B. So the
minimum delay is either 0 or B, depending on the order in which the delread~

and delwrite~objects are sorted into a sequence of execution.
Looking back at the patches of Figures 7.24 and 7.25, which both feature

recirculating delays, the delread~ object must be placed earlier in the sequence
than the delwrite~ object. This is true of any design in which a delay’s output
is fed back into its input. The minimum possible delay is B samples. For a
(typical) sample rate of 44100 Hz. and block size of 64 samples, this comes to
1.45 milliseconds. This might not sound at first like a very important restriction.
But if you are trying to tune a recirculating comb filter to a specific pitch, the
highest you can get only comes to about 690 Hz. To get shorter recirculating
delays you must increase the sample rate or decrease the block size.

Patch G04.control.blocksize.pd (Figure 7.27) shows how the block size can
be controlled in Pd using a new object:

7.10. EXAMPLES 205

pd delay−writer

expr 1000/$f1

mtof
1 0

metro 500

random 60

loadbang

+ 30

vline~

del 1

|
OUT

(a) (b)

inlet~

outlet~ block~ 1

*~ 0.99+~

inlet

delread~ G04−del

delwrite~ G04−del 1000

incoming

pulses
delay

time

set block size

Figure 7.27: A patch using block size control to lower the loop delay below the
normal 64 samples: (a). the main patch; (b). the “delay-writer” subpatch with
a block~ object and a recirculating delay network.

block~ , switch~ : Set the local block size of the patch window the object

sits in. Block sizes must be powers of two. The switch~ object, in addition,
can be used to turn audio computation within the window on and off, using
control messages. Additional creation arguments can set the local sample rate
and specify overlapping computations (demonstrated in Chapter ??).

In part (a) of the figure (the main patch), a rectangular pulse is sent to the
pd delay-writer subpatch, whose output is then returned to the main patch.
Part (b) of the figure shows the contents of the subpatch, which sends the pulses
into a recirculating delay. The block~ object specifies that, in this subpatch,
signal computation uses a block size (B) of only one. So the minimum achievable
delay is one sample instead of the default 64.

Putting a pulse (or other excitation signal) into a recirculating comb filter
to make a pitch is sometimes called Karplus-Strong synthesis, having been de-
scribed in a paper by them [KS83], although the idea seems to be older. It made
its way for example into Paul Lansky’s 1979 piece, Six Fantasies on a poem by

Thomas Campion.

7.10.5 Order of execution in non-recirculating delay lines

In nonrecirculating delay networks, it should be possible to place the operation
of writing into the delay line earlier in the sequence than that of reading it. There
should thus be no lower limit on the length of the delay line (except whatever
is imposed by the interpolation scheme; see section 7.7). In languages such as
Csound, the sequence of unit generator computation is (mostly) explicit, so this
is easy to specify. In the graphical patching environments, however, the order is

206 CHAPTER 7. TIME SHIFTS

45

+~

delay in

pd delay−writer

pd delay−reader

/ 44.1

(BAD)

pack 0 30

pd pulse

delwrite~ G05−d1 1000

vd~ G05−d1

line~

pd pulse

(GOOD)

 samples(b)(a)

Figure 7.28: Using subpatches to ensure that delay lines are written before
they are read in non-recirculating networks: (a) the delwrite~ and vd~ objects
might be executed in either the “right” or the “wrong” order; (b) the delwrite~
object is inside the pd delay-writer subpatch and the vd~ object is inside
the pd delay-reader one. Because of the audio connection between the two
subpatches, the order of execution of the read/write pair is forced to be the
correct one.

implicit and another approach must be taken to ensuring that, for example, a
delwrite~ object is computed before the corresponding delread~ object. One
way of accomplishing this is shown in Patch G05.execution.order.pd (Figure
7.28).

In part (a) of the figure, the connections in the patch do not determine which
order the two delay operations appear in the sorted sequence of tilde object
computation; the delwrite~ object could be computed either before or after
the vd~ object. If we wish to make sure the writing operation happens before
the reading operation, we can proceed as in part (b) of the figure, and put the
two operations in subpatches, connecting the two via audio signals so that the
first subpatch must be computed before the second one. (Audio computation in
subpatches is done atomically, in the sense that the entire subpatch contents are
considered as the audio computation for the subpatch as a whole. So everything
in the one subpatch happens before anything in the second one.)

In this example, the “right” and the “wrong” way to make the comb filter
have audibly different results. For delays less than 64 samples, the right hand
side of the patch (using subpatches) gives the correct result, but the left hand
side doesn’t produce delays below the 64 sample block size.

7.10. EXAMPLES 207

fiddle~ 2048

unpack

moses 1

mtof

pd looper

samplerate~t f b

delwrite~ G06−del 100

delread~ G06−del

vd~ G06−del

+~

+

expr 500/$f1

expr 2048000/$f1

line~

pack 0 20

fundamental frequency

1/2 period, in msec

estimate fiddle~ delay

|
OUT

as one window (in msec)

Figure 7.29: An “octave doubler” uses pitch information (obtained using a
fiddle~ object) to tune a comb filter to remove the odd harmonics in an in-
coming sound.

7.10.6 Non-recirculating comb filter as octave doubler

In patch G06.octave.doubler.pd (Figure 7.29) we revisit the idea of pitch-based
octave shifting introduced earlier in patch E03.octave.divider.pd. There, know-
ing the periodicity of an incoming sound allowed us to tune a ring modulator to
introduce subharmonics. Here we realize the octave doubler described in Section
7.3. Using a variable, non-recirculating comb filter we filter out odd harmon-
ics, leaving only the even ones, which sound an octave higher. As before, the
spectral envelope of the sound is roughly preserved by the operation, so we can
avoid the “chipmunk” effect we would have got by using speed change to do the
transposition.

The comb filtering is done by combining two delayed copies of the incoming
signal (from the pd looper subpatch at top). The fixed one (delread~) is set
to a delay of 1/2 the window size of the pitch following algorithm. Whereas
in the earlier example this was hidden in another subpatch, we can now show
this explicitly. The delay in milliseconds is estimated as equal to the 2048-
sample analysis window used by the fiddle~ object; in milliseconds this comes
to 1000 · 2048/R where R is the sample rate.

The variable delay is the same, plus 1/2 of the measured period of the

208 CHAPTER 7. TIME SHIFTS

incoming sound, or 1000/(2f) milliseconds where f is the frequency in cycles
per second. The sum of this and the fixed delay time is then smoothed using a
line~ object to make the input signal for the variable delay line.

Since the difference between the two delays is 1/(2f), the resonant frequen-
cies of the resulting comb filter are 2f, 4f, 6f · · ·; the frequency response (section
7.3) is zero at the frequencies f, 3f, . . ., so the resulting sound contains only the
partials at multiples of 2f—an octave above the original. Seen another way, the
incoming sound is output twice, a half-cycle apart; odd harmonics are thereby
shifted 180 degrees (π radians) and cancel; even harmonics are in phase with
their delayed copies and remain in the sum.

Both this and the octave divider may be altered to make shifts of 3 or 4 to
one in frequency, and they may also be combined to make compound shifts such
as a music fifth (a ratio of 3:2) by shifting down an octave and then back up a
factor of three. (You should do the down-shifting before the up-shifting for best
results.)

7.10.7 Time-varying complex comb filter: shakers

Patch G07.shaker.pd(Figure 7.30) shows a different way of extending the idea
of a comb filter. Here we combine the input signal at four different time shifts
(instead of two, as in the original non-recirculating comb filter), each at a dif-
ferent positive and/or negative gain. To do this, we insert the input signal into
a delay line and tap it at three different points; the fourth “tap” is the original,
undelayed signal.

As a way of thinking about the frequency response of a four-tap comb filter,
we consider first what happens when two of the four gains are close to zero.
Then we end up with a simple non-recirculating comb filter, with the slight
complication that the gains of the two delayed copies may be different. If they
are both of the same sign, we get the same peaks and valleys as predicted in
Section 7.3, only with the valleys between peaks possibly being more shallow.
If they are opposite in sign, the valleys become peaks and the peaks become
valleys.

Depending on which two taps we supposed were nonzero, the peaks and
valleys are spaced by different amounts; the delay times are chosen so that 6
different delay times can arise in this way, ranging between 6 and 30 millisec-
onds. In the general case in which all the gains are non-zero, we can imagine
the frequency response function varying continuously between these extremes,
giving a succession of complicated patterns. This has the effect of raising and
lowering the amplitudes of the partials of the incoming signal, all independently
of the others, in a complicated pattern, to give a steadily time-varying timbre.

The right-hand side of the patch takes care of changing the gains of the
input signal and its three time-shifted copies. Each time the metro object fires,
a counter is incremented (the f, + 1, and mod 4 objects). This controls which
of the amplitudes will be changed. The amplitude itself is computed by making
a random number and normalizing it to lie between -0.7 and 1.3 in value. The
random value and the index are packed (along with a third value, a time interval)

7.10. EXAMPLES 209

+~

delwrite~ G07−del 30

line~*~

line~*~

line~*~

line~*~

+ 1

mod 4

f

random 1000

t f b

100

route 0 1 2 3

delread~ G07−del 30

phasor~ 80

delread~ G07−del 17

delread~ G07−del 11

* 4

expr 2 * $f1/1000 − 0.7

110

pack 0 0 200

frequency on/off
time constant
(msec)

|
OUT

metro

Figure 7.30: A “shaker”, a four-tap comb filter with randomly varying gains on
the taps.

210 CHAPTER 7. TIME SHIFTS

and this triple goes to the route object. The first element of the triple (the
counter) selects which output to send the other two values to; as a result, one
of the four possible line~ objects gets a message to ramp to a new value.

If the time variation is done quickly enough, there is also a modulation
effect on the original signal; in this situation the straight line segments used in
this example should be replaced by modulating signals with more controllable
frequency content; we will revisit this in the next chapter.

7.10.8 Reverberator

Patch G08.reverb.pd(Figure 7.31) shows a simple artificial reverberator, essen-
tially a realization of the design shown in Figure 7.15. Four delay lines are
fed by the input and by their own recirculated output. The delay outputs are
intermixed using rotation matrices, built up from elementary rotations of π/4
as in Figure 7.13 part (a).

The normalizing multiplication (by
√

1/2 at each stage) is absorbed into
the feedback gain, which therefore cannot exceed 1/2. At a feedback gain of
exactly 1/2, all the energy leaving the delay lines is reinserted into them, so the
reverberation lasts perpetually.

Figure 7.32 shows the interior of the reverb-echo abstraction used in the
reverberator. The two inputs are mixed (using the same rotation matrix and
again leaving the renormalization for later). One channel is then delayed. The
delay times are selected to grow roughly exponentially; this ensures a smmoth
and spread-out pattern of echos.

Many extensions of this idea are possible of which we’ll only name a few. It
is natural, first, to put low-pass filters at the end of the delay lines, to mimic the
typically faster decay of high frequencies than low ones. It is also common to
use more than four recirculating delays; one reverberator in the Pd distribution
uses sixteen. Finally, it is common to allow separate control of the amplitudes of
the early echos (heard directly) and that of the recirculating signal; parameters
such as these are thought to control sonic qualities described as “presence”,
“warmth”, “clarity”, and so on.

7.10.9 Pitch shifter

Patch G09.pitchshift.pd(Figure 7.33) shows a realization of the pitch shifter
described in Section 7.9. A delay line (defined and written elsewhere in the
patch) is read using two vd~ objects. The delay times vary between a minimum
delay (provided as the “delay” control) and the minimum plus a window size
(the “window” control.)

The desired pitch shift in half-tones (h) is first converted into a transposition
factor

t = 2h/12 = elog(2)/12·h ≈ e0.05776h

(called “speed change” in the patch). The computation labeled “tape head
rotation speed” is the same as the formula for f given on page 198. Here the

7.10. EXAMPLES 211

inlet~

reverb−echo echo−del1 5.43216

+~ +~

outlet~ outlet~

+~ +~ −~ −~

+~ +~ −~ −~

inlet/ 200

min 100

max 0

delwrite~ loop−del1 60

delwrite~ loop−del2 71.9345

delwrite~ loop−del4 95.945

delread~ loop−del1 60

delread~ loop−del2 71.9345

delread~ loop−del4 95.945

delread~ loop−del3 86.7545

delwrite~ loop−del3 86.7545

reverb−echo echo−del2 8.45346

reverb−echo echo−del3 13.4367

reverb−echo echo−del4 21.5463

reverb−echo echo−del5 34.3876

reverb−echo echo−del6 55.5437

"early echo" generators, which also increase echo density.

Get the outputs of the recirculating

Do a power−conserving

...then (1,3) and (2,4)

Put the signals back into

the recirculating delays.

Tap outputs from here.

of 0−100 controls reverb

time.

feedback gain on a scale

*~ *~ *~ *~

 First combine (1,2) and

delays. Add the inputs to two of them.

mix of them in pairs.

(3,4)...

Figure 7.31: An artificial reverberator.

212 CHAPTER 7. TIME SHIFTS

inlet~ inlet~

outlet~ outlet~

+~ −~

delwrite~ $1 $2

delread~ $1 $2

Figure 7.32: The echo generator used in the reverberator.

0

*~

line~

0

pack 0 200

r window

r transpose

exp

0

/

* 0.001

line~

pack 0 200

0

r delay

+~

cos~

*~

+~

wrap~

*~

+~

cos~

*~

t b f

0 +~ 0.5

−~ 0.5

*~ 0.5

−~ 0.5

*~ 0.5

− 1

* 0.05776

* −1

<−− transposition
(halftones)

speed
change

tape head

phasor~ max 1.5

delay

(msec)

max 1

rotation freq

|
OUT

<−−window

(msec)

vd~ G09−del
vd~ G09−del

Figure 7.33: A pitch shifter using two variable taps into a delay line.

7.10. EXAMPLES 213

positive interval (seven half steps) gives rise to a transposition factor greater
than one, and therefore to a negative value for f .

Once f is calculated, the production of the two phased sawtooth signals
and the corresponding envelopes parallels exactly that of Section 2.6.5 (the
overlapping sample looper). The minimum delay is added to each of the two
sawtooth signals to make delay inputs for the vd~ objects, whose outputs are
multiplied by the corresponding envelopes and summed.

7.10.10 Exercises

1. A complex number has magnitude one and argument π/4. What are its
real and imaginary parts?

2. A complex number has magnitude one and real part 1/2. What is its
imaginary part? (There are two possible values.)

3. What delay time would you give a comb filter so that its first frequency re-
sponse peak is at 440 Hz.? If the sample rate is 44100 Hz., what frequency
would correspond to the nearest integer delay?

4. Suppose you made a variation on the non-recirculating comb filter so that
the delayed signal was subtracted from the original instead of adding.
What would the new frequency response be?

5. Derive an explicit formula for the frequency response of a recirculating
comb filter with delay time d and feedback gain g, as a function of angular
frequency ω.

(answer :[(1 − g cos(2πωd))
2

+ (g sin(2πωd))
2
]
−1/2

)

6. If you want to make a 6-Hz. vibrato with a sinusoidally varying delay
line, and if you want the vibrato to change the frequency by 5%, how big
a delay variation would you need? How would this change if the same
depth of vibrato was desired at 12 Hz.?

214 CHAPTER 7. TIME SHIFTS

Chapter 8

Filters

In the previous chapter we saw that a delay network can have a non-uniform
frequency response, in other words, a gain that varies as a function of frequency.
Delay networks also typically affect the phase of incoming signals in ways that
depend on frequency. If the delay times used are short, the frequency-dependent
gain and phase change become the best way of describing the effect of the delay
network on its input. Delay networks which are designed specifically to effect
particular amplitude or phase changes on their inputs are called filters.

In block diagrams, filters are shown as in figure 8.1, part (a). The curve
shown within the block gives a qualitative representation of the filter’s frequency
response (as defined in section 7.3). This frequency response may vary with time,
and depending on the design of the filter, one of more controls (or additional
audio inputs) might be used to change it.

Suppose, still following the procedure of section 7.3, we put a unit-amplitude,
complex-valued sinusoid with angular frequency ω into a filter. We expect to
get out a sinusoid of the same frequency and some amplitude, which depends on
ω. This gives us a complex-valued function H(ω), which is called the transfer

function of the filter.

The frequency response is the gain as a function of the frequency ω. It is is
equal to the absolute value of the transfer function. A filter’s frequency response
is customarily graphed as in Figure 8.1, part (b). An incoming unit-amplitude
sinusoid of frequency ω comes out of the filter with amplitude |H(ω)|.

It is sometimes also useful to know the phase response of the filter, equal to
arg(H(ω)). For a fixed frequency ω, the filter’s output phase will be arg(H(ω))
radians ahead of its input phase.

The design and use of filters is a huge subject, because the wide range of uses
a filter might be put to encourages a wide variety of filter design processes. In
some uses a filter must exactly follow a prescribed frequency response, in others
it is important to minimize computation time, in others the phase response is
important, and in still others the filter must behave well when its parameters
change quickly with time.

215

216 CHAPTER 8. FILTERS

(a) (b)

gain

Figure 8.1: Representations of a filter. (a) in a block diagram; (b) a graph of
its frequency response.

8.1 Taxonomy of filters

Over the history of electronic music the technology for building filters have
changed constantly, but certain kinds of filters reappear throughout. In this
section we will give some nomenclature for describing filters of several generic,
recurring types. Later we’ll develop some basic strategies for making filters
with desired characteristics, and finally we’ll discuss some common applications
of filters in computer music.

8.1.1 Low-pass and high-pass filters

By far the most frequent purpose for using a filter is extracting either the low-
frequency or the high-frequency portion of an audio signal, attenuating the rest.
This is accomplished using a low-pass or high-pass filter.

Ideally, a low-pass or high-pass filter would have a frequency response of 1
up to (or down to) a specified cutoff frequency and zero past it; but such filters
cannot be realized in practice. Instead, we try to find realizable approximations
to this ideal response. The more design effort and computation time we put
into it, the closer we can get.

Figure 8.2 shows the frequency response of a low-pass filter. The frequency
spectrum is divided into three bands, labeled on the horizontal axis. The pass-

band is the region (frequency band) where the filter should pass its input through
to its output with unit gain. For a low-pass filter (as shown), the passband
reaches from a frequency of zero up to a certain frequency limit. For a high-
pass filter, the passband would appear on the right-hand side of the graph and
would extend from the frequency limit up to the highest frequency possible. Any
realizable filter’s passband will be only approximately flat; the deviation from
flatness is called the ripple, and is often specified by giving the ratio between

8.1. TAXONOMY OF FILTERS 217

ripple

passband stopband

transition
band

stopband

attenuation

Figure 8.2: Terminology for describing the frequency response of low-pass and
high-pass filters. The horizontal axis is frequency and the vertical axis is gain.
A low-pass filter is shown; a high-pass filter has the same features switched from
right to left.

218 CHAPTER 8. FILTERS

the highest and lowest gain in the passband, expressed in decibels. The ideal
low-pass or high-pass filter would have a ripple of 0 dB.

The stopband of a low-pass or high-pass filter is the region of the spectrum
(the frequency range) over which the filter is intended not to transmit its input.
The stopband attenuation is the difference, in decibels, between the lowest gain
in the passband and the highest gain in the stopband. Ideally this would be
infinite; the higher the better.

Finally, a realisable filter, whose frequency response is always a continuous
function of frequenecy, always needs a region, or frequency band, over which
the gain drops from the passbang gain to the stopband gain; this is called the
transition band. The thinner this band can be made, the more nearly ideal the
filter.

8.1.2 Band-pass and stop-band filters

A band-pass filter admits frequencies within a given band, rejecting frequencies
below it and above it. Much the same terminology as before may be used to
describe a band-pass filter, as shown in figure 8.3. A stop-band filter does the
reverse, rejecting frequencies withing the band and letting through frequencies
outside it.

In practice, a simpler language is often used for describing bandpass filters, as
shown in Figure 8.4. Here there are only two controls: a center frequency and a
bandwidth. The passband is considered to be the region where the filter’s output
has at least half the power (

√

(1/2) times the gain) of its peak. The bandwidth
is the width, in frequency units, of the passband. The center frequency is the
point of maximum gain, which is approximately the midpoint of the passband.

8.1.3 Equalizing filters

In some situations, such as equalization, the goal isn’t to pass signals of certain
frequencies while stopping others altogether, but to make controllable adjust-
ments, boosting or attenuating signals, over a frequency range, by a desired
gain. Two other filter types are useful for this. First, a shelving filter (figure
8.5) is used for selectively boosting or reducing either the low or high end of the
frequency range. Below a selectable crossover frequency, the filter tends toward
a low-frequency gain, and above it it tends toward a different, high-frequency
one. The crossover frequency, low-frequency gain, and high-frequency gain can
all be adjusted independently.

Second, a peaking filter (Figure 8.6) is capable of boosting or attenuating
signals within a range of frequencies. The center frequency and bandwidth
(which together control the range of frequencies affected), and the in-band and
out-of-band gains are separately adjustible.

Parametric equalizers often employ two shelving filters (one each to adjust
the low and high ends of the spectrum) and two or three peaking filters to adjust
bands in between.

8.1. TAXONOMY OF FILTERS 219

ripple

passband
stopband

transition

stopband
attenuation

stopband

bands

Figure 8.3: Terminology for describing the frequency response of band-pass and
stop-band filters. The horizontal axis is frequency and the vertical axis is gain.
A band-pass filter is shown; a stop-band filter would have a contiguous stopband
surrounded by two passbands.

bandwidth

center frequency

Figure 8.4: A simplified view of a band-pass filter, showing bandwidth and
center frequency.

220 CHAPTER 8. FILTERS

high

frequency

gain

low frequency gain

crossover frequency

Figure 8.5: A shelving filter, showing low and high frequency gain, and crossover
frequency.

in-band
gain

center frequency

out-of-band gain

bandwidth

Figure 8.6: A peaking filter, with controllable center frequency, bandwidth, and
in-band and out-of-band gains.

8.2. DESIGNING FILTERS 221

IN

X

OUT

d=1

-

Q

Figure 8.7: A delay network with a single-sample delay and a complex gain Q.
This is the non-recirculating elementary filter, first form. Compare the simpler
non-recirculating comb filter shown in Figure 7.3, which corresponds to choosing
Q = −1 here.

8.2 Designing filters

We saw in chapter 7 how to predict the frequency and phase response of delay
networks. The art of filter design lies in finding a delay network whose transfer
function (which controls the frequency and phase response) has a desired shape.
We will devalop an approach to designing such delay networks by using the two
types of comb filters developed in chapter 7: recirculating and non-recirculating.
Here we will be interested in the special case where the delay is only one sample
in length. In this situation, the frequency responses shown in Figures 7.6 and
7.10 no longer look like combs; the second peak recedes all the way to the sample
rate, 2π radians, when d = 1. Since only frequencies between 0 and the Nyquist
frequency (π radians) are audible, in effect there is only one peak when d = 1.

In the comb filters shown in Chapter 7, the peaks are situated at DC (zero
frequency), and we will now want to be able to place them at other, nonzero
frequencies. We will be able to do this by using delay networks—comb filters—
with complex-valued gains.

8.2.1 Elementary non-recirculating filter

We generalize the non-recirculating comb filter to the design shown in figure
8.7, called the non-recirculating elementary filter, of the first form.

To find the frequency response, as in Chapter 7 we feed the delay network a
complex sinusoid 1, Z, Z2, . . . whose frequency is ω = arg(Z), so that as before,

222 CHAPTER 8. FILTERS

Z = eiω. The nth sample of the input is Zn and that of the output is

(1 − QZ−1)Zn

so the transfer function is

H(Z) = 1 − QZ−1 = 1 − Qeiω.

This can be represented graphically as shown in Figure 8.8. Suppose we write
the coefficient Q in polar form:

Q = qeiα

Then the gain of the filter is the distance from the point Q to the point Z in
the complex plane. Analytically we can see this because

|1 − QZ−1| = |Z||1 − QZ−1| = |Q − A|
Graphically, the number QZ−1 is just the number Q rotated backwards (clock-
wise) by the angular frequency ω of the incoming sinusoid. The value |1−QZ−1|
is the distance from QZ−1 to 1 in the complex plane, which is equal to the dis-
tance from Q to Z.

As the frequency of the input sweeps from 0 to 2π, the point Z travels
couterclockwise around the unit circle. At the point where ω = α, the distance
is at a minimum, equal to q − 1. The maximum occurs which Z is at the
opposite point of the circle. Figure 8.9 shows the transfer function for three
different values of q.

8.2.2 Non-recirculating filter, second form

Occasionally we will use a variant of the filter above, as shown in Figure 8.10,
called the elementary non-recirculating filter, second form. Instead of multiply-
ing the delay output by Q we multiply the direct signal by its complex conjugate

A. (If
A = a + bi = reiα

is any complex number, its complex conjugate is defined as:

A = a − bi = re−iα

Graphically this flips the entire complex plane across the real axis.) The transfer
function of the new filter is

H(Z) = |Q − Z−1|
This gives rise to the same frequency response as the first form since

|Q − Z−1| = |Q − Z−1| = |Q − Z|
Here we use the fact that Q = Z−1, for all unit complex numbers Q = eiω, since

Q = e−iω = Q−1

Although the two forms of the elementary non-recirculating filter have the same
frequency response, their phase responses are different, and we will occasionally
use the second form for its phase response.

8.2. DESIGNING FILTERS 223

1 real

imaginary

1-QZ
-1

QZ -1

Z-Q
Q

Z

r

Figure 8.8: Diagram for calculating the frequency response of the non-
recirculating elementary filter (Figure 8.7). The frequency response is given
by the length of the segment connecting Z to A in the complex plane.

224 CHAPTER 8. FILTERS

0
0.5

frequency0

gain

2

|Q|=1

Figure 8.9: Frequency response of the elementary non-recirculating filter Figure
8.7. Three values of Q are used, all with the same argument (-2 radians), but
with varying absolute value.

IN

OUT

d=1

-

X Q

Figure 8.10: The elementary non-recirculating filter, second form.

8.2. DESIGNING FILTERS 225

frequency0 2

(a) (b)

0.5

0

IN

d

+

X

OUT

P

|P|=0.75

Figure 8.11: The elementary recirculating filter: (a) block diagram; (b) fre-
quency response.

8.2.3 Elementary recirculating filter

The simplest recirculating filter is the recirculating comb filter of Figure 7.7
with a complex-valued feedback gain P as shown in Figure 8.11, part (a). By
the same analysis as before, feeding this network a sinusoid whose nth sample
is Zn gives an output of:

1

1 − PZ−1
Zn

so the transfer function is

H(Z) =
1

1 − PZ−1

The recirculating filter is stable when |P | < 1; when, instead, |P | > 1 the output
grows exponentially as the delayed sample recirculates.

The transfer function is thus just the inverse of that of the non-recirculating
filter (first form). If you put the two in series, using the same value of P , the
output would theoretically be exactly equal to the input. (This analysis only
demonstrated that for sinusoidal inputs; that it follows for other signals as well
won’t be evident until we have the background developed in chapter 9.)

8.2.4 Compound filters

We can use the recirculating and non-recirculating filters developed here to
create a compound filterby putting several elementary ones in series. If the
parameters of the non-recirculating ones (of the first type) are Q1, . . . , Qj and

226 CHAPTER 8. FILTERS

those of the recirculating ones are P1, . . . , Pk, then putting them all in series, in
any order, will give the transfer function:

H(Z) =
(1 − Q1Z

−1) · · · (1 − QjZ
−1)

(1 − P1Z−1) · · · (1 − PkZ−1)

The frequency response of the resulting compound filter is the product of those
of the elementary ones. (One could also combine elementary filters by adding
their outputs, or making more complicated networks of them; but for most
purposes the series configuration is the easiest one to deal with.)

8.2.5 Real outputs from complex filters

In most applications, we start with a real-valued signal to filter and we need a
real-valued output, but in general, a compound filter with a transfer function as
above will give a complex-valued output. However, we can construct filters with
non-real-valued coefficients which nonetheless give real-valued outputs, so that
the analysis that we carry out using complex numbers can be used to predict,
explain, and control real-valued output signals. We do this by pairing each
elementary filter (with coefficient A, say) with another having as its coefficient
the complex conjugate A.

For example, putting two non-recirculating filters, with coefficients Q and
Q, in series gives a transfer function equal to:

H(Z) = (1 − QZ−1) · (1 − QZ−1)

which has the property that:

H(Z) = H(Z)

Now if we put any real-valued sinusoid:

Xn = 2 re(AZn) = AZn + AZ
n

we get out:
AH(Z)Zn + AH(Z)Z

n

Here we’re using two properties of complex conjugates. First, you can add and
multiply them at will:

A + B = A + B

AB = AB

and second, anything plus its complex conjugate is real, and is in fact twice its
real part:

A + A = 2 re(A)

The above result for two conjugate filters extends to any compound filter; in
general, we always get a real-valued output from a real-valued input if we arrange

8.3. DESIGNING FILTERS 227

that each coefficient Qi and Pi in the compound filter is either real-valued, or
in a pair with its complex conjugate.

When pairing recirculating elementary filters, it is possible to avoid comput-
ing one of each pair, as long as the input is real-valued (and so, the output is
as well.) Supposing the input is a real sinusoid of the form,

2 re(AZn) = AZn + AZ−n

we apply a single recirculating filter with coefficient P . Letting a[n] denote the
real part of the output, we have:

a[n] = 2 re

[
1

1 − PZ−1

(
AZn + AZ−n

)
]

=

(
1

1 − PZ−1
+

1

1 − PZ−1

)
(
AZn + AZ−n

)

=
2 − 2 re(P)Z−1

(1 − PZ−1)(1 − PZ−1)

(
AZn + AZ−n

)

(The first step required expanding to four terms and then factoring.) Similarly,
letting b[n] denote the imaginary part:

b[n] = 2 im

[
1

1 − PZ−1

(
AZn + AZ−n

)
]

=
−2 im(P)Z−1

(1 − PZ−1)(1 − PZ−1)

(
AZn + AZ−n

)

Multiplying b by a factor and adding a, we get:

a[n] − im(P)

re(P)
b[n] =

2

(1 − PZ−1)(1 − PZ−1)

(
AZn + AZ−n

)

The last line is the output of two conjugate recirculating filters in series, and so
we have shown that we can just run the signal through one of the stages and
combine the real and imaginary part to get the same result. This technique
(called partial fractions) may be repeated for any number of stages in series, as
long as we compute the appropriate combination of real and imaginary parts of
the output of each stage to form the (real) input of the next stage. No similar
shortcut seems to exist for non-recirculating filters; in that case it is necessary
to compute each member of each complex-conjugate pair explicitly.

8.3 Designing filters

The frequency response of a series of elementary recirculating and non-recirculating
filters can be estimated graphically by plotting all the coefficients Q1, . . . , Qj

and P1, . . . , Pk on the complex plane and reasoning as in Figure 8.8. The overall

228 CHAPTER 8. FILTERS

p

point

half-power

0 2

(a)
(b)

Figure 8.12: One-pole lowpass filter: (a) pole-zero diagram; (b) frequency re-
sponse.

frequency response is the product of all the distances from the point Z to each
of the Qi, divided by the product of the distances to each of the Pi.

One customarily marks each of the Qi with an “o” (this is called a “zero”)
and each of the Pi with an “x” (called a “pole”); their names are borrowed from
the field of complex analysis. A plot showing the poles and zeros associated
with a filter is unimaginatively called a pole-zero plot.

When Z is close to a zero the frequency response tends to dip, and when it
is close to a pole, the frequency response tends to rise. The effect of a pole or a
zero is more pronounced, and also more local, if it is close to the unit circle that
Z is constrained to lie on. Poles must lie within the unit circle for a stable filter.
Zeros may lie on or outside it, but any zero Q outside the unit circle may be
replaced by one within it, at the point 1/Q, to give a constant multiple of the
same frequency response. Except in special cases we will keep the zeros inside
the circle as well as the poles.

In the rest of thie section we will show how to construct several of the
filter types most widely used in electronic music. The theory of digital filter
design is vast, and we will only give an introduction here. A deeper treatment
is available online from Julius Smith at ccrma.stanford.edu. See also [?] for a
fuller treatment of filtering theory in the context and language of Digital Signal
Processing.

8.3. DESIGNING FILTERS 229

8.3.1 One-pole low-pass filter

The one-pole low-pass filter has a single pole located at a positive real number
p, as pictured in Figure 8.12. This is just a recirculating comb filter with delay
length d = 1, and the analysis of section 7.4 applies. The maximum gain occurs
at a frequency of zero, corresponding to the point on the circle closest to the
point p. The gain there is 1/(1 − p). If we move a distance of 1− p units up or
down from the real (horizontal) axis, the distance increases by a factor of about√

2, and so we expect the half-power point to occur at an angular frequency of
about 1 − p.

This calculation is often made in reverse: if we wish the half-power point to
lie at a given angular frequency ω, we set p = 1 − ω. This approximation only
works well if the value of ω is well under π/2, as it usually is in practice.

It is customary to normalize the one-pole lowpass filter, multiplying it by
the constant factor 1− p in order to give a gain of 1 at zero frequency; nonzero
freqencies will then get a gain less than one.

The frequency response is graphed in Figure 8.12 part (b). The audible
frequencies only reach to the middle of the graph; the right-hand side of the
frequency response curve all lies above the Nyquist frequency π.

The one-pole lowpass filter is often used to smooth noisy signals to seek slow-
moving trends in them. For instance, if you use a physical controller and care
about changes on the order of 1/10 second or so, you can smooth the control
by using a low-pass filter whose half-power point is 20 or 30 cycles per second.

8.3.2 One-pole, one-zero high-pass filter

Sometimes an audio signal carries an unwanted constant offset, or in other
words, a zero-frequency component. For example, the waveshaping spectra of
Section 5.3 almost always contain a constant component. This is inaudible, but,
since it specifes electrical power that is converted to heat in your speakers, its
presence reduces the level of loudness you can reach without distortion. Another
name for a constant signal component is “DC”, meaning “direct current”.

An easy and practical way to remove the zero-frequency component from an
audio signal is to use a one-pole lowpass filter to extract it, and then subtract
the result from the signal. The resulting transfer function is one minus the
transfer function of the lowpass, giving:

H(Z) = 1 − 1 − p

1 − pZ−1
= p

1 − Z−1

1 − pZ−1

The factor of 1 − p in the numerator of the low-pass transfer function is the
normalization factor needed so that the gain is one at zero frequency.

By examining the right-hand side of the equation (comparing it to the general
formula for compound filters), we see that there is still a pole at the real number
p, and there is now also a zero at the point 1. The pole-zero plot is as shown in
Figure 8.13 part (a), and the frequency response in part (b). (From here on, we

230 CHAPTER 8. FILTERS

r

0

(a)
(b)

Figure 8.13: One-pole, one-zero high-pass filter: (a) pole-zero diagram; (b)
frequency response (from zero to Nyquist frequency).

will only plot frequency responses to the Nyquist frequency π; in the previous
example we plotted it all the way up to the sample rate, 2π.)

8.3.3 Shelving filter

Generalizing the one-zero, one-pole filter above, supose we place the zero at a
point q, a real number close to, but less than, one. The pole, at the point p, is
similarly situated, and might be either greater than or less than q, i.e., to the
right or left, respectively, but with both q and p within the unit circle. This
situation is diagrammed in Figure 8.14.

At points of the circle far from p and q, the effects of the pole and the zero
are nearly inverse (the distances to themare nearly equal), so the filter largely
passes those frequencies unaltered. In the neighborhood of p and q, on the other
hand, the filter will have a gain greater or less than one depending on which of
p or q is closer to the circle. This configuration therefore acts as a low-frequency
shelving filter. (To make a high-frequency shelving filter we do the same thing,
only placing p and q close to -1 instead of 1.)

To find the parameters of a desired shelving filter, start with a desired tran-
sition frequency ω (in angular units) and a desired low-frequency gain g. First
we choose an average distance d, as pictured in the figure, from the pole and
the zero to theedge of the circle. For small values of d, the region of influence
(the crossover frequency) is about d radians.

Then put the pole at p = 1 − d
√

g and the zero at q = 1 − d/
√

g. The gain
at zero frequency is then

1 − q

1 − p
= g

8.3. DESIGNING FILTERS 231

(a)

real

imaginary

p q

0

(b)

1

1-d

d

Figure 8.14: One-pole, one-zero shelving filter: (a) pole-zero diagram; (b) fre-
quency response.

232 CHAPTER 8. FILTERS

p

0

(a) (b)

1

p
2

Figure 8.15: Two-pole band-pass filter: (a) pole-zero diagram; (b) frequency
response.

as desired. For example, in the figure, d is 0.25 radians and g is 2.

8.3.4 Band-pass filter

Taking the filter types shown above, which all have real-valued poles and zeros,
we now transform them to operate on bands located off the real axis. The low-
pass, high-pass, and shelving filters will then become band-pass, band-stop, and
peaking filters. First we will develop the band-pass filter. Suppose we want a
center frequency at ω radians, and a bandwidth of β. We take the low-pass
filter with cutoff frequency β; its pole is located, for small calues of β, roughly
at p − 1 − β. Now rotate this value by ω radians in the complex plane, by
multiplying by the complex number cos ω + i sin ω. The new pole is at:

p1 = (1 − β)(cos ω + i sin ω)

To get a real-valued output, this must be paired with another pole:

p2 = p1 = (1 − β)(cos ω − i sin ω)

The resulting pole-zero plot is as shown in Figure 8.15.
The peak is approximately (not exactly) at the desired center frequency ω

and the 3-dB points approximately β radians above and below it. It is often
desirable to normalize the filter to have a peak gain near unity; this is done by

8.3. DESIGNING FILTERS 233

0

(a)
(b)

Figure 8.16: A peaking filter: (a) pole-zero diagram; (b) frequency response.
Here the filter is set to attenuate by 6 decibels at the center frequency.

multiplying the input or output by the product of the distances of the two poles
to the peak on the circle, or (very approximately):

β ∗ (β + 2ω)

For some applications it is desirable to add a zero at the points 1 and −1, so
that the gain drops to zero at angular frequencies 0 and π.

8.3.5 Peaking and band-stop filter

In the same way, a peaking filter is obtained from a shelving filter by rotating
the pole and the zero, and by providing a conjugate pole and zero, as shown in
Figure 8.16. If the desired center frequency is ω, and the radius of the pole and
zero (as for the shelving filter) are p and q, then we place the the upper pole
and zero at

p(cos ω + i sin ω), q(cos ω + i sin ω)

As a special case, placing the zero on the unit circle gives a band-stop filter;
in this case the gain at the center frequency is zero. This is analogous to the
one-pole, one-zero high-pass filter above.

8.3.6 Butterworth filters

A filter with one real pole and one real zero can be configured as a shelving
filter, as a high-pass filter (putting the zero at the point 1) or as a low-pass
filter (putting the zero at −1). The frequency responses of these filters are quite
blunt; in other words, the transition regions are wide. It is often desirable to get

234 CHAPTER 8. FILTERS

a sharper filter, either shelving, low- or high-pass, whose two bands are flatter
and separated by a narrower transition region.

A procedure borrowed from the analog filtering world transforms real, one-
pole, one-zero filters to corresponding Butterworth filters, which have narrower
transition regions. This procedure is described clearly and elegantly in the last
chapter of [?]. Since it involves passing from the discrete-time to the continuous-
time domain, the derivation uses calculus; it also requires using notions of com-
plex exponentiation and roots of unity which we are avoiding here.

To make a Butterworth filter out of a high-pass, low-pass, or shelving filter,
suppose that either the pole or the zero is given by the expression

1 − r2

(1 + r)
2

where r is a parameter ranging from 1 to inf. If r = 0 this is the point 1, and
if r = inf it’s −1.

Then, for reasons which will remain mysterious, we replace the point (whether
pole or zero) by n points given by:

(1 − r2) − (2r sin(α))i

1 + r2 + 2r cos(α))

where α ranges over the values:

π

2
(
1

n
− 1),

π

2
(
3

n
− 1), . . . ,

π

2
(
2n − 1

n
− 1)

In other words, α takes on n equally spaced angles between −π/2 and π/2. The
points are arranged in the complex plane as shown in Figure 8.17. They lie on a
circle through the original real-valued point, which cuts the unit circle at right
angles.

A good choice for a nominal cutoff or shelving frequency defined by these
circular collections of poles or zeros is simply the spot where the circle intersects
the unit circle, corresponding to α = π/2. This gives the point

(1 − r2) − 2ri

1 + r2

which, after some algebra, gives an angular frequency equal to

β = 2arctan(r)

Figure 8.18, part (a), shows a pole-zero diagram and frequency response for
a Butterworth low-pass filter with three poles and three zeros. Part (b) shows
the frequency response of the low-pass filter and three other filters obtained by
choosing different values of β (and hence r) for the zeros, while leaving the poles
stationary. As the zeros progress from β = π to β = 0, the filter, which starts
as a low-pass filter, becomes a shelving filter and then a high-pass one.

8.3. DESIGNING FILTERS 235

r=0.5

= 3 /8

/8 =

/8 = -

/8 = -3

r=1

r=2

Figure 8.17: Replacing a real-valued pole or zero with an array as for a But-
terworth filter. In this example we get four new poles or zeros as shown, lying
along the circle where r = 0.5.

0

(a)
(b)

3

shelf 1

low-pass

shelf 2

hi-pass

Figure 8.18: (a). Pole-zero plot for a Butterworth low-pass filter with three
poles and three zeros. The poles are chosen for a cutoff frequency β = π/4.
(b). Frequency responses for four filters with the same pole configuration, with
different placements of zeros (but leaving the poles fixed). The low-pass filter
results from setting β = π for the zeros; the two shelving filters correspond to
β = 3π/10 and β = 2π/10, and finally the high-pass filter is obtained setting
β = 0. The high-pass filter is normalized for unit gain at the Nyquist frequency,
and the others for unit gain at DC.

236 CHAPTER 8. FILTERS

8.3.7 Stretching the unit circle with rational functions

In section 8.3.4 we saw a simple way to turn a low-pass filter into a band-pass
one. It is tempting to apply the same method to turn our Butterworth low-pass
filter into a higher-quality band-pass filter; but to try to preserve the higher
quality of the Butterworth filter we have to be more careful in the design of the
transformation we use. In this section we will prepare the way to making the
Butterworth band-pass filter by introducing the idea of rational transformations
of the complex plane which preserve the unit circle.

This discussion is adapted from [?], pp. 201-206 (I’m grateful to Julius Smith
for this pointer). There the tansformation is carried out in continuous time, but
here we have adapted the method to operate in discrete time, in order to make
teh discussion self-contained.

The idea is to start with any filter with a transfer function as before:

H(Z) =
(1 − Q1Z

−1) · · · (1 − QjZ
−1)

(1 − P1Z−1) · · · (1 − PkZ−1)

whose frequency response (the gain at a frequency ω) is given by:

|H(cos(ω) + i sin(ω))|

Now suppose we can find a rational function, R(Z), which distorts the unit
circle in some desirable way. For R to be a rational function means that it
can be written as a quotient of two polynomials (so, for example, the transfer
function H is a rational function). That R sends points on the unit circle to
other points on the unit circle is just the condition that |R(Z)| = 1 whenever
Z = 1. It can easily be checked that any function of the form,

R(Z) = φAnZn + An−1Z
n−1 + · · · + A0

A0Zn + A1Zn−1 + · · · + An

where the leading factor φ has unit magnitude (i.e., |φ| = 1), and as before
we use A to denote the complex conjugate of a complex number A. The same
reasoning as in section 8.2.2 confirms that |R(Z)| = 1 whenever Z = 1.

Once we have a suitable rational function R, we simply fabricate a new
rational function,

J(Z) = H(R(Z))

The gain of the new filter J at the frequency ω is then equal to

|J(cos(ω) + i sin(ω))| = |H(cos(φ) + i sin(φ))|

where we choose φ so that:

cos(φ) + i sin(φ) = R(cos(ω) + i sin(ω))

For example, suppose we start with a one-zero, one-pole low-pass filter:

H(Z) = −1 − Z−1

g − Z−1

8.3. DESIGNING FILTERS 237

(a) (b)

Figure 8.19: (a). A pole-zero plot for a one-pole, one-zero low-pass filter; (b). a
plot for the resulting filter after the transformation R(Z) = Z2. THe result is
a band-pass filter with center frequency π/2.

and apply the function

R(Z) = −Z2 = −1 · Z2 + 0 · Z + 0

0 · Z2 + 0 · Z + 1

Geometrically, this choice of R stretches the unit circle uniformly to twice its
circumference and wraps it around itself twice. The points 1 and −1 are both
sent to the point −1, and the points i and −i are sent to the point 1. The
resulting transfer function is

J(Z) =
−1 − Z−2

g − Z−2
= − (1 − iZ−1)(−1 − iZ−1)

(sqrtg − Z−1)(−sqrtg − Z−1)

The pole-zero plots of H and J are shown in Figure 8.19. From a low-pass filter
we ended up with a band-pass filter. The points i and −i which R sends to 1
(where the original filter’s gain is highest) become points of highest gain for the
new filter.

8.3.8 Butterworth band-pass filter

We can apply the above to transform the Butterworth filter into a high-quality
band-pass filter with center frequency π/2. A further transformation can then
be applied to shift the center frequency to any desired value ω between 0 and
π. The transformation will be of the form,

S(Z) = aZ + b

bZ + a

238 CHAPTER 8. FILTERS

where a and b are real numbers and not both are zero. This is a particular case
of the general form given above for unit-circle-preserving rational functions. We
can check moreover that S(1)−1 and S(−1) = −1, and that the top and bottom
halves of the unit circle are transformed symmetrically; if Z goes to W then Z
goes to W . The qualitative effect of the transformation S is to slide points of
the unit circle, non-uniformly, toward 1 or −1.

In particular, we wish to choose S so that:

S(cos(ω) + i sin(ω)) = i

If we do that, keep R = −Z2 as before, and let H be the transfer function for
a low-pass Butterworth filter, then the combined filter with transfer function
H(R(S(Z))) will be a band-pass filter with center frequency ω. Solving for a
and b gives:

a = cos(
π

4
− omega

2
), b = sin(

π

4
− omega

2
)

The new transfer function, H(R(S(Z))), will have 2n poles and 2n zeros (if n
is the degree of the Butterworth filter H).

Knowing the transfer function is good, but even better is knowing the lo-
cations of all the poles and zeros of the new filter, which we need to be able
to compute it using elementary filters. If Z is a pole of the transfer function
J(Z) = H(R(S(Z))), that is, if J(Z) = inf, then R(S(Z)) must be a pole of
H. The same goes for zeros. To find a pole or zero of J we set R(S(Z)) = W ,
where W is a pole or zero of H, and solve for Z. This gives:

−
[
aZ + b

bZ + a

]2

= W

aZ + b

bZ + a
= ±

√
−W

Z =
±a

√
−W − b

∓b
√
−W + a

(Here a and b are as given above and we have used the fact that a2 + b2 = 1).
A sample pole-zero plot and frequency response of J are shown in Figure 8.20.

8.3.9 Time-varying coefficients

In some recursive filter designs, changing the coefficients of the filter can inject
energy into the system. A physical analogue is a child on a swing set. The child
oscillates back and forth at the resonant frequency of the system, and pushing or
pulling it injects or extracts energy smoothly. However, if you decide to shorten
the chain or move the swingset itself, you may inject an unpredictable amount
of energy into the system. This corresponds to changing the coefficients in a
resonant recirculating filter.

Happily, the simple one-zero and one-pole filters used here don’t have this
difficulty; if the feedback or feed-forward gain is changed smoothly (in the sense
of an amplitude envelope) the output will behave smoothly as well.

8.3. DESIGNING FILTERS 239

0

(a) (b)

3 3

Figure 8.20: Butterworth band-pass filter: (a) pole-zero diagram; (b) frequency
response. The center frequency is π/4. The bandwidth depends both on center
frequency and on the bandwidth of the original Butterworth low-pass filter used.

The only subtlety arises when trying to normalize a recursive filter’s output
when the feedback gain is close to one. For example, suppose we have a one-pole
low-pass filter with gain 0.99 (for a cutoff frequency of 0.02 radians, or 47 Hz.
at the usual sample rate). To normalize this for unit DC gain we multiply by
0.01. Suppose now we wish to double the cutoff frequency by changing the gain
imperceptibly to 0.98. This is fine except that the normalizing factor suddenly
doubles. If we multiply the filter’s output by the normalizing factor, the output
will suddenly, although perhaps only momentarily, jump by a factor of two.

The trick is to normalize at the input of the filter, not the output. Figure 8.21
part (a) shows a complex recirculating filter, with feedback gain P , normalized
at the input by 1 − |P | so that the peak gain is one. Part (b) shows the wrong
way to do it, multiplying at the output.

Things get more complicated when several elementary recirculating filters
are put in series, since the correct normalizing factor is in general a function of
all the coefficients. One possible approach, if such a filter is required to change
rapidly, is to normalize each input separately as if it were acting alone, then
multiplying the output, finally, by whaever further correction is needed.

8.3.10 Impulse responses of recirculating filters

In Section 7.4 we derived the impulse response of a recirculating comb filter, of
which the one-pole low-pass filter is a special case. In Figure 8.22 we show the
result for two low-pass filters and one complex one-pole resonant filter. All are
elementary recirculating filters as introduced in section 8.2.3. Each is normalized
to have unit maximum gain.

240 CHAPTER 8. FILTERS

IN

d

+

X

OUT

P

X 1-|P|

IN

d

+

X

OUT

P

X 1-|P|

(a - right) (b - wrong)

Figure 8.21: Normalizing a recirculating elementary filter: (a) correctly, by
multiplying in the normalization factor at the input; (b) incorrectly, multiplying
at the output.

8.3. DESIGNING FILTERS 241

1/5

1/(5e)

1/10

1/(10e)

n

(a)

(b)

(c)

1/10

1/(10e)

5

10

10

Figure 8.22: The impulse response of three elementary recirculating (one-pole)
filters, normalized for peak gain 1: (a) low-pass with P = 0.8; (b) low-pass with
P = 0.9; (c) band-pass, with |P | = 0.9 and arg(P) = 2π/10.

In the case of a low-pass filter, the impulse response gets longer (and lower)
as the pole gets closer to one. Suppose the pole is at a point 1 − 1/n (so that
the cutoff frequency is 1/n radians). The normalizing factor is also 1/n. After
n points, the output diminishes by a factor of

(

1 − 1

n

)n

≈ 1

e

where e is Euler’s constant, about 2.718. The filter can be said to have a settling

time of n samples. In the figure, n = 5 for part (a) and n = 10 for part (b).
In general, the settling time (in samples) is approximately one over the cutoff
frequency (in angular units).

The situation gets more interesting when we look at a resonant one-pole

242 CHAPTER 8. FILTERS

filter, that is, one whose pole lies off the real axis. In part (c) of the figure, the
pole P has absolute value 0.9 (as in part (b)), but its argument is set to 2π/10
radians. We get the same settling time as in part (b), but the output rings at
the resonant frequency (and so at a period of 10 samples in this example).

A natural question to ask is, how many periods of ringing do we get before
the filter decays to strength 1/e? If the pole of a resonant has modulus 1− 1/n
as above, we have seen in section 8.2.3 that the bandwidth (call it b) is about
1/n, and we have seen here that the settling time is about n. The resonant
frequency (call it ω) is the argument of the pole, and the period in samples is
2π/ω. The number of periods that make up the settling time is thus:

n

2π/ω
=

1

2π

ω

b
=

q

2π

where q is the quality of the filter, defined as the center frequency divided by
bandwidth. Resonant filters are often specified in terms of the center frequency
and “q”, instead of bandwidth.

8.3.11 All-pass filters

Sometimes a filter is applied to get a desired phase change, rather than to alter
the amplitudes of the frequency components of a sound. In this situation we
would need a way to design a filter with a constant, unit frequency response
but which changes the phase of an incoming sinusoid in a way that depends
on its frequency. We have already seen in Chapter 7 that a delay of length d
introduces a phase change of −dω, at the angular frequency ω. Another class
of filters, called all-pass filters, can make phase changes which are more widely
variable functions of ω.

To design an all-pass filter, we start with two facts: first, an elementary
recirculating filter and an elementary non-recirculating one cancel each other
out perfectly if they have the same gain coefficient. In other words, if a signal
has been put through a one-zero filter, either real or complex, the effect can be
reversed by sequentially applying a one-pole filter, and vice versa.

The second fact is that the elementary non-recirculating filter of the second
form has the same frequency response as that of the first form; they differ only
in phase response. So if we combine an elementary recirculating filter with an
elementary non-recirculating one of the second form, the frequency responses
cancel out (to a flat gain independent of frequency) but the phase response is
not constant.

To find the transfer function, we choose the same complex number P < 1 as
coefficient for both elementary filters and multiply their transfer functions:

H(Z) = 1 − PZ−1

P − Z−1

The coefficient P controls both the location of the one pole (at P itself) and the
zero (at 1/P). Figure 8.23 shows the phase response of the all-pass filter for four

8.4. APPLICATIONS 243

0 2

0

2

p=0.8

-0.8
0

0.4

Figure 8.23: Phase response of all-pass filters with different pole locations p.
When the pole is located at zero, the filter reduces to a one-sample delay.

real-valued choices p of the coefficient. At frequencies of 0, π, and 2π, the phase
response is just that of a one-sample delay; but for frequencies in between, the
phase response is bent upward or downward depending on the coefficient.

Complex coefficients give similar phase response curves, but the frequencies
at which they cross the diagonal line in the figure are shifted according to the
argument of the coefficient P .

8.4 Applications

Filters have a broad range of applications both in audio engineering and in elec-
tronic music. The former include, for instance, equalizers, speaker crossovers,
sample rate converters, and DC removal (which we have already used in earlier
chapters). Here, though, we’ll be concerned with the latter.

8.4.1 Subtractive synthesis

)
Subtractive synthesis refers to using filters to shape the spectral envelope

of a sound, forming another sound, usually preserving qualities of the original
sound such as pitch, roughness, noisiness, or graniness. The spectral envelope
of the resulting sound is the product of the spectral envelope of the original
sound with the frequency response of the filter. Figure 8.24 shows a possible
configuration of source, filter, and result.

The filter may be constant or time-varying. Already in wide use by the mid
1950s, subtractive synthesis reached a new height of popularity with the intro-
duction of the voltage-controlled filter (VCF), which became widely available in

244 CHAPTER 8. FILTERS

amplitude

frequency

(a)

(b)

(c)

Figure 8.24: Subtractive synthesis: (a) spectrum of input sound; (b) filter fre-
quency response; (c) spectrum of output sound.

8.4. APPLICATIONS 245

OUT

frequency

X

center
frequency

Figure 8.25: ADSR-controlled subtractive synthesis.

the mid 1960s with the appearance of modular synthesizers. The VCF has two
inputs: one for the sound to filter, and one to vary the center or cutoff frequency
of the filter.

A popular use of a VCF is to control the center frequency of a resonant filter
with the same ADSR generator that controls the amplitude; a possible block
diagram is shown in Figure 8.25. In this configuration, the louder portion of a
note (loudness roughly controlled by the multiplier at the bottom) may also be
made to sound brighter, using the filter, than the quieter parts; this can mimic
the spectral evolution of strings or brass instruments over the life of a note.

8.4.2 Envelope following

??

It is frequently desirable to use the time-varying power of an incoming signal
to trigger or control a musical process. To do this, we will need a procedure
for measuring the power of an audio signal. Since most audio signals pass
through zero many times per second, it won’t suffice to take the absolute value
of the signal as a measure if its power, instead, we must make an average of
the power over an interval of time long enough that its oscillations won’t whow
up in the power estimate, but short enough that changes in signal level are
quickly reflected in the power estimate. A computation that provides a timely,
time-varying power estimate is called an envelope follower.

246 CHAPTER 8. FILTERS

OUT

IN

X

Figure 8.26: Envelope follower. The output is the average power of the input
signal.

The output of a low-pass filter can be viewed as a moving average of its
input. For example, suppose we apply a normalized one-pole low-pass filter (as
in Figure 8.21) to an incoming signal x[n]. The output (call it y[n]) is the sum
of the delay output times p (real-valued for a low-pass filter), with 1 − p times
the input:

y[n] = p · y[n − 1] + (1 − p) · x[n]

so each input is averaged, with weight 1−p, into the previous output to produce
a new output. So we can make a moving average of the square of an audio signal
using the diagram of Figure 8.26. The output is a time-varying average of the
instantaneous power x[n]2, and the design of the low-pass filter controls, among
other things, the settling time of the moving average.

For more insight into the design of a suitable low-pass filter for an envelope
follower, we analyze it from the point of view of signal spectra. If, for instance,
we put in a real-valued sinusoid:

x[n] = a · cos(αn)

the result of squaring is:

x[n]
2

=
a2

2
(cos(2αn) + 1)

and so if the low-pass filter effectively stops the component of frequency 2α
we will get out approximately the constant a2/2, which is indeed the average
power.

The situation for a signal with several components is similar. Suppose the
input signal is now,

x[n] = a · cos(αn) + b · cos(βn)

8.4. APPLICATIONS 247

frequency

amplitude

a/2

0

b/2

a +b
2 2

2

- 2 2 +

(a)

(b)

Figure 8.27: Envelope following from the spectral point of view: (a). an incom-
ing signal with two components; (b). the result of squaring it.

whose spectrum is plotted in Figure 8.27, part (a). (Here we have omitted
the two phase terms but they will have no effect on the outcome.) Squaring
the signal produces the spectrum shown in part (b). (See section 5.2.) We
can get the desired fixed value of (a2 + b2)/2 simply by filtering out all the
other components; ideally the result will be a constant (DC) signal. The lowest
frequency we need to filter out is the minimum difference between two partials
in the original signal.

Envelope followers may also be used on noisy signals, which may be thought
of as signals with dense spectra. In this situation there will be difference frequen-
cies arbitrarily close to zero frequency, and filtering them out entirely will be
impossible; we will always get fluctuations in the output, but they will decrease
proportionally as the filter’s pass band is narrowed.

Although a narrower bass band will always give a cleaner output, whether
for discrete or continuous spectra, the filter’s settling time will lengthen propor-
tionally as the bass band is narrowed. There is thus a tradeoff between getting
a quick response and a smooth result.

8.4.3 Single Sideband Modulation

Starting in chapter 7 we have seen that complex sinusoids have simpler prop-
erties than real ones; for instance, if we multiply two real sinusoids we get a
product with two components, but if we multiply two complex sinusoids we get
a single new complex sinusoid as a product. In many applications it is useful to

248 CHAPTER 8. FILTERS

be able to convert from real sinusoids to complex ones. In other words, from a
real sinusoid:

x[n] = a · cos(ωn)

(with a spectral peak of amplitude a and frequency ω) we would like a way of
computing a complex sinusoid:

X[n] = a (cos(ωn) + i sin(ωn))

so that

x[n] = Re(X[n]).

We would like a linear process for doing this, so that superpositions of sinusoids
get treated as if their components were dealy with separately.

Of course we could equally well have chosen the complex sinusoid with fre-
quency −ω:

X ′[n] = a (cos(ωn) − i sin(ωn))

and in fact x[n] is just half the sum of the two. In essence we need a filter that
will pass through positive frequencies (actually frequencies between 0 and π,
corresponding to values of Z on the top half of the complex unit circle) from
negative values (from −π to 0, or equivalently, from π to 2π—the bottom half
of the unit circle).

One can design such a filter by designing a low-pass filter with cutoff fre-
quency π/2, and then performing a rotation by π/2 radians using the technique
of section 8.3.4. However, it turns out to be easier to do it using two specially
designed networks of all-pass filters with real coefficients.

Calling the transfer functions of the two filters H1 and H2, we design the
filters so that

arg(H1(Z)) − arg(H2(Z)) ≈
{

π/2 0 < arg(Z) < π
−π/2 −π < arg(Z) < 0

or in other words,

H1(Z) ≈ iH2(Z), 0 < arg(Z) < π

H1(Z) ≈ −iH2(Z), −π < arg(Z) < 0

Then for any incoming real-valued signal x[n] we simply form a complex number
a[n] + ib[n] where a[n] is the output of the first filter and b[n] is the output of
the second. Any complex sinusoidal component of x[n] (call it Zn) will be
transformed to

H1Z + iH2(Z) ≈
{

2H1Z 0 < arg(Z) < π
0 otherwise

Having started with a real-valued signal, whose energy is split equally into
positive and negative frequencies, we end up with a complex-valued one with
only positive frequencies.

8.5. EXAMPLES 249

lop~

noise~

<-- cutoff0

low-pass filter

white noise,
test signal

IN
|

OUT

|

+~ 1

hip~ 5 high-pass filter

0

sinusoidal

add "DC"

osc~ 220
test signal

|

OUT

IN
|

(a) (b)

Figure 8.28: Using prefabricated filters in Pd: (a). a low-pass filter, with white
noise as a test input; (b). using a high-pass filter to remove a signal component
of frequency 0.

8.5 Examples

In this section we will first introduce some easy-to-use prefabricated filters avail-
able in Pd to develop examples showing the three applications from the previous
section. Then we will show some more sophisticated applications that require
explicitly designed filters.

8.5.1 Prefabricated low-, high-, and band-pass filters

Patches H01.low-pass.pd, H02.high-pass.pd, and H03.band-pass.pd (Figure 8.28)
show Pd’s built-in filters, which implement filter designs described in sections
8.3.1, 8.3.2 and ??. Two of the patches also use a noise generator we have not
introduced before; so we now introduce four new Pd objects:

lop~ : One-pole low-pass filter. The left inlet takes a signal to be filtered, and

the right inlet takes control messages to set the cutoff frequency of the filter.
The filter is normalized so that the gain is one at frequency 0.

hip~ : One-pole, one-zero high-pass filter, with the same inputs and outputs

as lop~, normalized to have a gain of one at the Nyquist frequency.

bp~ : Resonant filter. The middle inlet takes control messages to set the center

qrequency, and the right inlet to set “q”.

noise~ : Outputs white noise. Each sample is an independent pseudo-random
number, uniformly distributed from -1 to 1.

As shown in Figure 8.28, the first three example patches demonstrate these
three filters. The lop~ and bp~ objects are demonstrated with noise as input;

250 CHAPTER 8. FILTERS

0

phasor~

+~

0

0

0

0

vcf~

tabread4~ mtof

sawtooth

oscillator

LFO for sweep

add base to sweep

convert to Hz.

mtof

phasor~

*~

pitch

sweep speed

sweep depth

base center frequency

Q (selectivity)

OUT
|

Figure 8.29: The vcf~ band-pass filter, with its center frequency controlled by
an audio signal (as compared to bp~ which takes only control messages to set
its center frequency.

hip~ as shown is used to remove the DC (zero frequency) component of a signal.

8.5.2 Prefabricated time-variable band-pass filter

Time-varying band-pass filtering, as often used in classical subtractive synthesis
(section 8.4.1), can be done using the vcf~ object, introduced here.

vcf~ (“voltage controlled filter”): a band-pass filter, similar to bp~, but with
a signal inlet to control center frequency. Both bp~ and vcf~ are one-pole
resonant filters as developed in section ??; bp~ outputs only the real part of the
resulting signal, while vcf~ outputs the real and imaginary parts separately.

Patch H04.filter.sweep.pd ()Figure 8.29) demonstrates using the vcf~ object
for a simple and characteristic subtractive synthesis task. A phasor~ object (at
top) creates a sawtooth wave to filter. (This is not especially good practice as
we are not controlling the possibility of foldover; a better sawtooth generator
for this purpose will be developed in Chapter 10.) The second phasor~ object
(labeled “LFO for sweep”) controls the time-varying center frequency. After
adjusting to set the depth and a base center frequency (given in MIDI units),
the result is converted into Hertz (using the tabread4~ object) and passed to
vcf~ to set its center frequency. Another example of using a vcf~ object for

8.5. EXAMPLES 251

0

bp~

bp~

100

env~ 4096

+~ 1

test frequency

Q

r $0-loopf

phasor~

tabread4~ $0-array

r $0-totsamps*~

OUT
|

signal to analyze

measured strength

440

phasor~ 100

phasor~

0

cos~ cos~

+~ 0.25

snapshot~

*~ *~

lop~ lop~

0 responsiveness

snapshot~

0 0

r $0-tick

modulate

to DC

test frequency

low-pass filter

real part imaginary part

signal to analyze

(a) (b)

Figure 8.30: Analyzing the spectrum of a sound: (a) band-pass filtering a sam-
pled bell sound and envelope-following the result; (b) frequency-shifting a partial
to DC and reading off its real and imaginary part.

subtractive synthesis is demonstrated in Patch H05.filter.floyd.pd.

8.5.3 Envelope followers

Patch H06.envelope.follower.pd shows a simple realization of the envelope folower
described in section ??; it is self-explanatory. An interesting application of en-
velope following is shown in Patch H07.measure.spectrum.pd (Figure 8.30, part
(a). A famous bell sample is looped as a test sound. Rather than get the overall
mean square power of the bell, we would like to estimate the frequency and
power of each of its partials. To do this we sweep a band-pass filter up and
down in frequency, listening to the result and/or watching the filter’s output
power using an envelope follower. (We use two band-pass filters in series for
better isolation of the partials; this is not especially good filter design but will
do in this context.) When the filter is tuned to a partial the envelope follower
reports its strength.

252 CHAPTER 8. FILTERS

cos~

+~ -0.25

cos~

*~ *~

-~

0

sample loop for

test signal

pair of allpass

filters to make

90 degree phase

shifted versions

shift frequency

cosine and sine waves

pd bell-loop

phasor~

<-- complex multipier

(calculates real part)

to form the real and

imaginary part of a

complex sinusoidhilbert~

|
OUT

Figure 8.31: Using an all-pass filter network to make a frequency shifter.

Patch H08.heterodyning.pd (part (b) of the figure) shows an alternative
way of finding partial strengths of an incoming sound; it has the advantage of
reporting the phase as well as the strength. First we modulate the desired partial
down to zero frequency. We use a complex-valued sinusoid as a modulator
so that we get only one sideband for each component of the input. The test
frequency is the only frequency that is modulated to DC; others go elsewhere.
We then low-pass the resulting complex signal. (We can use a real-valued low-
pass filter separately on the real and imaginary parts.) This essentially removes
all the partials except for the DC one, which we then harvest. This technique
will be the basis of Fourier analysis, the subject of chapter 9.

8.5.4 Single sideband modulation

As described in section 8.4.3, a pair of all-pass filters can be constructed to
give roughly π/2 phase difference for positive frequencies and −π/2 for negative
ones. The design of these pairs is beyond the scope of this discussion (see, for
instance, [Reg93]), but Pd does provide an abstraction, hilbert~, to do this.
Patch H09.ssb.modulation.pd, shown in Figure 8.31, demonstrates how to use
the hilbert~ abstraction to do signal sideband modulation.

The two outputs of hilbert~, considered as the real and imaginary parts of
a complex-valued signal, are multiplied by a complex sinusoid (at right in the
figure), and the real part is output. The components of the resulting signal are
those of the input plus the (positive or negative) frequency of the number box.

8.5. EXAMPLES 253

60

rpole~

/ 100

20

/ 100

rzero~

pole

60

/ 100

20

/ 100

45 angle (degrees)

sincos

* 3.14159

/ 180

*

t b f t b f

cpole~

czero~

pole and zero
radii (%)

*
* *

zero (%)

|
OUT

|
OUT

|
IN |

IN

(a) (b)

Figure 8.32: Building filters from elementary, raw ones: a. shelving; b. peaking.

8.5.5 Using elementary filters directly: shelving and peak-
ing

No finite set of prefabricated filters could fill every possible need, and so Pd
provides the elementary filters of sections 8.2.1-8.2.3 in raw form, so that the
user supplies the filter coefficients explicitly. In this section we will describe
patches that realize the shelving and peaking filters of sections 8.3.3 and 8.3.5
directly from elementary filters. First we introduce the six Pd objects that
realize elementary filters:

rzero~ , rzero rev~ , rpole~ : elementary filters with real-valued coeffi-

cients operating on real-valued signals. The three implement non-recirculating
filters of the first and secton types, and the recirculating filter. They all have
one inlet, at right, to supply the coefficient. For rzero~ and rpole~ this coeffi-
cent gives the location of the zero or pole. The inlet for the coefficient (as well
as the left inlet for the signal to filter) take audio signals. No stability check is
performed.

czero~ , czero rev~ , cpole~ : elementary filters with complex-valued

coefficients, operating on complex-valued signals, corresponding to the real-
valued ones above. Instead of two inlets and one outlet, each of these filters
has four inlets (real and imaginary part of the signal to filter, and real and
imaginary part of the coefficient) and two outlets for the complex-valued output
of the filter.

The example patches use a pair of abstractions to graph the frequency and
phase responses of filters as explained in Patch H10.measurement.pd. Patch

254 CHAPTER 8. FILTERS

0

rpole~

/ 100

rzero_rev~

pole (%)

pd chord

rpole~

rzero_rev~

rpole~

rzero_rev~

rpole~

rzero_rev~

rpole~

rzero_rev~

+~

phasor~ 0.3

expr~ abs($v1-0.5)

expr~ 0.97 - 0.6*$v1*$v1

(a) (b)

Figure 8.33: All-pass filters. (a). making an all-pass filter from elementary
filters; b. using four all-pass filters to build a phaser.

H11.shelving.pd (Figure 8.32, part (a)) shows how to make a shelving filter. One
elementary non-recirculating filter (rzero~) and one elementary recirculating
one (rpole~) are put in series. As Section 8.3.9 suggests, the rzero~ object is
placed first.

Patch H12.peaking.pd shows the peaking filter (part (b) of the figure). Here
the pole and the zero are rotated by an angle ω to control the center frequency
of the filter. The bandwidth and center frequency gain are equal to the shelf
frequency and the DC gain of the corresponding shelving filter.

Patch H13.butterworth.pd demonstrates a three-pole, three-zero Butter-
wirth shelving filter. The filter itself is an abstraction, butterworth3~, for
easy re-use.

8.5.6 Making and using all-pass filters

Patch H14.all.pass.pd(Figure 8.33 part a) shows how to make an all-pass filter
out of elementary filters, in this case a non-recirculating filter, second form
(rzero rev~) and a recirculating filter (rpole~). The coefficient, ranging from
-1 to 1, is controlled in hundredths.

8.5. EXAMPLES 255

Patch H15.phaser.pd(part b of the figure) shows how to use four all-pass
filters to make a classic phaser. The phaser works by summing the input signal
with a phase-altered version of it, making interference effects. The amount of
phase change is varied in time by varying the (shared) coefficient of the all-pass
filters. The overall effect is somewhat similar to a flanger (time-varying comb
filter) but the phaser not impose a pitch as the comb filter does.

Exercises

1. A recirculating elementary filter has a pole at i/2. At what angular fre-
quency is its gain greatest, and what is the gain there? At what angular
frequency is the gain least, and what is the gain there?

2. A shelving filter has a pole at 0.9 and a zero at 0.8. What are: the DC
gain; the gain at Nyquist; the approximate transition frequency?

3. Suppose a complex recirculating filter has a pole at P . Suppose further
that you want to combine its real and imaginary output to make a single,
real-valued signal equivalent to a two-pole filter with poles at P and P .
How would you weight the two outputs?

256 CHAPTER 8. FILTERS

Index

∗ ∼ , 17

block ∼ , 205

bp ∼ , 249

catch ∼ , 101

clip ∼ , 132

cos ∼ , 48

cpole ∼ , 253

czerorev ∼ , 253

czero ∼ , 253

dac ∼ , 17

delay , del , 71

delread ∼ , 200

delwrite ∼ , 200

div , 107
env ∼ , 78
expr , 50

fiddle ∼ , 131

ftom , 20

hip ∼ , 46, 249

inlet , 96

inlet ∼ , 96

line , 75

line ∼ , 19

loadbang , 50

lop ∼ , 249

makenote , 107

mod , 107
moses , 73

mtof , 20

noise ∼ , 249

notein , 80
osc ∼ , 15

outlet , 96

outlet ∼ , 96

pack , 44

pipe , 71

poly , 107

receive , 20

receive ∼ , 50

rpole ∼ , 253

rzerorev ∼ , 253

rzero ∼ , 253
r , 20
r ∼ , 50

samphold ∼ , 50

select , sel , 73

send , 21

send ∼ , 50

snapshot ∼ , 78

stripnote , 80

switch ∼ , 205
s , 21
s ∼ , 50

tabosc4 ∼ , 43

tabread4 ∼ , 44

tabwrite ∼ , 44

throw ∼ , 104

trigger , t , 80

unpack , 101

until , 163

257

258 INDEX

vcf ∼ , 250

vd ∼ , 202

vline ∼ , 75
wrap ∼ , 50

abstraction (Pd), 96
additive synthesis, 12

examples, 101, 104
ADSR envelope generator, 83
aliasing, 56
amplitude, 1

complex, 171
amplitude, measures of, 3
amplitude, peak, 3
amplitude, RMS, 3
angle of rotation, 183
argument (of a complex number),

169
arguments

creation, 14
audio signals, digital, 1

band-pass filter, 218
bandwidth, 141, 218
box, 13

GUI, 14
message, 13
number, 14
object, 14

carrier frequency, 126, 143
carrier signal, 116
center frequency, 141, 218
cents, 11
Chebychev polynomials, 134
class, 14
clipping, 23
clipping function, 120
coloration, 186
comb filter, 175

recirculating, 177
complex conjugate, 222
complex numbers, 168
compound filter, 225
continuous spectrum, 115
control, 57

control stream, 59
numeric, 60

creation arguments, 14

decibels, 4
delay

compound, 70
in Pd, 71
on control streams, 70
simple, 70

delay network
linear, 172

delay, audio, 172
detection

of events, 65
digital audio signals, 1
discrete spectrum, 113
distortion, 121
Doppler effect, 192
duty cycle, 36
dynamic, 5

echo density, 186
envelope follower, 245
envelope generator, 8, 83

ADSR, 83
resetting, 90

equalization, 218
event, 59

feedback, 153
filter, 175, 215

all-pass, 242
band-pass, 218
Butterworth, 234
compound, 225
high-pass, 216
low-pass, 216
non-recirculating elementary, 221
peaking, 218
shelving, 218

foldover, 56
formant, 141
frequency domain, 173
frequency modulation, 126
frequency response, 175

INDEX 259

frequency, angular, 1
fundamental, 11

gain, 175
granular synthesis, 31
GUI box, 14

half step, 10
Hanning window function, 145
harmonic signal, 113
harmonics, 11
high-pass filter, 216

imaginary part of a complex num-
ber, 168

impulse, 173
impulse response, 177
index (waveshaping), 120, 134
index of modulation, 126
inharmonic signal, 115
interference, 167
intermodulation, 124

Karplus-Strong synthesis, 205

logical time, 57
low-pass filter, 216

magnitide (of a complex number),
169

magnitude-phase form, 9
merging control streams, 70

in Pd, 71
message box, 13
messages, 14, 71
MIDI, 10
modulating signal, 116
modulation

frequency, 126
ring, 116

modulation frequency, 126
muting, 89

noisy spectrum, 115
non-recirculating elementary filter,

221
number box, 14

numeric control stream
in Pd, 71

Nyquist theorem, 55

object box, 14
octave, 10
oscillator, 6

partials, 115
passband, 216
patch, 6, 13
peaking filter, 218
period, 11
phase-aligned formant (PAF), 151
polar form, 9
polar form (of a complex number),

169
pole-zero plot, 228
polyphony, 92
power, 3
pruning control streams, 70

in Pd, 71

quality, 242

real part of a complex number, 168
real time, 57
rectangular form, 9
rectangular form (of a complex num-

ber), 169
reflection, 184
resynchronizing control streams, 71

in Pd, 73
ring modulation, 116
ripple, 216

sample number, 1
sample rate, 1
sampling

examples, 107
sawtooth wave, 24
settling time, 241
shelving filter, 218
sidebands, 116
sidelobes, 147
signals, digital audio, 1
spectral envelope, 30, 115

260 INDEX

spectrum, 113
stable delay network, 177
stopband, 218
stopband attenuation, 218
subpatches, 96
switch-and-ramp technique, 90
synthesis

subtractive, 243

tags, 95
tasks, 92
timbre stretching, 35, 143
time domain, 173
time invariance, 172
time sequence, 59
transfer function, 88, 120, 215
transient generator, 83
transition band, 218

unit generators, 6
unitary delay network, 182

voice bank, 92

wave packet, 147
waveshaping, 120
wavetable lookup, 23

noninterpolating, 24
wavetables

transposition formula for loop-
ing, 29

transposition formula, momen-
tary, 30

window, 2
window size, 198

Bibliography

[Bal03] Mark Ballora. Essentials of Music Technology. Prentice Hall, Upper
Saddle River, New Jersey, 2003.

[Bou00] Richard Boulanger, editor. The Csound book. MIT Press, Cambridge,
Massachusetts, 2000.

[Cho73] John Chowning. The synthesis of complex audio spectra by means
of frequency modulation. Journal of the Audio Engineering Society,
21(7):526–534, 1973.

[Cho89] John Chowning. Frequency modulation synthesis of the singing voice.
In Max V. Mathews and John R. Pierce, editors, Current Directions

in Computer Music Research, pages 57–64. MIT Press, Cambridge,
1989.

[DJ85] Charles Dodge and Thomas A. Jerse. Computer music : synthesis,

composition, and performance. Schirmer, New York, 1985.

[GM77] John M. Grey and James A. Moorer. Perceptual evaluations of syn-
thesized musical instrument tones. Journal of the Acoustical Society

of America, 62:454–462, 1977.

[Har87] William M. Hartmann. Digital waveform generation by fractional
addressing. Journal of the Acoustical Society of America, 82:1883–
1891, 1987.

[KS83] Kevin Karplus and Alex Strong. Digital synthesis of plucked-string
and drum timbres. Computer Music Journal, 7(2):43–55, 1983.

[Leb77] Marc Lebrun. A derivation of the spectrum of fm with a complex
modulating wave. Computer Music Journal, 1(4):51–52, 1977.

[Leb79] Marc Lebrun. Digital waveshaping synthesis. Journal of the Audio

Engineering Society, 27(4):250–266, 1979.

[Mat69] Max V. Mathews. The Technology of Computer Music. MIT Press,
Cambridge, Massachusetts, 1969.

261

262 BIBLIOGRAPHY

[Moo90] F. Richard Moore. Elements of Computer Music. Prentice Hall,
Englewood Cliffs, second edition, 1990.

[Puc01] Miller S. Puckette. Synthesizing sounds with specified, time-varying
spectra. In Proceedings of the International Computer Music Con-

ference, pages 361–364, Ann Arbor, 2001. International Computer
Music Association.

[Reg93] Phillip A. Regalia. Special filter design. In Sanjit K. Mitra and
James F. Kaiser, editors, Handbook for digital signal processing, pages
907–978. Wiley, New York, 1993.

[RM69] Jean-Claude Risset and Max V. Mathews. Analysis of musical in-
strument tones. Physics Today, 22:23–40, 1969.

[RMW02] Thomas D. Rossing, F. Richard Moore, and Paul A. Wheeler. The

Science of Sound. Addison Wesley, San Francisco, third edition, 2002.

[Roa01] Curtis Roads. Microsound. MIT Press, Cambridge, Massachusetts,
2001.

[Sch77] Bill Schottstaedt. Simulation of natural instrument tones using fre-
quency modulation with a complex modulating wave. Computer Mu-

sic Journal, 1(4):46–50, 1977.

[Str85] John Strawn, editor. Digital Audio Signal Processing. William Kauf-
mann, Los Altos, California, 1985.

