
The Theory and Technique of Electronic
Music

DRAFT: September 4, 2006

Miller Puckette

Copyright c©2006 Miller Puckette

All rights reserved.

Contents

Introduction 1

1 Sinusoids, amplitude and frequency 3

1.1 Measures of Amplitude . 5
1.2 Units of Amplitude . 6
1.3 Controlling Amplitude . 8
1.4 Frequency . 9
1.5 Synthesizing a sinusoid . 9
1.6 Superposing Signals . 12
1.7 Periodic Signals . 14
1.8 About the Software Examples . 17

Quick Introduction to Pd . 17
How to find and run the examples 19

1.9 Examples . 19
Constant amplitude scaler . 19
Amplitude control in decibels . 20
Smoothed amplitude control with an envelope generator 23
Major triad . 24
Conversion between frequency and pitch 24
More additive synthesis . 25

Exercises . 26

2 Wavetables and samplers 29

2.1 The Wavetable Oscillator . 31
2.2 Sampling . 34
2.3 Enveloping samplers . 38
2.4 Timbre stretching . 39
2.5 Interpolation . 45
2.6 Examples . 49

Wavetable oscillator . 49
Wavetable lookup in general . 50
Using a wavetable as a sampler 52
Looping samplers . 54
Overlapping sample looper . 56

iii

iv CONTENTS

Automatic read point precession 58
Exercises . 59

3 Audio and control computations 61

3.1 The sampling theorem . 61
3.2 Control . 63
3.3 Control streams . 65
3.4 Converting from audio signals to numeric control streams 69
3.5 Control streams in block diagrams 70
3.6 Event detection . 71
3.7 Audio signals as control . 73
3.8 Operations on control streams . 76
3.9 Control operations in Pd . 79
3.10 Examples . 80

Sampling and foldover . 80
Converting controls to signals . 82
Non-looping wavetable player . 83
Signals to controls . 84
Analog-style sequencer . 85
MIDI-style synthesizer . 85

Exercises . 88

4 Automation and voice management 91

4.1 Envelope Generators . 91
4.2 Linear and Curved Amplitude Shapes 94
4.3 Continuous and discontinuous control changes 96

Muting . 97
Switch-and-ramp . 98

4.4 Polyphony . 100
4.5 Voice allocation . 100
4.6 Voice tags . 101
4.7 Encapsulation in Pd . 104
4.8 Examples . 105

ADSR envelope generator . 105
Transfer functions for amplitude control 108
Additive synthesis: Risset’s bell 109
Additive synthesis: spectral envelope control 112
Polyphonic synthesis: sampler . 113

Exercises . 119

5 Modulation 121

5.1 Taxonomy of spectra . 121
5.2 Multiplying audio signals . 124
5.3 Waveshaping . 128
5.4 Frequency and phase modulation 134
5.5 Examples . 136

CONTENTS v

Ring modulation and spectra . 136
Octave divider and formant adder 137
Waveshaping and difference tones 140
Waveshaping using Chebychev polynomials 141
Waveshaping using an exponential function 142
Sinusoidal waveshaping: evenness and oddness 143
Phase modulation and FM . 143

Exercises . 148

6 Designer spectra 149

6.1 Carrier/modulator model . 150
6.2 Pulse trains . 153

6.2.1 Pulse trains via waveshaping 153
6.2.2 Pulse trains via wavetable stretching 154
6.2.3 Resulting spectra . 156

6.3 Movable ring modulation . 158
6.4 Phase-aligned formant (PAF) generator 160
6.5 Examples . 165

Wavetable pulse train . 165
Simple formant generator . 168
Two-cosine carrier signal . 169
The PAF generator . 171
Stretched wavetables . 174

Exercises . 174

7 Time shifts and delays 175

7.1 Complex numbers . 176
7.1.1 Sinusoids as geometric series 178

7.2 Time shifts and phase changes 179
7.3 Delay networks . 180
7.4 Recirculating delay networks . 184
7.5 Power conservation and complex delay networks 189
7.6 Artificial reverberation . 193

7.6.1 Controlling reverberators 196
7.7 Variable and fractional shifts . 198
7.8 Fidelity of interpolating delay lines 200
7.9 Pitch shifting . 202
7.10 Examples . 207

Fixed, noninterpolating delay line 207
Recirculating comb filter . 208
Variable delay line . 209
Order of execution and lower limits on delay times 211
Order of execution in non-recirculating delay lines 213
Non-recirculating comb filter as octave doubler 214
Time-varying complex comb filter: shakers 216
Reverberator . 217

vi CONTENTS

Pitch shifter . 219
Exercises . 219

8 Filters 223

8.1 Taxonomy of filters . 224
8.1.1 Low-pass and high-pass filters 224
8.1.2 Band-pass and stop-band filters 226
8.1.3 Equalizing filters . 227

8.2 Elementary filters . 229
8.2.1 Elementary non-recirculating filter 229
8.2.2 Non-recirculating filter, second form 231
8.2.3 Elementary recirculating filter 232
8.2.4 Compound filters . 232
8.2.5 Real outputs from complex filters 233
8.2.6 Two recirculating filters for the price of one 234

8.3 Designing filters . 235
8.3.1 One-pole low-pass filter 236
8.3.2 One-pole, one-zero high-pass filter 237
8.3.3 Shelving filter . 238
8.3.4 Band-pass filter . 239
8.3.5 Peaking and band-stop filter 240
8.3.6 Butterworth filters . 240
8.3.7 Stretching the unit circle with rational functions 243
8.3.8 Butterworth band-pass filter 244
8.3.9 Time-varying coefficients 245
8.3.10 Impulse responses of recirculating filters 246
8.3.11 All-pass filters . 249

8.4 Applications . 249
8.4.1 Subtractive synthesis . 250
8.4.2 Envelope following . 252
8.4.3 Single Sideband Modulation 254

8.5 Examples . 255
Prefabricated low-, high-, and band-pass filters 256
Prefabricated time-varying band-pass filter 256
Envelope followers . 257
Single sideband modulation . 259
Using elementary filters directly: shelving and peaking 259
Making and using all-pass filters 261

Exercises . 261

9 Fourier analysis and resynthesis 263

9.1 Fourier analysis of periodic signals 263
9.1.1 Periodicity of the Fourier transform 265
9.1.2 Fourier transform as additive synthesis 265

9.2 Properties of Fourier transforms 266
9.2.1 Fourier transform of DC 266

CONTENTS vii

9.2.2 Shifts and phase changes 268
9.2.3 Fourier transform of a sinusoid 269

9.3 Fourier analysis of non-periodic signals 271
9.4 Fourier analysis and reconstruction of audio signals 274

9.4.1 Narrow-band companding 276
9.4.2 Timbre stamping (classical vocoder) 278

9.5 Phase . 280
9.5.1 Phase relationships between channels 284

9.6 Phase bashing . 285
9.7 Examples . 285

Fourier analysis and resynthesis in Pd 285
Narrow-band companding: noise suppression 289
Timbre stamp (“vocoder”) . 291
Phase vocoder time bender . 291

Exercises . 295

10 Classical waveforms 297

10.1 Symmetries and Fourier series . 299
10.1.1 Sawtooth waves and symmetry 300

10.2 Dissecting classical waveforms . 302
10.3 Fourier series of the elementary waveforms 304

10.3.1 Sawtooth wave . 305
10.3.2 Parabolic wave . 306
10.3.3 Square and symmetric triangle waves 306
10.3.4 General (non-symmetric) triangle wave 307

10.4 Predicting and controlling foldover 309
10.4.1 Over-sampling . 309
10.4.2 Sneaky triangle waves . 311
10.4.3 Transition splicing . 311

10.5 Examples . 315
Combining sawtooth waves . 315
Strategies for bandlimiting sawtooth waves 316

Exercises . 318

Index 321

Bibliography 325

viii CONTENTS

Introduction

This book is about using electronic techniques to record, synthesize, process,
and analyze musical sounds, a practice which came into its modern form in the
years 1948-1952, but whose technological means and artistic uses have under-
gone several revolutions since then. Nowadays most electronic music is made
using computers, and this book will focus exclusively on what used to be called
“computer music”, but which should really now be called “electronic music using
a computer”.

Most of the available computer music tools have antecedents in earlier gener-
ations of equipment. The computer, however, is relatively cheap and the results
of using one are much easier to document and re-create than those of earlier
generations of equipment. In these respects at least, the computer makes the
ideal electronic music instrument—it is hard to see what future technology could
displace it.

The techniques and practices of electronic music can be studied (at least
in theory) without making explicit reference to the current state of technology.
Still, it’s important to provide working examples. So each chapter starts with
theory (avoiding any reference to implementation) and ends with a series of
examples realized in a currently available software package.

The ideal reader of this book is anyone who knows and likes electronic music
of any genre, has plenty of facility with computers in general, and who wants
to learn how to make electronic music from the ground up, starting with the
humble oscillator and continuing through sampling, FM, filtering, waveshaping,
delays, and so on. This will take plenty of time.

This book doesn’t take the easy route of recommending pre-cooked software
to try out these techniques; instead, the emphasis is on learning how to use a
general-purpose computer music environment to realize them yourself. Of the
several such packages are available, we’ll use Pd, but that shouldn’t stop you
from using these same techniques in some other environment such as Csound or
Max/MSP.

To read this book you must understand mathematics through intermediate
algebra and trigonometry; starting in Chapter 7, complex numbers also make
an appearance, although not complex analyis. (For instance, complex numbers
are added, multiplied, and conjugated, but there are no complex exponentials.)
All this should appear in most second-year high-school algebra textbooks. A
refresher by F. Richard Moore appears in [Str85, pp. 1-68].

1

2 CONTENTS

You don’t need much background in music as it is taught in the West; in
particular, Western written music notation is not needed. Some elementary
bits of Western music theory are used, such as the tempered scale, the A-B-
C system of naming pitches, and terms like “note” and “chord”. Also you
should be familiar with the fundamental terminology of musical acoustics such
as sinusoids, amplitude, frequency, and the overtone series.

Each chapter starts with a theoretical discussion of some family of tech-
niques or theoretical issues, followed by a a series of examples realized in Pd
to illustrate them. The examples are included in the Pd distribution, so you
can run them and/or edit them into your own spinoffs. In addition, all the fig-
ures were created using Pd patches, which appear in an electronic supplement.
These aren’t carefully documented but in principle could be used as an example
of Pd’s drawing capabilities for anyone interested in learning more about them.

Chapter 1

Sinusoids, amplitude and
frequency

Electronic music is usually made using a computer, by synthesizing or processing
digital audio signals. These are sequences of numbers,

..., x[n − 1], x[n], x[n + 1], ...

where the index n, called the sample number, may range over some or all the
integers. A single number in the sequence is called a sample. An example of a
digital audio signal is the Sinusoid :

x[n] = a cos(ωn + φ)

where a is the amplitude, ω is the angular frequency, and φ is the initial phase.
The phase is a function of the sample number n, equal to φ + ωn. The initial
phase is the phase at the zeroth sample (n = 0).

Figure 1.1 (part a) shows a sinusoid graphically. The horizontal axis shows
successive values of n and the vertical axis shows the corresponsding values of
x[n]. The graph is drawn in such a way as to emphasize the sampled nature of
the signal. Alternatively, we could draw it more simply as a continuous curve
(part b). The upper drawing is the most faithful representation of the (digital
audio) sinusoid, whereas the lower one can be considered an idealization of it.

Sinusoids play a key role in audio processing because, if you shift one of
them left or right by any number of samples, you get another one. This makes
it easy to calculate the effect of all sorts of operations on sinusoids. Our ears
use this same special property to help us parse incoming sounds, which is why
sinusoids, and combinations of sinusoids, can be used for a variety of musical
effects.

Digital audio signals do not have any intrinsic relationship with time, but to
listen to them we must choose a sample rate, usually given the variable name R,
which is the number of samples that fit into a second. Time is related to sample

3

4 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

1

-1

n

0

x[n]

1

-1

50

x(n)

(a)

(b)

49

Figure 1.1: A digital audio signal, showing its discrete-time nature (part a),
and idealized as a continuous function (part b). This signal is a (real-valued)
sinusoid, fifty points long, with amplitude 1, angular frequency 0.24, and initial
phase zero.

1.1. MEASURES OF AMPLITUDE 5

number by Rt = n, or t = n/R. A sinusoidal signal with angular frequency ω
has a real-time frequency equal to

f =
ωR

2π

in cycles per second, because a cycle is 2π radians and a second is R samples.
A real-world audio signal’s amplitude might be expressed as a time-varying

voltage or air pressure, but the samples of a digital audio signal are unitless
numbers. We’ll casually assume here that there is ample numerical accuracy so
that we can ignore round-off errors, and that the numerical format is unlimited
in range, so that samples may take any value we wish. However, most digital
audio hardware works only over a fixed range of input and output values, most
often between -1 and 1. Modern digital audio processing software usually uses
a floating-point representation for signals. This allows us to use whatever units
are most convenient for any given task, as long as the final audio output is
within the hardware’s range [Mat69, pp. 4-10].

1.1 Measures of Amplitude

The most fundamental property of a digital audio signal is its amplitude. Unfor-
tunately, a signal’s amplitude has no one canonical definition. Strictly speaking,
all the samples in a digital audio signal are themselves amplitudes, and we also
spoke of the amplitude a of the sinusoid as a whole. It is useful to have measures
of amplitude for digital audio signals in general. Amplitude is best thought of
as applying to a window, a fixed range of samples of the signal. For instance,
the window starting at sample M of length N of an audio signal x[n] consists
of the samples,

x[M], x[M + 1], . . . , x[M + N − 1]

The two most frequently used measures of amplitude are the peak amplitude,
which is simply the greatest sample (in absolute value) over the window:

Apeak{x[n]} = max |x[n]|, n = M, . . . ,M + N − 1

and the root mean square (RMS) amplitude:

ARMS{x[n]} =
√

P{x[n]}

where P{x[n]} is the mean power, defined as:

P{x[n]} =
1

N

(

|x[M]|2 + · · · + |x[M + N − 1]|2
)

(In this last formula, the absolute value signs aren’t necessary at the moment
since we’re working on real-valued signals, but they will become important later
when we consider complex-valued signals.) Neither the peak nor the RMS am-
plitude of any signal can be negative, and either one can be exactly zero only if
the signal itself is zero for all n in the window.

6 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

(a)

(b)

peak

RMS

peak

RMS

Figure 1.2: Root mean square (RMS) and peak amplitudes of signals compared.
For a sinusoid (part a), the peak amplitude is higher than RMS by a factor of√

2.

The RMS amplitude of a signal may equal the peak amplitude but never
exceeds it; and it may be as little as 1/

√
N times the peak amplitude, but never

less than that.

Under reasonable conditions—if the window contains at least several periods
and if the angular frequency is well under one radian per sample—the peak
amplitude of the sinusoid is approximately a and its RMS amplitude about
a/

√
2. Figure 1.2 shows the peak and RMS amplitudes of two digital audio

signals.

1.2 Units of Amplitude

Two amplitudes are often better compared using their ratio than their difference.
For example, saying that one signal’s amplitude is greater than another’s by a
factor of two is more informative than saying it is greater by 30 millivolts. This
is true for any measure of amplitude (RMS or peak, for instance). To facilitate
comparisons, we often express amplitudes in logarithmic units called decibels.
If a is the amplitude of a signal (either peak or RMS, as defined above), then
we can define the decibel (dB) level d as:

d = 20 · log10(a/a0)

1.2. UNITS OF AMPLITUDE 7

0
decibels

1

ampli-
tude

-20 -10

0

0.1

Figure 1.3: The relationship between decibel and linear scales of amplitude.
The linear amplitude 1 is assigned to 0 dB.

where a0 is a reference amplitude. This definition is set up so that, if we increase
the signal power by a factor of ten (so that the amplitude increases by a factor
of

√
10), the logarithm will increase by 1/2, and so the value in decibels goes

up (additively) by ten. An increase in amplitude by a factor of two corresponds
to an increase of about 6.02 decibels; doubling power is an increase of 3.01 dB.
The relationship between linear amplitude and amplitude in decibels is graphed
in Figure 1.3.

Still using a0 to denote the reference amplitude, a signal with linear ampli-
tude smaller than a0 will have a negative amplitude in decibels: a0/10 gives -20
dB, a0/100 gives -40, and so on. A linear amplitude of zero is smaller than that
of any value in dB, so we give it a dB value of −∞.

In digital audio a convenient choice of reference, assuming the hardware has
a maximum amplitude of one, is

a0 = 10−5 = 0.00001

so that the maximum amplitude possible is 100 dB, and 0 dB is likely to be
inaudibly quiet at any reasonable listening level. Conveniently enough, the
dynamic range of human hearing—the ratio between a damagingly loud sound
and an inaudibly quiet one—is about 100 dB.

Amplitude is related in an inexact way to the perceived loudness of a sound.
In general, two signals with the same peak or RMS amplitude won’t necessarily
have the same loudness at all. But amplifying a signal by 3 dB, say, will fairly
reliably make it sound about one “step” louder. Much has been made of the
supposedly logarithmic nature of human hearing (and other senses), which may

8 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

pitch

440

frequency

45 57 69

110

220

330

0

Figure 1.4: The relationship between “MIDI” pitch and frequency in cycles per
second (Hertz). The span of 24 MIDI values on the horixontal axis represents
two octaves, over which the output increases by a factor of four.

partially explain why decibels are such a useful scale of amplitude[RMW02, p.
99].

Amplitude is also related in an inexact way to musical dynamic. Dynamic is
better thought of as a measure of effort than of loudness or power. It ranges over
nine values: rest, ppp, pp, p, mp, mf, f, ff, fff. These correlate in an even looser
way with the amplitude of a signal than does loudness [RMW02, pp. 110-111].

1.3 Controlling Amplitude

Perhaps the most frequently used operation on electronic sounds is to change
their amplitudes. For example, a simple strategy for synthesizing sounds is by
combining sinusoids, which can be generated by evaluating the formula on page
3, sample by sample. But the sinusoid has a constant nominal amplitude a, and
we would like to be able to vary that in time.

In general, to multiply the amplitude of a signal x[n] by a factor y ≥ 0,
you can just multiply each sample by y, giving a new signal y · x[n]. Any
measurement of the RMS or peak amplitude of x[n] will be greater or less by
the factor y. More generally, you can change the amplitude by an amount y[n]
which varies sample by sample. If y[n] is nonnegative and if it varies slowly
enough, the amplitude of the product y[n] · x[n] (in a fixed window from M to
M + N − 1) will be related to that of x[n] by the value of y[n] in the window
(which we assume doesn’t change much over the N samples in the window).

In the more general case where both x[n] and y[n] are allowed to take negative

1.4. FREQUENCY 9

and positive values and/or to change quickly, the effect of multiplying them can’t
be described as simply changing the amplitude of one of them; this is considered
later in chapter 5.

1.4 Frequency

Frequencies, like amplitudes, are often measured on a logarithmic scale, in order
to emphasize proportions between them, which usually provide a better descrip-
tion of the relationship between frequencies than do differences between them.
The frequency ratio between two musical tones determines the musical interval
between them.

The Western musical scale divides the octave (the musical interval associated
with a ratio of 2:1) into twelve equal sub-intervals, each of which therefore
corresponds to a ratio of 21/12. For historical reasons this sub-interval is called
a half step. A convenient logarithmic scale for pitch is simply to count the
number of half-steps from a reference pitch—allowing fractions to permit us
to specify pitches which don’t fall on a note of the Western scale. The most
commonly used logarithmic pitch scale is “MIDI pitch”, in which the pitch 69
is assigned to a frequency of 440 cycles per second—the A above middle C. To
convert between a MIDI pitch m and a frequency in cycles per second f , apply
the Pitch/Frequency Conversion formulas:

m = 69 + 12 · log2(f/440)

f = 440 · 2(m−69)/12

Middle C, corresponding to MIDI pitch m = 60, comes to f = 261.626 cycles
per second.

MIDI itself is an old hardware protocol which has unfortunately insinuated
itself into a great deal of software design. In hardware, MIDI allows only integer
pitches between 0 and 127. However, the underlying scale is well defined for
any “MIDI” number, even negative ones; for example a “MIDI pitch” of -4 is
a decent rate of vibrato. The pitch scale cannot, however, describe frequencies
less than or equal to zero cycles per second. (For a clear description of MIDI,
its capabilities and limitations, see [Bal03, ch.6-8]).

A half step comes to a ratio of about 1.059 to 1, or about a six percent
increase in frequency. Half steps are further divided into cents, each cent being
one hundredth of a half step. As a rule of thumb, it might take about three
cents to make a discernable change in the pitch of a musical tone. At middle C
this comes to a difference of about 1/2 cycle per second. A graph of frequency
as a function of MIDI pitch, over a two-octave range, is shown in Figure 1.4.

1.5 Synthesizing a sinusoid

In most widely used audio synthesis and processing packages (Csound, Max/MSP,
and Pd, for instance), the audio operations are specified as networks of unit

10 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

(a)

OUT

FREQUENCY

OUT

(b)

y[n]

FREQUENCY

Figure 1.5: Block diagrams for (a) a sinusoidal oscillator; (b) controlling the
amplitude using a multiplier and an amplitude signal y[n].

generators[Mat69] which pass audio signals among themselves. The user of the
software package specifies the network, sometimes called a patch, which essen-
tially corresponds to the synthesis algorithm to be used, and then worries about
how to control the various unit generators in time. In this section, we’ll use ab-
stract block diagrams to describe patches, but in the “examples” section (page
19), we’ll to choose a specific implementation environment and show some of
the software-dependent details.

To show how to produce a sinusoid with time-varying amplitude we’ll need to
introduce two unit generators. First we need a pure sinusoid which is made with
an oscillator. Figure 1.5 (part a) shows a pictoral representation of a sinusoidal
oscillator as an icon. The input is a frequency (in cycles per second), and the
output is a sinusoid of peak amplitude one.

Figure 1.5 (part b) shows how to multiply the output of a sinusoidal oscillator
by an appropriate scale factor y[n] to control its amplitude. Since the oscillator’s
peak amplitude is 1, the peak amplitude of the product is about y[n], assuming
y[n] changes slowly enough and doesn’t become negative in value.

Figure 1.6 shows how the sinusoid of Figure 1.1 is affected by amplitude
change by two different controlling signals y[n]. The controlling signal shown
in part (a) has a discontinuity, and so therefore does the resulting amplitude-
controlled sinusoid shown in (b). Parts (c) and (d) show a more gently-varying
possibility for y[n] and the result. Intuition suggests that the result shown in (b)
won’t sound like an amplitude-varying sinusoid, but instead like a sinusoid in-
terrupted by an audible “pop” after which it continues more quietly. In general,
for reasons that can’t be explained in this chapter, amplitude control signals

1.5. SYNTHESIZING A SINUSOID 11

(a)

(b)

(c)

(d)

n

-1

1

-1

-1

-1

1

1

1

y[n]

x[n]y[n]

x[n]y[n]

y[n]

0 50

Figure 1.6: Two amplitude functions (parts a, c), and (parts b, d), the result of
multiplying them by the pure sinusoid of Figure 1.1.

12 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

y[n] which ramp smoothly from one value to another are less likely to give rise
to parasitic results (such as that “pop”) than are abruptly changing ones.

For now we can state two general rules without justifying them. First, pure
sinusoids are the signals most sensitive to the parasitic effects of quick amplitude
change. So when you want to test an amplitude transition, if it works for
sinusoids it will probably work for other signals as well. Second, depending on
the signal whose amplitude you are changing, the amplitude control will need
between 0 and 30 milliseconds of “ramp” time—zero for the most forgiving
signals (such as white noise), and 30 for the least (such as a sinusoid). All this
also depends in a complicated way on listening levels and the acoustic context.

Suitable amplitude control functions y[n] may be made using an envelope
generator. Figure 1.7 shows a network in which an envelope generator is used
to control the amplitude of an oscillator. Envelope generators vary widely in
functionality from one design to another, but we will focus on the simplest kind,
which generates line segments as shown in Figure 1.5 (part b). If a line segment
is specified to ramp between two output values a and b over N samples starting
at sample number M , the output is:

y[n] = a + (b − a)
n − M

N
, M ≤ n ≤ M + N − 1.

The output may have any number of segments such as this, laid end to end, over
the entire range of sample numbers n; flat, horizontal segments can be made by
setting a = b.

In addition to changing amplitudes of sounds, amplitude control is often
used, expecially in real-time applications, simply to turn sounds on and off: to
turn one off, ramp the amplitude smoothly to zero. Most software synthesis
packages also provide ways to actually stop modules from computing samples
at all, but here we’ll use amplitude control instead.

The envelope generator dates from the analog era [Str95, p.64] [Cha80, p.90],
as does the rest of Figure 1.7; oscillators with controllable frequency were called
voltage-controlled oscilators or VCOs, and the multiplication step was done
using a voltage-controlled amplifier or VCA [Str95, pp.34-35] [Cha80, pp.84-89].
Envelope generators are described in more detail in section 4.1.

1.6 Superposing Signals

If a signal x[n] has a peak or RMS amplitude A (in some fixed window), then
the scaled signal k · a[n] (where k ≥ 0) has amplitude kA. The mean power of
the scaled signal changes by a factor of k2. The situation gets more complicated
when two different signals are added together; just knowing the amplitudes of
the two does not suffice to know the amplitude of the sum. The two amplitude
measures do at least obey triangle inequalities; for any two signals x[n] and y[n],

Apeak{x[n]} + Apeak{y[n]} ≥ Apeak{x[n] + y[n]}

ARMS{x[n]} + ARMS{y[n]} ≥ ARMS{x[n] + y[n]}

1.6. SUPERPOSING SIGNALS 13

OUT

FREQUENCY

Figure 1.7: Using an envelope generator to control amplitude.

If we fix a window from M to N + M − 1 as usual, we can write out the mean
power of the sum of two signals:

P{x[n] + y[n]} = P{x[n]} + P{y[n]} + 2 · COR{x[n], y[n]}

where we have introduced the correlation of two signals:

COR{x[n], y[n]} =
x[M]y[M] + · · · + x[M + N − 1]y[M + N − 1]

N

The correlation may be positive, zero, or negative. Over a sufficiently large
window, the correlation of two sinusoids with different frequencies is negligible
compared to the mean power. In general, for two uncorrelated signals, the power
of the sum is the sum of the powers:

P{x[n] + y[n]} = P{x[n]} + P{y[n]}, whenever COR{x[n], y[n]} = 0

Put in terms of amplitude, this becomes:

(ARMS{x[n] + y[n]})2 = (ARMS{x[n]})2 + (ARMS{y[n]})2.

This is the familiar Pythagorean relation. So uncorrelated signals can be thought
of as vectors at right angles to each other; positively correlated ones as having
an acute angle between them, and negatively correlated as having an obtuse
angle between them.

For example, if two uncorrelated signals both have RMS amplitude a, the
sum will have RMS amplitude

√
2a. On the other hand if the two signals happen

to be equal—the most correlated possible—the sum will have amplitude 2a,
which is the maximum allowed by the triangle inequality.

14 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

1.7 Periodic Signals

A signal x[n] is said to repeat at a period τ if

x[n + τ] = x[n]

for all n. Such a signal would also repeat at periods 2τ and so on; the smallest τ
if any at which a signal repeats is called the signal’s period. In discussing periods
of digital audio signals, we quickly run into the difficulty of describing signals
whose “period” isn’t an integer, so that the equation above doesn’t make sense.
Throughout this section, we’ll effectively ignore this difficulty by supposing that
the signal x[n] may somehow be interpolated between the samples so that it’s
well defined whether n is an integer or not.

The sinusoid has a period (in samples) of 2π/ω where ω is the angular
frequency. More generally, any sum of sinusoids with frequencies 2πk/ω, for
integers k, will repeat after 2π/ω samples. Such a sum is called a Fourier
Series:

x[n] = a0 + a1 cos (ωn + φ1) + a2 cos (2ωn + φ2) + · · · + ap cos (pωn + φp)

Moreover, if we make certain technical assumptions (in effect that signals only
contain frequencies up to a finite bound), we can represent any periodic signal
as such a sum. This is the discrete-time variant of Fourier analysis which will
reappear in Chapter 9.

The angular frequencies of the sinusoids above are all integer multiples of ω.
They are called the harmonics of ω, which in turn is called the fundamental.
In terms of pitch, the harmonics ω, 2ω, . . . are at intervals of 0, 1200, 1902,
2400, 2786, 3102, 3369, 3600, ..., cents above the fundamental; this sequence of
pitches is sometimes called the harmonic series. The first six of these are all
oddly close to multiples of 100; in other words, the first six harmonics of a pitch
in the Western scale land close to (but not always exactly on) other pitches of
the same scale; the third and sixth miss only by 2 cents and the fifth misses by
14.

Put another way, the frequency ratio 3:2 (a perfect fifth in Western termi-
nology) is almost exactly seven half-tones, 4:3 (a perfect fourth) is just as near
to five half tones, and the ratios 5:4 and 6:5 (perfect major and minor thirds)
are fairly close to intervals of four and three half-tones, respectively.

A Fourier series (with only three terms) is shown in Figure 1.8. The first
three graphs are those of sinusoids, whose frequencies are in a 1:2:3 ratio. The
common period is marked on the horixontal axis. Each sinusoid has a different
amplitude and initial phase. The sum of the three, at bottom, is not a sinusoid,
but it still maintains the periodicity shared by the three component sinusoids.

Leaving questions of phase aside, we can use a bank of sinusoidal oscillators
to synthesize periodic tones, or even to morph smoothly through a succession
of periodic tones, by specifying the fundamental frequency and the (possibly
time-varying) amplitudes of the partials. Figure 1.9 shows a block diagram for
doing this.

1.7. PERIODIC SIGNALS 15

+

+

=

Figure 1.8: A Fourier series, showing three sinusoids and their sum. The three
component sinusoids have frequencies in the ratio 1:2:3.

16 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

OUT

FREQUENCY

(more)

2
3

Figure 1.9: Using many oscillators to synthesize a waveform with desired har-
monic amplitudes.

1.8. ABOUT THE SOFTWARE EXAMPLES 17

This is an example of additive synthesis; more generally the term can be
applied to networks in which the frequencies of the oscillators are independently
controllable. The early days of computer music were full of the sound of additive
synthesis.

1.8 About the Software Examples

The examples for this book have been realized using Pure Data (Pd), and to
use and understand them you will have to learn at least something about Pd
itself. Pd is an environment for quickly assembling computer music applications,
primarily intended for live music performances involving computers. Pd can be
used for other media as well, but we won’t go into that here.

Several other patchable audio DSP environments exist besides Pd. The
most widely used one is certainly Barry Vercoe’s Csound [Bou00], which differs
from Pd in being text-based (not GUI-based). This is an advantage in some
respects and a disadvantage in others. Csound is better adapted than Pd for
batch processing and it handles polyphony much better than Pd does. On
the other hand, Pd has a better developed real-time control structure than
Csound. Geneologically, csound belongs to the so-called Music N languages
[Mat69, pp.115-172].

Another open-source alternative in wide use is James McCartney’s SuperCol-
lider, which is also more text oriented than Pd, but like Pd is explicitly designed
for real-time use. SuperCollider has powerful linguistic constructs which make
it a more suitable tool than Csound for tasks like writing loops or maintining
complex data structures.

Finally, Pd has a widely-used relative, Cycling74’s commercial program
Max/MSP (the others named here are all open source). Both beginners and
system managers running multi-user, multi-purpose computer labs will find
Max/MSP better supported and documented than Pd. It’s possible to take
knowledge of Pd and apply it in Max/MSP and vice versa, and even to port
patches from one to the other, but the two aren’t truly compatible.

Quick Introduction to Pd

Pd documents are called patches. They correspond roughly to the boxes in
the abstract block diagrams shown earlier in this chapter, but in detail they
are quite different, because Pd is an implementation environment and not a
specification language.

A Pd patch, such as the one shown in Figure 1.10, consists of a collection
of boxes connected in a network. The border of a box tells you how its text is
interpreted and how the box functions. In part (a) of the figure we see three
types of boxes. From top to bottom they are:

• a message box. Message boxes, with a flag-shaped border, interpret the
text as a message to send whenever the box is activated (by an incoming

18 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

34

+ 13

21

(a)

dac~

osc~

440

(b)

frequency

sinusoidal oscillator

multiplier

output

*~

0.1 0

message box

object box

(GUI) box

number (on/off)
amplitude

Figure 1.10: (a) three types of boxes in Pd (message, object, and GUI); (b) a
simple patch to output a sinusoid.

message or with the mouse.) The message in this case consists simply of
the number “34”.

• an object box. Object boxes have a rectangular border; they interpret the
text to create objects when you load a patch. Object boxes may represent
hundreds of different classes of objects—including oscillators, envelope
generators, and other signal processing modules to be introduced later—
depending on the text inside. In this example, the box contains an adder.
In most Pd patches, the majority of boxes are of type “object”. The first
word typed into an object box specifies its class, which in this case is just
“+”. Any additional (blank-space-separated) words appearing in the box
are called creation arguments, which specify the initial state of the object
when it is created.

• a number box. Number boxes are a particular type of GUI box. Others
include push buttons and toggle switches; these will come up later in the
examples. The number box has a punched-card-shaped border, with a
nick out of its top right corner. Whereas the appearance of an object or
message box is fixed when a patch is running, a number box’s contents
(the text) changes to reflect the current value held by the box. You can
also use a number box as a control by clicking and dragging up and down,
or by typing values in it.

In Figure 1.10 (part a) the message box, when clicked, sends the message
“21” to an object box which adds 13 to it. The lines connecting the boxes carry
data from one box to the next; outputs of boxes are on the bottom and inputs
on top.

Figure 1.10 (part b) shows a Pd patch which makes a sinusoid with con-
trollable frequency and amplitude. The connecting patch lines are of two types

1.9. EXAMPLES 19

here; the thin ones are for carrying sporadic messages, and the thicker ones
(connecting the oscillator, the multiplier, and the output dac~ object) carry
digital audio signals. Since Pd is a real-time program, the audio signals flow
in a continuous stream. On the other hand, the sporadic messages appear at
specific but possibly unpredictable instants in time.

Whether a connection carries messages or signals is a function of the box
the connection comes from; so, for instance, the + object outputs messages, but
the *~ object outputs a signal. The inputs of a given object may or may not
accept signals (but they always accept messages, even if only to convert them
to signals). As a naming convention, object boxes which input or output signals
are all named with a trailing tilde (“~”) as in “*~” and “osc~”.

How to find and run the examples

To run the patches, you must first download, install, and run Pd. Instructions
for doing this appear in Pd’s on-line HTML documentation, which you can find
at http:/crca/ucsd/edu/˜msp/software.htm.

This book should appear at: http:/crca/ucsd/edu/˜msp/techniques.htm,
possibly in several revisions. Choose the revision that corresponds to the text
you’re reading (go to the introduction to find the revision number) and down-
load the archive containing the associated revision of the examples (you may
also download an archive of the HTML version for easier access on your ma-
chine.) The examples should all stay in a single directory, since some of them
depend on other files in that directory and might not load them correctly if you
have moved things around.

If you do want to copy one of the examples to another directory so that
you can build on it (which you’re welcome to do), you should either include
the examples directory in Pd’s search path (see the Pd documentation) or else
figure out what other files are needed and copy them too. A good way to find
this out is just to run Pd on the relocated file and see what Pd complains it
can’t find.

There should be dozens of files in the “examples” folder, including the ex-
amples themselves and the support files. The filenames of the examples all
begin with a letter (A for chapter 1, B for 2, etc.) and a number, as in
“A01.sinewave.pd”.

The example patches are also distributed with Pd, but beware that you may
find a different version of the examples which might not correspond with the
text you’re reading.

1.9 Examples

Constant amplitude scaler

Example A01.sinewave.pd, shown in Figure 1.11, contains essentially the sim-
plest possible patch that makes a sound, with only three object boxes. (There

20 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

are also comments, and two message boxes to turn Pd’s “DSP” (audio) process-
ing on and off.) The three object boxes are:

osc ∼ : the sinusoidal oscillator. The left hand side input and the output
are digital audio signals. The input is taken to be a (possibly time-varying)
frequency in Hz. The output is a sinusoid at the specified frequency. If nothing
is connected to the frequency inlet, the creation argument (440 in this example)
is used as the frequency. The output has peak amplitude one. You may set
an initial phase by sending messages (not audio signals) to the right inlet. The
left (frequency) inlet may also be sent messages to set the frequency, since any
inlet that takes an audio signal may be sent messages which are automatically
converted to the desired audio signal.

∗ ∼ : the multiplier. This exists in two forms. If a creation argument is
specified (as in this example; it’s 0.05), this box multiplies a digital audio signal
(in the left inlet) by the number; messages to the right inlet can update the
number as well. If no argument is given, this box multiplies two incoming
digital audio signals together.

dac ∼ : the audio output device. Depending on your hardware, this might not
actually be a Digital/Analog Converter—as the name suggests—but in general,
it allows you to send any audio signal to your computer’s audio output(s). If
there are no creation arguments, the default configuration is to output to chan-
nels one and two of the audio hardware; you may specify alternative channel
numbers (one or many) using the creation arguments. Pd itself may be con-
figured to be using two or more output channels, or may not have the audio
output device open at all; consult the Pd documentation for details.

The two message boxes show a peculiarity in the way messages are parsed
in message boxes. Earlier in Figure 1.10 (part a), the message consisted only of
the number 21. When clicked, that box sent the message “21” to its outlet and
hence to any objects connected to it. In this current example, the text of the
message boxes starts with a semicolon. This is a terminator between messages
(so the first message is empty), after which the next word is taken as the name
of the recipient of the following message. Thus the message here is “dsp 1” (or
“dsp 0”) and the message is to be sent, not to any connected objects—there
aren’t any anyway— but rather, to the object named “pd”. This particular
object is provided invisibly by the Pd program and you can send it various
messages to control Pd’s global state, in this case turning audio processing on
(“1”) and off (“0”).

Many more details about the control aspects of Pd, such as the above, are
explained in a different series of example patches (the “control examples”) in the
Pd release, but they will only be touched on here as necessary to demonstrate
the audio signal processing techniques that are the subject of this book.

Amplitude control in decibels

Example A02.amplitude.pd shows how to make a crude amplitude control; the
active elements are shown in Figure 1.12(a). There is one new object class:

1.9. EXAMPLES 21

osc~ 440

dac~

 440 Hz. sine wave at full blast

*~ 0.05

MAKING A SINE WAVE

Audio computation can be turned on and off by sending
messages to the global "pd" object as follows:

;
pd dsp 1

;
pd dsp 0

ON OFF

You should see the Pd ("main") window change to reflect
whether audio is on or off. You can also turn audio on and
off using the "audio" menu, but the buttons are provided as
a shortcut.

When DSP is on, you should hear a tone whose pitch is A 440
and whose amplitude is 0.05. If instead you are greeted
with silence, you might want to read the HTML documentation
on setting up audio.

In general when you start a work session with Pd, you will
want to choose "test audio and MIDI" from the help window,
which opens a more comprehensive test patch than this one.

<-- click these

reduce amplitude to 0.05

 send to the audio output device

Audio computation in Pd is done using "tilde objects" such
as the three below. They use continuous audio streams to
intercommunicate, and also communicate with other
("control") Pd objects using messages.

Figure 1.11: The contents of the first Pd example patch: A01.sinewave.pd.

22 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

osc~ 440

dac~

*~ 0

0

dbtorms

0

(a)

osc~ 440

dac~

*~

line~ <--- ramp generator

0.1 2000

0 2000

0.1 50

0 50

0.1

0

<-- slow on

<-- fast on

<-- instant on

<-- slow off

<-- fast off

<-- instant off

<-- multiplier: this time

taking a signal in

on both sides.

(b)

osc~ 440

osc~ 550

osc~ 660

+~

+~

(c)

output~

0dB

mute

Figure 1.12: The active ingredients to three patches: (a) A02.amplitude.pd; (b)
A03.line.pd; (c) A05.output.subpatch.pd.

1.9. EXAMPLES 23

dbtorms : Decibels to linear amplitude conversion. The “RMS” is a misnomer;
it should have been named “dbtoamp”, since it really converts from decibels to
any linear amplitude unit, be it RMS, peak, or other. An input of 100 dB
is normalized to an output of 1. Values greater than 100 are fine (120 will
give 10), but values less than or equal to zero will output zero (a zero input
would otherwise have output a small positive number.) This is a control object,
i.e., the numbers going in and out are messages, not signals. (A corresponding

object, dbtorms ∼ , is the signal correlate. However, as a signal object this is
expensive in CPU time and most often we’ll find one way or another to avoid
using it.)

The two number boxes are connected to the input and output of the dbtorms
object. The input functions as a control; “mouse” on it (click and drag upward
or downward) to change the amplitude. It has been set to range from 0 to
80; this is protection for your speakers and ears, and it’s wise to build such
guardrails into your own patches.

The other number box shows the output of the dbtorms object. It is useless
to mouse on this number box, since its outlet is connected nowhere; it is here
purely to display its input. Number boxes may be useful as controls, displays,
or both, although if you’re using it as both there may be some extra work to
do.

Smoothed amplitude control with an envelope generator

As Figure 1.6 shows, one way to make smooth amplitude changes in a signal
without clicks is to multiply by an envelope generator; one is invoked in block
diagram form in Figure 1.7. This may be implemented in Pd using the line~

class:

line ∼ : envelope generator. The output is a signal which ramps linearly from
one value to another over time, as determined by the messages received. The
inlets take messages to specify target values (left inlet) and time delays (right
inlet). Because of a general rule of Pd messages, a pair of numbers sent to the
left inlet suffices to specify a target value and a time together. The time is
in milliseconds (taking into account the sample rate), and the target value is
unitless, or in other words, its output range should conform to whatever input
it may be connected to.

Example A03.line.pd demonstrates the use of a line~ object to control
the amplitude of a sinusoid. The active part is shown in Figure 1.12 (part b).
The six message boxes are all connected to the line~ object, and are activated
by clicking on them; the top one, for instance, specifies that the line~ ramp
(starting at wherever its output was before receiving the message) to the value
0.1 over two seconds. After the two seconds elapse, unless other messages have
arrived in the meantime, the output remains steady at 0.1. Messages may arrive
before the two seconds elapse, in which case the line~ object abandons its old
trajectory and takes up a new one.

Two messages to line~ might arrive at the same time or so close together

24 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

in time that no DSP computation takes place between the two; in this case, the
earlier message has no effect, since line~ won’t have changed its output yet
to follow the first message, and its current output, unchanged, is then used as
a starting point for the second segment. An exception to this rule is that, if
line~ gets a time value of zero, the output value is immediately set to the new
value and further segments will start from the new value; thus, by sending two
pairs, the first with a time value of zero and the second with a nonzero time
value, one can independently specify the beginning and end values of a segment
in line~’s output.

The treatment of line~’s right inlet is unusual among Pd objects in that it
forgets old values; thus, a message with a single number such as “0.1” is always
equivalent to the pair, “0.1 0”. Almost any other object will retain the previous
value for the right inlet, instead of resetting it to zero.

Example A04.line2.pd shows the line~ object’s output graphically. Using
the various message boxes, you can recreate the effects shown in Figure 1.6.

Major triad

Example A05.output.subpatch.pd, whose active ingredients are shown in Figure
1.12 (part c), presents three sinusoids with frequencies in the ratio 4:5:6, so that
the lower two are separated by a major third, the upper two by a minor third,
and the top and bottom by a fifth. The lowest frequency is 440, equal to A
above middle C, or MIDI 69. The others are approximately four and seven
half-steps higher, respectively. The three have equal amplitudes.

The amplitude control in this example is taken care of by a new object called
output~. This isn’t a built-in object of Pd, but is itself a Pd patch which lives
in a file, “output.pd”. (You can see the internals of output~ by opening the
properties menu for the box and selecting “open”.) You get two controls, one
for amplitude in dB (100 meaning “unit gain”), and a “mute” button. Pd’s
audio processing is turned on automatically when you set the output level—
this might not be the right behavior in general, but it’s appropriate for these
example patches. The mechanism for embedding one Pd patch as an object box
inside another is discussed in section 4.7.

Conversion between frequency and pitch

Example A06.frequency.pd (Figure 1.13) shows Pd’s object for converting pitch
to frequency units (mtof, meaning “MIDI to frequency”) and its inverse ftom.
We also introduce two other object classes, send and receive:

mtof , ftom : Converts MIDI pitch to frequency units according to the
PITCH/FREQUENCY CONVERSION formulas. Inputs and outputs are mes-
sages (but “tilde” equivalents of the two also exist, although like dbtorms~

they’re expensive in CPU time). The ftom object’s output is -1500 of the input
is zero or negative; and likewise, if you give mtof -1500 or lower it outputs zero.

receive , r : Receive messages non-locally. The receive object, which may

1.9. EXAMPLES 25

0

set $1

0

r frequency

set $1

s frequency

r pitch

s pitch

mtof

s frequencys pitch

ftom

<−− set frequency <−− set MIDI pitch

<−− convert frequency

to "MIDI" pitch

<−− convert "MIDI" pitch
to frequency

Figure 1.13: Conversion between pitch and frequency in A06.frequency.pd.

be abbreviated as “r” waits for non-local messages to be sent by a send ob-
ject (described below) or by a message box using redirection (the “;” feature
discussed in the earlier example, A01.sinewave.pd). The argument (such as “fre-
quency” and “pitch” in this example) is the name to which messages are sent.
Multiple receive objects may share the same name, in which case any message
sent to that name will go to all of them.

send , s : The send object, which may be abbreviated as “s”, directs mes-
sages to receive objects.

Two new properties of number boxes are used here. Heretofore we’ve used
them as controls or as displays; here, the two number boxes each function as
both. If a number box gets a number in its inlet, it not only displays the number
but also repeats it to its output. However, a number box may also be sent a “set”
message, such as “set 55” for example. This would set the value of the number
box to 55 (and display it) but not cause the output that would result from
the simple “55” message. In this case, numbers coming from the two receive

objects are formatted (using message boxes) to read “set 55” instead of just
“55”, and so on. (The special word “$1” is replaced by the incoming number.)
This is done because otherwise we would have an infinite loop: frequency would
change pitch which would change frequency and so on forever, or at least until
something broke.

More additive synthesis

The major triad (page 24) is one example showing how to combine several
sinusoids together by summing. Here we will show two more examples. Example
A07.fusion.pd (Figure 1.14) shows four oscillators, whose frequencies are tuned
in the ratio 1:2:3:4, with relative amplitudes 1, 0.1, 0.2, and 0.5. The amplitudes
are set by multiplying the outputs of the oscillators (the *~ objects below the
oscillators).

The second, third, and fourth oscillator are turned on and off using a toggle

26 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

0

mtof

<-- choose a pitch

osc~

* 2

osc~ osc~

* 3

osc~

* 4

*~ 0.2

+~ *~

+~

+~

frequencies of harmonics

four oscillators

adjust amplitudes

add the three overtones together

*~ 0.1 *~ 0.5

<-- overtones ON/OFF

(OUT)

Figure 1.14: Additive synthesis using harmonically tuned oscillators.

switch. This is a graphical control, like the number box introduced earlier. The
toggle switch puts out values of 1 and 0 alternately when clicked on with the
mouse. This value is multiplied by the sum of the second, third, and fourth
oscillators, effectively turning them on and off.

Even when all four oscillators are combined (with the toggle switch in the “1”
position), the result fuses into a single tone, heard at the pitch of the leftmost
oscillator. In effect this patch sums a four-term Fourier series to generate a
complex, periodic waveform.

Example A08.beating.pd (Figure 1.15) shows another possiblity, in which
six oscillators are tuned into three pairs of neighbors, for instance 330 and 330.2
Hertz. These paris slip into and out of phase with each other, so that the
ampltude of the sum changes over time. Called beating, this phenomenon is
frequently used for musical effects.

Oscillators may be combined in other ways besides simply summing their
output, and a wide range of resulting sounds is available. Example A09.frequency.mod.pd
(not shown here) demonstrates frequency modulation synthesis, in which one os-
cillator controls another’s frequency. This will be more fully described in chapter
5.

Exercises

1. A sinusoid (page 3) has initial phase φ = 0 and angluar frequency ω =
π/10. What is its period in samples? What is the phase at sample number
n = 10?

1.9. EXAMPLES 27

(OUT)

+~

+~ +~

osc~ 440osc~ 330

osc~ 330.2 osc~ 440.33

+~

osc~ 587

osc~ 587.25

+~

Figure 1.15: Additive synthesis: six oscillators arranged into three beating pairs.

2. Two sinusoids have periods of 20 and 30 sample, respectively. What is the
period of the sum of the two?

3. If 0 dB corresponds to an amplitude of 1, how many dB corresponds to
amplitudes of 1.5, 2, 3, and 5?

4. Two uncorrelated signals of RMS amplitude 3 and 4 are added; what’s
the RMS amplitude of the sum?

5. How many uncorrelated signals, all of equal amplitude, would you have to
add to get a signal that is 9 dB greater in amplitude?

6. What is the angular frequency of middle C at 44100 samples per second?

7. Two sinusoids play at middle C (MIDI 60) and the neighboring C sharp
(MIDI 61). What is the difference, in Hertz, between their frequuencies?

8. How many cents is the interval between the seventh and the eighth har-
monic of a periodic signal?

9. If an audio signal x[n], n = 0, ...,M − 1 has peak amplitude 1, what is the
minimum possible RMS amplitude? What is the maximum possible?

10. If x[n] is the sinusoid of page 3, and making the assumptions of section
1.2, show that its RMS amplitude is approximately a/

√
2. Hint: use an

integral to approximate the sum. Since the window contains many periods,
you can assume that the integral covers a whole number of periods.

28 CHAPTER 1. SINUSOIDS, AMPLITUDE AND FREQUENCY

Chapter 2

Wavetables and samplers

In Chapter 1 we treated audio signals as if they always flowed by in a continuous
stream at some sample rate. The sample rate isn’t really a quality of the audio
signal, but rather it specifies how fast the individual samples should flow into or
out of the computer. But audio signals are at bottom just sequences of numbers,
and in practice there is no requirement that they be “played” sequentially.
Another, complementary view is that they can be stored in memory, and, later,
they can be read back in any order—forward, backward, back and forth, or
totally at random. An inexhaustible range of new possibilities opens up.

For many years (roughly 1950-1990), magnetic tape served as the main stor-
age medium for sounds. Tapes were passed back and forth across magnetic
pickups to play the signals back in real time. Since 1995 or so, the predominant
way of storing sounds has been to keep them as digital audio signals, which
are read back with much greater freedom and facility than were the magnetic
tapes. Many modes of use dating from the tape era are still current, including
cutting, duplication, speed change, and time reversal. Other techniques, such
as waveshaping, have come into their own only in the digital era.

Suppose we have a stored digital audio signal, which is just a sequence of
samples (i.e., numbers) x[n] for n = 0, ..., N − 1, where N is the length of the
sequence. Then if we have an input signal y[n] (which we can imagine to be
flowing in real time), we can use its values as indices to look up values of the
stored signal x[n]. This operation, called wavetable lookup, gives us a new signal,
z[n], calculated as:

z[n] = x[y[n]].

Schematically we represent this operation as shown in Figure 2.1.

Two complications arise. First, the input values, y[n], might lie outside
the range 0, ..., N − 1, in which case the wavetable x[n] has no value and the
expression for the output z[n] is undefined. In this situation we might choose
to clip the input, that is, to substitute 0 for anything negative and N − 1
for anything N or greater. Alternatively, we might prefer to wrap the input
around end to end. Here we’ll adopt the convention that out-of-range samples

29

30 CHAPTER 2. WAVETABLES AND SAMPLERS

IN

OUT

Figure 2.1: Diagram for wavetable lookup. The input is in samples, ranging
approximately from 0 to the wavetable’s size N , depending on the interpolation
scheme.

are always clipped; when we need wraparound, we’ll introduce another signal
processing operation to do it for us.

The second complication is that the input values need not be integers; in
other words they might fall between the points of the wavetable. In general,
this is addressed by choosing some scheme for interpolating between the points
of the wavetable. For the moment, though, we’ll just round down to the nearest
integer below the input. This is called non-interpolating wavetable lookup, and
its full definition is:

z[n] =

x[by[n]c] if 0 ≤ y[n] < N − 1
x[0] if y[n] < 0
x[N − 1] if y[n] ≥ N − 1

(where the symbol by[n]c means, “the greatest integer not exceeding y[n]”).
Pictorally, we use y[0] (a number) as a location on the horizontal axis of the

wavetable shown in Figure 2.1, and the output, z[0], is whatever we get on the
vertical axis; and the same for y[1] and z[1] and so on. The “natural” range
for the input y[n] is 0 ≤ y[n] < N . This is different from the usual range of an
audio signal suitable for output from the computer, which ranges from -1 to 1
in our units. We’ll see later that the usable range of input values, from 0 to N
for non-interpolating lookup, contracts slightly if interpolating lookup is used.

Figure 2.2 (part a) shows a wavetable and the result of using two different
input signals as lookup indices into it. The wavetable contains 40 points, which
are numbered from 0 to 39. In part (b), a sawtooth wave is used as the input
signal y[n]. A sawtooth wave is nothing but a ramp function repeated end to
end. In this example the sawtooth’s range is from 0 to 40 (this is shown in
the vertical axis). The sawtooth wave thus scans the wavetable from left to
right—from the beginning point 0 to the endpoint 39—and does so every time
it repeats. Over the fifty points shown in Figure 2.2 (part b) the sawtooth wave

2.1. THE WAVETABLE OSCILLATOR 31

makes two and a half cycles. Its period is twenty samples, or in other words the
frequency (in cycles per second) is R/20.

Part (c) of Figure 2.2 shows the result of applying wavetable lookup, using
the table x[n], to the signal y[n]. Since the sawtooth input simply reads out
the contents of the wavetable from left to right, repeatedly, at a constant rate
of precession, the result will be a new periodic signal, whose waveform (shape)
is derived from x[n] and whose frequency is determined by the sawtooth wave
y[n].

Parts (d) and (e) show an example where the wavetable is read in a nonuni-
form way; since the input signal rises from 0 to N and then later recedes to
0, we see the wavetable appear first forward, then frozen at its endpoint, then
backward. The table is scanned from left to right and then, more quickly, from
right to left. As in the previous example the incoming signal controls the speed
of precession while the output’s amplitude is that of the wavetable.

2.1 The Wavetable Oscillator

Figure 2.2 suggests an easy way to synthesize any desired fixed waveform at
any desired frequency, using the block diagram shown in Figure 2.3. The upper
block is an oscillator—not the sinusoidal oscillator we saw earlier, but one that
produces sawtooth waves instead. The output values, as indicated at the left
of the block, should range from 0 to the wavetable size N . This is used as
an index into the wavetable lookup block (introduced in Figure 2.1), resulting
in a periodic waveform. Figure 2.3 (part b) adds an envelope generator and a
multiplier to control the output amplitude in the same way as for the sinusoidal
oscillator shown in Chapter 1. Often, one uses a wavetable with (RMS or peak)
amplitude 1, so that the amplitude of the output is just the magnitude of the
envelope generator’s output.

Wavetable oscillators are often used to synthesize sounds with specified,
static spectra. To do this, you can precompute N samples of any waveform of
period N (angular frequency 2π/N) by adding up the elements of the Fourier
Series (page 14). The computation involved in setting up the wavetable at first
might be significant, but this may be done in advance of the synthesis process,
which can then take place in real time.

While direct additive synthesis of complex waveforms, as shown in Chapter
1, is in principle infinitely flexible as a technique for producing time-varying
timbres, wavetable synthesis is much less expensive in terms of computation but
requires switching wavetables to change the timbre. An intermediate technique,
more flexible and expensive than simple wavetable synthesis but less flexible
and less expensive than additive synthesis, is to create time-varying mixtures
between a small number of fixed wavetables. If the number of wavetables is only
two, this is in effect a cross-fade between the two waveforms, as diagrammed
in Figure 2.4. Suppose we wish to use some signal 0 ≤ x[n] ≤ 1 to control the
relative strengths of the two waveforms, so that, if x[n] = 0, we get the first one
and if x[n] = 1 we get the second. Denoting the two signals to be cross-faded

32 CHAPTER 2. WAVETABLES AND SAMPLERS

1

−1

n 0

x[n]

40

50

0

40

1

−1

1

−1

0

40

y[n]

z[n]

y2[n]

z2[n]

(a)

(b)

(c)

(d)

(e)

Figure 2.2: Wavetable lookup: (a) a wavetable; (b) and (d) signal inputs for
lookup; (c) and (e) the corresponding outputs.

2.1. THE WAVETABLE OSCILLATOR 33

N

0

-1

1

OUT

N

0

-1

1

OUT
(a)

(b)

frequency

frequency

Figure 2.3: Block diagrams: (a) for a wavetable lookup oscillator; (b) with
amplitude control by an envelope generator.

by y[n] and z[n], we compute the signal

(1 − x[n])y[n] + x[n]z[n]

or, equivalently and usually more efficient to calculate,

y[n] + x[n](z[n] − y[n])

This computation is diagrammed in Figure 2.4.

In using this technique to cross-fade between wavetable oscillators, it might
be desirable to keep the phases of corresponding partials the same across the
wavetables, so that their amplitudes combine additively when they are mixed.
On the other hand, if arbitrary wavetables are used (borrowed, for instance,
from a recorded sound) there will be a phasing effect as the different waveforms
are mixed.

This scheme can be extended in a daisy chain to move along a continuous
path between a succession of timbres. Alternatively, or in combination with
daisy-chaining, cross-fading may be used to interpolate between two different
timbres, for example as a function of musical dynamic. To do this you would
prepare two or even several waveforms of a single synthetic voice played at
different dynamics, and interpolate between successive ones as a function of the
output dynamic you want.

34 CHAPTER 2. WAVETABLES AND SAMPLERS

N

0

-1

1

OUT

frequency

Figure 2.4: Block diagram for cross-fading between two wavetables.

2.2 Sampling

“Sampling” is nothing more than recording a live signal into a wavetable, and
then later playing it out again. (In commercial samplers the entire wavetable
is usually called a “sample” but to avoid confusion we’ll only use the word
“sample” here to mean a single number in an audio signal.)

At its simplest, a sampler is simply a wavetable oscillator, as was shown in
Figure 2.3. However, in the earlier discussion we imagined playing the oscillator
back at a frequency high enough to be perceived as a pitch, at least 30 Hz or
so. In the case of sampling, the frequency is usually lower than 30 Hz, and so
the period, at least 1/30 second and perhaps much more, is long enough that
you can hear the individual cycles as separate events.

Going back to Figure 2.2, suppose that instead of 40 points the wavetable
x[n] is a one-second recorded sample, originally recorded at a sample rate of
44100, so that it has 44100 points; and let y[n] in part (b) of the figure have a
period of 22050 samples. This corresponds to a frequency of 2 Hz. But what
we hear is not a pitched sound at 2 cycles per second (that’s too slow to hear
as a pitch) but rather, we hear the original sample x[n] played back repeatedly
at double speed. We’ve just re-invented the sampler.

In general, if we assume the sample rate R of the recorded sample is the same
as the output sample rate, if the wavetable has N samples, and if we index it
with a sawtooth wave of period M , the sample is sped up or slowed down by

2.2. SAMPLING 35

a factor of N/M , equal to Nf/R if f is the frequency in Hz of the sawtooth.
If we denote the transposition factor by t (so that, for instance, t = 3/2 means
transposing upward a perfect fifth), and if we denote the transposition in half
steps by h, then we get the Transposition Formula for Looping Wavetables:

t = N/M = Nf/R

h = 12 log2

(
N

M

)

= 12 log2

(
Nf

R

)

Frequently the desired transposition in half steps (h) is known and the formula
must be solved for either f or N :

f =
2h/12R

N

N =
2h/12R

f

So far we have used a sawtooth as the input wave y[t], but, as suggested in
parts (d) and (e) of Figure 2.2, we could use anything we like as an input signal.
In general, the transposition may be time dependent and is controlled by the
rate of change of the input signal.

The transposition multiple t and the transposition in half steps h are given
by the Momentary Transposition Formulas for Wavetables:

t[n] = |y[n] − y[n − 1]|

h[n] = 12log2 |y[n] − y[n − 1]|
(Here the enclosing bars “|” mean absolute value.) For example, if y[n] = n,
then z[n] = x[n] so we hear the wavetable at its original pitch, and this is what
the formula predicts since, in that case,

y[n] − y[n − 1] = 1

On the other hand, if y[n] = 2n, then the wavetable is transposed up an octave,
consistent with

y[n] − y[n − 1] = 2

If values of y[n] are decreasing with n, you hear the sample backward, but
the transposition formula still gives a positive multiplier. This all agrees with
the earlier Transposition Formula for Looping Wavetables; if a sawtooth ranges
from 0 to N , f times per second, the difference of successive samples is just
Nf/R—except at the sample at the beginning of each new cycle.

It’s well known that transposing a sample also transposes its timbre—this
is the “chipmunk” effect. Not only are any periodicities (such as might give
rise to pitch) in the sample transposed, but so are the frequencies of the over-
tones. Some timbres, notably those of vocal sounds, have characteristic fre-
quency ranges in which overtones are stronger than other nearby ones. Such

36 CHAPTER 2. WAVETABLES AND SAMPLERS

frequency ranges are also transposed, and this is is heard as a timbre change. In
language that will be made more precise in section 5.1, we say that the spectral
envelope is transposed along with the pitch or pitches.

In both this and the preceding section, we have considered playing waveta-
bles periodically. In section 2.1 the playback repeated quickly enough that the
repetition gives rise to a pitch, say between 30 and 4000 times per second,
roughly the range of a piano. In the current section we assume a wavetable one
second long, and in this case “reasonable” transposition factors (less than four
octaves up) would give rise to a rate of repetition below 30, usually much lower,
and going down as low as we wish.

The number 30 is significant for another reason: it is roughly the maximum
number of separate events the ear can discern per second; for instance, 30 vocal
phonemes, or melodic notes, or attacks of a snare drum are about the most we
can hope to crowd into a second before our ability to distinguish them breaks
down.

A continuum exists between samplers and wavetable oscillators, in that the
patch of Figure 2.3 can either be regarded as a sampler (if the frequency of
repetition is less than about 20 Hz.) or as a wavetable oscillator (if the frequency
is greater than about 40 Hz.) It is possible to move continuously between the
two regimes. Furthermore, it is not necessary to play an entire sample in a loop;
with a bit more arithmetic we can choose sub-segments of the sample, and these
can change in length and location continuously as the sample is played.

The practice of playing many small segments of a sample in rapid succession
is often called granular synthesis. For much more discussion of the possibilities,
see [Roa01].

Figure 2.5 shows how to build a very simple looping sampler. In the figure, if
the frequency is f and the segment size in samples is s, the output transposition
factor is given by t = fs/R, where R is the sample rate at which the wavetable
was recorded (which need not equal the sample rate the block diagram is working
at.) In practice, this equation must usually be solved for either f or s to attain
a desired transposition.

In the figure, a sawtooth oscillator controls the location of wavetable lookup,
but the lower and upper values of the sawtooth aren’t statically specified as they
were in Figure 2.3; rather, the sawtooth oscillator simply ranges from 0 to 1 in
value and the range is adjusted to select a desired segment of samples in the
wavetable.

It might be desirable to specify the segment’s location l either as its left-hand
edge (its lower bound) else as the segment’s midpoint; in either case we specify
the length s as a separate parameter. In the first case, we start by multiplying
the sawtooth by s, so that it then ranges from 0 to s; then we add l so that it
now ranges from l to l + s. In order to specify the location as the segment’s
midpoint, we first subtract 1/2 from the sawtooth (so that it ranges from −1/2
to 1/2, and then as before multiply by s (so that it now ranges from −s/2 to
s/2 and add l to give a range from l − s/2 to l + s/2.

In the looping sampler, we will need to worry about maintaining continuity
between the beginning and the end of segments of a sample; we’ll take this up

2.2. SAMPLING 37

0

-1

1

OUT

frequency

1

1/2
optional - for

centered segments

segment size

segment location

Figure 2.5: A simple looping sampler, as yet with no amplitude control. There
are inputs to control the frequency and the segment size and location. The
“-” operation is included if we wish the segment location to be specified as the
segment’s midpoint; otherwise we specify the location of the left end of the
segment.

38 CHAPTER 2. WAVETABLES AND SAMPLERS

in the next section.
A further detail is that, if the segment size and location are changing with

time (they might be digital audio signals themselves, for instance), they will
affect the transposition factor, and the pitch or timbre of the output signal might
waver up and down as a result. The simplest way to avoid this problem is to
synchronize changes in the values of s and l with the regular discontinuities of the
sawtooth; since the signal jumps discontinuously there, the transposition is not
really defined there anyway, and, if you are enveloping to hide the discontinuity,
the effects of changes in s and l are hidden as well.

2.3 Enveloping samplers

In the previous section we considered reading a wavetable either sporadically
or repeatedly to make a sampler. In most real applications we must deal with
getting the samples to start and stop cleanly, so that the output signal doesn’t
jump discontinuously at the beginnings and ends of samples. This discontinuity
can sound like a click or a thump depending on the wavetable.

The easiest way to do this, assuming we will always play a wavetable com-
pletely from beginning to end, is simply to prepare the sample in advance so
that it fades in cleanly at the beginning and out cleanly at the end. This may
even be done when the wavetable is sampled live, by multiplying the input signal
by a line segment envelope timed to match the length of the recording.

In many situations, however, it is either inconvenient or impossible to pre-
envelope the sample—for example, we might want to play only part of the sample
back, or we may want to change the sharpness of the enveloping dynamically.
In section 2.1 we had already seen how to control the amplitude of sinusoidal
oscillators using multiplication by a ramp function (also known as an envelope
generator), and we built this notion into the wavetable oscillators of Figures
2.3 and 2.4. This also works fine for turning samplers on and off to avoid
discontinuities, but with one major difference: whereas in wavetable synthesis,
we were free to assume that the waveform lines up end to end, so that we
are free to choose any envelope timing we want, in the case of sampling using
unprepared waveforms, we are obliged to get the envelope generator’s output
to zero by the time we reach the end of the wavetable for the first time. This
situation is pictured in Figure 2.6.

In situations where an arbitrary wavetable must be repeated as needed, the
simplest way to make the looping work continuously is to arrange for amplitude
change to be synchronized with the looping, using a separate wavetable (the
envelope). This may be implemented as shown in Figure 2.7. A single sawtooth
oscillator is used to calculate lookup indices for two wavetables, one holding the
recorded sound, and the other, an envelope shape. The main thing to worry
about is getting the inputs of the two wavetables each into its own appropriate
range.

In many situations it is desirable to combine two or more copies of the looping
wavetable sampler at the same frequency and at a specified phase relationship.

2.4. TIMBRE STRETCHING 39

(a)

(b)

new periods

Figure 2.6: Differing envelope requirements for oscillators and samplers: (a) in
an oscillator, the envelope can be chosen to conform to any desired timescale;
(b) when the wavetable is a recorded sound, it’s up to you to get the envelope
to zero before you hit the end of the wavetable for the first time.

This may be done so that when any particular one is at the end of its segment,
one or more others is in the middle of the same segment, so that the aggregate
is continuously making sound. To accomplish this, we need a way to generate
two or more sawtooth waves at the desired phase relationship that we can use
in place of the oscillator at the top of Figure 2.7. We can start with a single
sawtooth wave and then produce others at fixed phase relationships with the
first one. If we wish a sawtooth which is, say, a cycles ahead of the first one,
we simply add the parameter a and then take the fractional part, which is the
desired new sawtooth wave, as shown in Figure 2.8.

2.4 Timbre stretching

The waveform oscillator of Section 2.1, which we extended in Section 2.2 to en-
compass grabbing waveforms from arbitrary wavetables such as recorded sounds,
may additionally be extended in a complementary way, that we’ll refer to as
timbre stretching, for reasons we’ll develop in this section. There are also many
other possible ways to extend wavetable synthesis, using, for instance frequency
modulation and waveshaping, but we’ll leave them to later chapters.

The central idea of timbre stretching is to reconsider the idea of the wavetable
oscillator as a mechanism of playing a stored wavetable (or part of one) end to

40 CHAPTER 2. WAVETABLES AND SAMPLERS

0

-1

1

OUT

frequency

1

size

location

N

1

0

0 N

Figure 2.7: A sampler as in Figure 2.6, but with an additional wavetable lookup
for enveloping.

2.4. TIMBRE STRETCHING 41

0

OUT

frequency

1

a

WRAP

1

0.3

1.3

1

0.3

Figure 2.8: A technique for generating two or more sawtooth waves with fixed
phase relationships between them. The relative phase is controlled by the pa-
rameter a (which takes the value 0.3 in the graphed signals).

42 CHAPTER 2. WAVETABLES AND SAMPLERS

(c)

(a)

(b)

Figure 2.9: A waveform is played at a period of 20 samples: (a) at 100 percent
duty cycle; (b) at 50 percent; (c) at 200 percent

end. There is no reason the end of one cycle has to coincide with the beginning
of another. Instead, we could ask for copies of the waveform to be spaced
with alternating segments of silence; or, going in the opposite direction, the
waveform copies could be space more closely together so that they overlap. The
single parameter available in Section 2.1—the frequency—has been heretofore
used to control two separate aspects of the output: the period at which we start
new copies of the waveform, and also the length of each individual copy. The
idea of timbre stretching is to control the two independently.

Figure 2.9 shows the result of playing a wavetable in three ways. In each
case the output waveform has period 20; in other words, the output frequency
is R/20 if R is the output sample rate. In part (a) of the figure, each copy of the
waveform is played over 20 samples, so that the wave form fits exactly into the
cycle with no gaps and no overlap. In part (b), although the period is still 20,
the waveform is compressed into the middle half of the period (10 samples); or
in other words, the duty cycle—the relative amount of time the waveform fills
the cycle—equals 50 percent. The remaining 50 percent of the time, the output
is zero.

In part (c), the waveform is stretched to 40 samples, and since it is still
repeated every 20 samples, the waveforms overlap two to one. The duty cycle
is thus 200 percent.

Suppose now that the 100 percent duty cycle waveform has a Fourier series

2.4. TIMBRE STRETCHING 43

(section 1.7) equal to:

x100[n] = a0 + a1 cos (ωn + φ1) + a2 cos (2ωn + φ2) + · · ·

where ω is the angular frequency (equal to π/10 in our example since the period
is 20.) To simplify this example we won’t worry about where the series must
end, and will just let it go on forever.

We would like to relate this to the Fourier series of the other two waveforms
in the example, in order to show how changing the duty cycle changes the timbre
of the result. For the 50 percent duty cycle case (calling the signal x50[n]), we
observe that the waveform, if we replicate it out of phase by a half period and
add the two, gives exactly the original waveform at twice the frequency:

x100[2n] = x50[n] + x50[n +
π

ω
]

where ω is the angular frequency (and so π/ω is half the period) of both signals.
So if we denote the Fourier series of x50[n] as:

x50[n] = b0 + b1 cos (ωn + θ1) + b2 cos (2ωn + θ2) + · · ·

and substitute the Fourier series for all three terms above, we get:

a0 + a1 cos (2ωn + φ1) + a2 cos (4ωn + φ2) + · · ·

= b0 + b1 cos (ωn + θ1) + b2 cos (2ωn + θ2) + · · ·
+b0 + b1 cos (ωn + π + θ1) + b2 cos (2ωn + 2π + θ2) + · · ·

= 2b0 + 2b2 cos (2ωn + θ2) + 2b4 cos (4ωn + θ4) + · · ·
and so

a0 = 2b0, a1 = 2b2, a2 = 2b4

and so on: the even partials of x50, at least, are obtained by stretching the
partials of x100 out twice as far. (We don’t yet know about the odd partials of
x50, and these might be in line with the even ones or not, depending on factors
we can’t control yet. Suffice it to say for the moment, that if the waveform
connects smoothly with the horizontal axis at both ends, the odd partials will
act globally like the even ones. To make this more exact we’ll need to use Fourier
analysis, which is developed in a later chapter.)

Similarly, x100 and x200 are related in exactly the same way:

x200[2n] = x100[n] + x100[n +
π

ω
]

so that, if the amplitudes of the fourier series of x200 are denoted by c0, c1, . . .,
we get:

c0 = 2a0, c1 = 2a2, c2 = 2a4, . . .

so that the partials of x200 are those of x100 shrunk, by half, to the left.

44 CHAPTER 2. WAVETABLES AND SAMPLERS

200%

100%

50%

partial number

ampli-

tude

1 2 3 4 5

Figure 2.10: The Fourier series magnitudes for the waveforms shown in Figure
2.9. The horizontal axis is the harmonic number. We only ”hear” the coefficients
for integer harmonic numbers; the continuous curves are the “ideal” contours.

We see that squeezing the waveform by a factor of 2 has the effect of stretch-
ing the Fourier series out by two, and on the other hand stretching the waveform
by a factor of two squeezes the Fourier series by two. By the same sort of ar-
gument, in general it turns out that stretching the waveform by a factor of
any positive number f squeezes the overtones, in frequency, by the reciprocal
1/f—at least approximately, and the approximation is at least fairly good if
the waveform “behaves well” at its ends. (As we’ll see later, the waveform can
always be forced to behave at least reasonably well by enveloping it as in Figure
2.7.)

Figure 2.10 shows the spectra of the three waveforms—or in other words the
one waveform at three duty cycles—of Figure 2.9. The figure emphasizes the
relationship between the three spectra by drawing curves through each, which,
on inspection, turn out to be the same curve, only stretched differently; as the
duty cycle goes up, the curve is both compressed to the left (the frequencies all
drop) and amplified (stretched upward).

The continuous curves have a very simple interpretation. Imagine squeezing
the waveform into some tiny duty cycle, say 1 percent. The contour will be
stretched by a factor of 100. Working backward, this would allow us to inter-
polate between each pair of consecutive points of the 100 percent duty cycle
contour (the original one) with 99 new ones. Already in the figure the 50 per-
cent duty cycle trace defines the curve with twice the resolution of the original

2.5. INTERPOLATION 45

one. In the limit, as the duty cycle gets arbitrarily small, the spectrum is filled
in more and more densely; and the limit is the “true” spectrum of the waveform.

This “true” spectrum is only audible at suitably low duty cycles, though.
The 200 percent duty cycle example actually misses the peak in the ideal (con-
tinuous) spectrum because the peak falls below the first harmonic. In general,
higher duty cycles sample the ideal curve at lower resolutions.

Timbre stretching is an extremely powerful technique for generating sounds
with systematically variable spectra. Combined with the possibilities of mix-
tures of waveforms (section 2.1) and of snatching endlessly variable waveforms
from recorded samples (section 2.2), it is possible to generate all sorts of sounds.
For example, the block diagram of Figure 2.7 gives us a way to to grab and
stretch timbres from a recorded wavetable. When the “frequency” parameter f
is high enough to be audible as a pitch, the “size” parameter s can be thought of
as controlling timbre stretch, via the formula s = tR/f from section 2.2, where
we now reinterpret t as the factor by which the timbre is to be stretched.

2.5 Interpolation

As mentioned before, interpolation schemes are often used to increase the ac-
curacy of table lookup. Here we will give a somewhat simplified account of the
effects of table sizes and interpolation schemes on the result of table lookup.

To speak of error in table lookup, we must view the wavetable as a sampled
version of an underlying function—and when we ask for a value of the underlying
function which lies between the points of the wavetable, the error is the difference
between the result of the wavetable lookup and the “ideal” value of the function
at that point. The most revealing study of wavetable lookup error assumes that
the underlying function is a sinusoid (page 3). We can then understand what
happens to other wavetables by considering them as superpositions (sums) of
sinusoids.

The accuracy of lookup from a wavetable containing a sinusoid depends
on two factors: the quality of the interpolation scheme, and the period of the
sinusoid. In general, the longer the period of the sinusoid, the more accurate
the result.

In the case of a synthetic wavetable, we might know its sinusoidal com-
ponents from having specified them—in which case the issue becomes one of
choosing a wavetable size appropriately, when calculating the wavetable, to
match the interpolation algorithm and meet the desired standard of accuracy.
In the case of recorded sounds, the accuracy analysis might lead us to adjust
the sample rate of the recording, either at the outset or else by resampling later.

Interpolation error for a sinusoidal wavetable can have two components: first,
the continuous signal (the theoretical result of reading the wavetable continu-
ously in time, as if the output sample rate were infinite) might not be a pure
sinusoid; and second, the amplitude might be wrong. (It is possible to get phase
errors as well, but only through carelessness.)

In this treatment we’ll only consider polynomial interpolation schemes such

46 CHAPTER 2. WAVETABLES AND SAMPLERS

as rounding, linear interpolation, and cubic interpolation. These schemes amount
to evaluating polynomials (of degree zero, one, and three, respectively) in the
interstices between points of the wavetable. The idea is that, for any index x,
we choose a nearby “good” point x0, and let the output be calculated by some
polynomial:

yINT(x) = a0 + a1(x − x0) + a2(x − x0)
2

+ · · · + an(x − x0)
n

Usually we choose the polynomial which passes through the n+1 nearest points
of the wavetable. For 1-point interpolation (a zero-degree polynomial) this
means letting a0 equal the nearest point of the wavetable. For two-point inter-
polation, we draw a line segment between the two points of the wavetable on
either side of the desired point x. We can let x0 be the closest integer to the
left of x (which we write as bxc) and then the formula for linear interpolation
is:

yINT(x) = y[x0] + (y[x0 + 1] − y[x0]) · (x − x0)

which is a polynomial, as in the previous formula, with

a0 = y[x0]

a1 = (y[x0 + 1] − y[x0])

In general, you can fit exactly one polynomial of degree n − 1 through any n
points as long as their x values are all different.

Figure 2.11 shows the effect of using linear (two-point) interpolation to fill
in a sinusoid of period 6. At the top are three traces: the original sinusoid,
the linearly-interpolated result of using 6 points per period to represent the
sinusoid, and finally, another sinusoid, of slightly smaller amplitude, which bet-
ter matches the six-segment waveform. The error introduced by replacing the
original sinusoid by the linearly interpolated version has two components: first,
a (barely perceptible) change in amplitude, and second, a (very perceptible)
distortion of the wave shape.

The bottom graph in the figure shows the difference between the segmented
waveform and the best-fitting sinusoid. This is a residual signal all of whose en-
ergy lies in overtones of the original sinusoid. As the number of points increases,
the error decreases in magnitude. Since the error is the difference between a
sinusoid and a sequence of approximating line segments, the magnitude of the
error is roughly proportional to the square of the phase difference between each
pair of points, or in other words, inversely proportional to the square of the
number of points in the wavetable. Put another way, wavetable error decreases
by 12 dB each time the table doubles in size. (This rule of thumb is only good
for tables with 4 or more points.)

Four-point (cubic) interpolation works similarly. The interpolation formula
is:

yINT(x) =

−f(f − 1)(f − 2)/6 · y[x0 − 1] + (f + 1)(f − 1)(f − 2)/2 · y[x0]

−(f + 1)f(f − 2)/2 · y[x0 + 1] + (f + 1)f(f − 1)/6 · y[x0 + 2],

where f = x − x0 is the fractional part of the index. For tables with 4 or

2.5. INTERPOLATION 47

original

interpolated

best fit

error

Figure 2.11: Linear interpolation of a sinusoid: (upper graph) the original sinu-
soid, the interpolated sinusoid, and the best sinusoidal fit back to the interpo-
lated version; (lower graph) the error, rescaled vertically.

48 CHAPTER 2. WAVETABLES AND SAMPLERS

period interpolation points
1 2 4

2 -1.2 -17.1 -20.2
3 -2.0 -11.9 -15.5
4 -4.2 -17.1 -24.8
8 -10.0 -29.6 -48.4

16 -15.9 -41.8 -72.5
32 -21.9 -53.8 -96.5
64 -27.9 -65.9 -120.6

128 -34.0 -77.9 -144.7

Table 2.1: RMS error for table lookup using 1, 2, and 4 point interpolation at
various table sizes.

more points, doubling the number of points on the table tends to improve the
RMS error by 24 dB. Table 2.5 shows the calculated RMS error for sinusoids at
various periods for 1, 2, and 4 point interpolation. (A slightly different quantity
is measured in [Moo90, p.164]. There, the errors in amplitude and phase are
also added in, yielding slightly more pessimistic results. See also [Har87].)

The allowable input domain for table lookup depends on the number of
points of interpolation. In general, when using k-point interpolation into a
table with N points, the inputs may range over an interval of N + 1− k points.
If k = 1 (i.e., no interpolation at all), the domain is from 0 to N (including the
endpoint at 0 but excluding the one at N) assuming input values are truncated
(as is done for non-interpolated table lookup in Pd). The domain is from -1/2
to N − 1/2 if, instead, we round the input to the nearest integer instead of
interpolating. In either case, the domain stretches over a length of N points.

For two-point interpolation, the inputs must lie between the first and last
points, that is, between 0 and N − 1. So the N points suffice to define the
function over a domain of length N −1. For four-point interpolation, we cannot
get values for inputs between 0 and 1 (not having the required two points to the
left of the input) and neither can we for the space between the last two points
(N − 2 and N − 1). So in this case the domain reaches from 1 to N − 2 and has
length N − 3.

Periodic waveforms stored in wavetables require special treatment at the
ends of the table. For example, suppose we wish to store a pure sinusoid of
length N . For non-interpolating table lookup, it suffices to set, for example,

x[n] = cos(2πn/N), n = 0, . . . , N − 1

For two-point interpolation, we need N + 1 points:

x[n] = cos(2πn/N), n = 0, . . . , N

in other words, we must repeat the first (n = 0) point at the end, so that the
last segment from N − 1 to N reaches back to the beginning value.

2.6. EXAMPLES 49

0

mtof

0

tabosc4~ table10

(OUT)
|

table10

Figure 2.12: A wavetable oscillator: B01.wavetables.pd.

For four-point interpolation, the cycle must be adjusted to start at the point
n = 1, since we can’t get properly interpolated values out for inputs less than
one. If, then, one cycle of the wavetable is arranged from 1 to N , we must
supply extra points for 0 (copied from N), and also N + 1 and N + 2, copied
from 1 and 2, to make a table of length N + 3. For the same sinusoid as above,
the table should contain:

x[n] = cos(2π(n − 1)/N), n = 0, . . . , N + 2

2.6 Examples

Wavetable oscillator

Example B01.wavetables.pd, shown in Figure 2.12, implements a wavetable os-
cillator, which plays back from a wavetable named “table10”. Two new Pd
primitives are shown here. First is the wavetable itself, which appears at right
in the figure. You can “mouse” on the wavetable to change its shape and hear
the sound change as a result. Not shown in the figure but demonstrated in
the patch is Pd’s facility for automatically calculating wavetables with specified
partial amplitudes, which is often preferable to drawing waveforms by hand.
You can also read and write tables to (text or sound) files for interchanging
data with other programs. The other novelty is an object class:

tabosc4 ∼ : a wavetable oscillator. The “4” indicates that this class uses 4-
point (cubic) interpolation. In the example, the table’s name, “table10”, is
specified as a creation argument to the tabosc4~ object. (You can also switch
between wavetables dynamically by sending appropriate messages to the object.)

Wavetables used by tabosc4~ must always have a period equal to a power of
two; but as shown above, the wavetable must have three extra points wrapped
around the ends. Allowable table lengths are thus of the form 2m + 3, such as

50 CHAPTER 2. WAVETABLES AND SAMPLERS

131, 259, 515, etc.

Wavetable oscillators are not limited to use as audio oscillators. Patch
B01.wavetables.pd (not pictured here) uses a pair of wavetable oscillators in
series. The first one’s output is used as the input of the second one, and thus
controls its frequency which changes periodically in time.

Wavetable lookup in general

The tabosc4~ class, while handy and efficient, is somewhat specialized and for
many of the applications described in this chapter we need something more gen-
eral. Example B03.tabread4.pd (Figure 2.13) demonstrates the timbre stretch-
ing technique discussed in section 2.4. This is a simple example of a situation
where tabosc4~ would not have sufficed. There are new classes introduced here:

tabread4 ∼ : wavetable lookup. As in tabosc4~ the table is read using 4-
point interpolation. But whereas tabosc4~ takes a frequency as input and
automatically reads the waveform in a repeating pattern, the simpler tabread4~
expects the table lookup index as input. If you want to use it to do something
repetitious, as in this example, the input itself has to be a repeating waveform.
Like tabosc4~ (and all the other table reading and writing objects), you can
send messages to select which table to use.

tabwrite ∼ : record an audio signal into a wavetable. In this example the
tabwrite~ is used to display the output (although later on it will be used for
all sorts of other things.) Whenever it receives a “bang” message from the
button icon above it, tabwrite~ begins writing successive samples of its input
to the named table.

Example B03.tabread4.pd shows how to combine a phasor~ and a tabread4~
object to make a wavetable oscillator. The phasor~’s output ranges from 0 to 1
in value. In this case the input wavetable, named “waveform12”, is 131 elements
long. The domain for the tabread4~ object is thus from 1 to 129. To adjust the
range of the phasor~ accordingly, we multiply it by the length of the domain
(128) so that it reaches between 0 and 128, and then add 1, effectively sliding
the interval to the right by one point. This rescaling is accomplished by the *~

and +~ objects between the phasor~ and the tabread4~.

With only these four boxes we would have essentially reinvented the tabosc4~
class. In this example, however, the multiplication is not by a constant 128 but
by a variable amount controlled by the “squeeze” parameter. The function of
the four boxes at the right hand side of the patch is to supply the *~ object
with values to scale the phasor~ by. This makes use of one more new object
class:

pack : compose a list of two or more elements. The creation arguments es-

tablish the number of arguments, their types (usually numbers) and their initial
values. The inlets (there will be as many as you specified creation arguments)
update the values of the message arguments, and, if the leftmost inlet is changed
(or just triggered with a “bang” message), the message is output.

2.6. EXAMPLES 51

phasor~

tabread4~ waveform12

+~ 1

162 206

pack 0 50

line~*~

phase

generation -->

range

adjustment -->

squeezefrequency

tabwrite~ wave-out12

<--click to graph

+~ 128

wave-out12

waveform12

Figure 2.13: A wavetable oscillator with variable duty cycle: B03.tabread4.pd.

52 CHAPTER 2. WAVETABLES AND SAMPLERS

In this patch the arguments are initially 0 and 50, but the number box will
update the value of the first argument, so that, as pictured, the most recent
message to leave the pack object was “206 50”. The effect of this on the line~

object below is to ramp to 206 in 50 milliseconds; in general the output of the
line~ object is an audio signal that smoothly follows the sporadically changing
values of the number box labeled “squeeze”.

Finally, 128 is added to the “squeeze” value; if “squeeze” takes non-negative
values (as the number box in this patch enforces), the range-setting multiplier
ranges the phasor by 128 or more. If the value is greater than 128, the effect
is that the rescaled phasor spends some fraction of its cycle stuck at the end of
the wavetable (which clips its input to 129.) The result is that the waveform is
scanned over some fraction of the cycle. As shown, the waveform is squeezed
into 128/(128+206) of the cycle, so the spectrum is stretched by a factor of
about 1/2.

For simplicity, this patch is subtly different from the example of section 2.4
in that the waveforms are squeezed toward the beginning of each cycle and not
toward the middle. This has the effect of slightly changing the phase of the
various partials of the waveform as it is stretched and squeezed; if the squeezing
factor changes quickly, the corresponding phase drift will sound like a slight
wavering in pitch. This can be avoided by using a slightly more complicated
arrangement: subtracting 1/2 from the phasor~, multiply it by 128 or more,
and then add 65 instead of one.

Using a wavetable as a sampler

Example B04.sampler.pd (Figure 2.14) shows how to use a wavetable as a sam-
pler. In this case the index into the sample (the wavetable) is controlled by
mousing on a number box at top. A convenient scaling for the number box is
hundredths of a second; to convert to samples (as the input of tabread4~ re-
quires) we multiply by 44100 samples/sec times 0.01 sec to get 441 samples per
unit, before applying pack and line~ in much the same way as they were used
in the previous example. The transposition you hear depends on how quickly
you mouse up and down. This example has introduced one new object class:

hip ∼ : simple high-pass (low-cut) filter. The creation argument gives the

rolloff frequency in cycles per second. We use it here to eliminate the constant
(zero-frequency) output when the input sits in a single sample (whenever you
aren’t actively changing the wavetable reading location with the mouse.) Filters
are discussed in chapter 8.

The pack and line~ in this example are not merely to make the sound
more continuous, but are essential to making the sound intelligible at all. If the
index into the wavetable lookup simply changed every time the mouse moved a
pixel (say, twenty to fifty times a second) the overwhelming majority of samples
would get the same index as the previous sample (the other 44000+ samples, not
counting the ones where the mouse moved.) So the speed of precession would
almost always be zero. Instead of changing transpositions, you would hear 20

2.6. EXAMPLES 53

hip~ 5 high pass filter to cut DC

sample-table

tabread4~ sample-table

line~

* 441

0

pack 0 100

--- 44103 samples ---

convert to SAMPLES

<-- read point, 0-100

|
(OUT)

Figure 2.14: A sampler with mouse-controlled index: B04.sampler.pd.

54 CHAPTER 2. WAVETABLES AND SAMPLERS

to 50 cycles-per-second grit. (Try it to find out what that sounds like!)

Looping samplers

In most situations, you’ll want a more automated way than moving the mouse to
specify wavetable read locations; for instance, you might want to be able to play
a sample at a steady transposition; you might have several samples playing back
at once (or other things requiring attention), you might want to switch quickly
between samples or go to prearranged locations. In the next few examples we’ll
develop an automated looping sample reader, which, although only one of many
possible approaches, is a powerful and often-used one.

Patches B05.sampler.loop.pd and B06.sampler.loop.smooth.pd show how to
do this; B05.sampler.loop.pd in the simplest possible way and B06.sampler.loop.smooth.pd
(pictured in Figure 2.14 part (a)) incorporating a second waveshape to envelope
the sound as described in section 2.3. One new object class is introduced here:

cos ∼ : Takes the cosine of 2π times the input signal (so that 0 to 1 makes a
whole cycle.) Unlike the table reading classes in Pd, cos~ handles wraparound
so that there is no range limitation on its input.

In Figure 2.14 part (a), a phasor~ object supplies both indices into the
wavetable (at right) and phases for a half-cosine-shaped envelope function at
left. These two are multiplied, and the product is high-pass filtered and output.
Reading the wavetable is straightforward; the phasor is multiplied by a “chunk
size” parameter, added to 1, and used as an index to tabread4~Ṫhe chunk size
parameter is multiplied by 441 to convert it from hundredths of a second to
samples. This corresponds exactly to the block diagram shown in Figure 2.5,
with a segment location of 1. (The segment location can’t be 0 because 1 is the
minimum index for which tabread4~ works.)

The left-hand signal path in 2.14 part (a) corresponds to the enveloping
wavetable lookup shown in Figure 2.7. Here the sawtooth wave is adjusted to
the range (-1/4, 1/4) (by multiplying by 0.5 and then subtracting 0.25), and
then sent to cos~. This reads the cosine function in the range (−π/2, π/2),
thus giving only the positive half of the waveform.

Part (b) of Figure 2.14 introduces a third parameter, the “read point”, which
specifies where in the sample the loop is to start. (In part (a) we always started
at the beginning.) The necessary change is simple enough: simply add the “read
point” control value, in samples, to the wavetable index and proceed as before.
To avoid discontinuities in the index we smooth the read point value using pack

and line~ objects, just as we did in the first sampler example (Figure 2.14).

This introduces an important, though subtle, detail. The Momentary Trans-
position formula (page ??) predicts that, as long as the chunk size and read
point aren’t changing in time, the transposition is just the frequency times the
chunk size (as always, using appropriate units; Hz. and seconds, for exam-
ple, so that the product is dimensionless.) However, varying the chunk size
and read point in time will affect the momentary transposition, often in very
noticeable ways, as can be seen in Example B07.sampler.scratch.pd. Example

2.6. EXAMPLES 55

hip~ 5

0

0

* 441

+~ 1

-~ 0.5

cos~

*~

phasor~

*~ 0.5

*~

tabread4~ table18

hip~ 5

0

0

* 441

+~ 1

phasor~ 0

*~

line~

* 441

0

pack 0 100

+~

samphold~

samphold~
*~

-~ 0.5

*~ 0.5

cos~

tabread4~ table20

frequency (Hz.)

chunk size

second)
(hundredths of a

frequency

chunk size

read point

(a)

(b)

|

|

(OUT)

(OUT)

Figure 2.15: (a) a looping sampler with a synchronized envelope
(B06.sampler.loop.smooth.pd); (b) the same, but with a control for read lo-
cation (B08.sampler.nodoppler.pd).

56 CHAPTER 2. WAVETABLES AND SAMPLERS

B08.sampler.nodoppler.pd (the one shown in the figure), shows one possible way
of controlling this effect, while introducing a new object class:

samphold ∼ : a sample and hold unit. (This will be familiar to analog syn-

thesizer users, but with a digital twist; for more detailes see Section 3.7.) This
stores a single sample of the left-hand-side input and outputs it repeatedly,
until caused by the right-hand-side input (also a digital audio signal, called
the trigger) to overwrite the stored sample with a new one—again from the
left-hand-side input. The unit acquires a new sample whenever the trigger’s
numerical value falls from one sample to the next. This is designed to be easy
to pair with phasor~ objects, to facilitate triggering on phase wraparounds.

Example B08.sampler.nodoppler.pd uses two samphold~ objects to update
the values of the chunk size and read point, exactly when the phasor~ wraps
around, at which moments the cosine envelope is at zero so the effect of the
instantaneous changes can’t be heard. In this situation we can apply the simpler
Transposition Formula for Looping Wavetables to relate frequency, chunk size,
and transposition. This is shown in Example B09.sampler.transpose.pd (not
shown.)

Overlapping sample looper

As described in section 2.3, it is sometimes desirable to use two or more over-
lapping looping samplers to produce a reasonably continuous sound without
having to envelope too sharply at the ends of the loop. This is especially likely
in situations where the chunk that is looped is short, a tenth of a second or less.
Example B10.sampler.overlap.pd, shown in Figure 2.16 (part a), realizes two
looping samplers a half-cycle out of phase from each other. New object classes
are:

loadbang : output a “bang” message on load. This is used in this patch to

make sure the division of transposition by chunk size will have a valid transpo-
sition factor in case “chunk size” is moused on first.

expr : evaluate arithmetic expressions. Variables appear as $f1, $f2, and so

on, corresponding to the object’s inlets. Arithmetic expressions are allowed,
with parentheses for grouping, and many library functions are supplied, such as
exponentiation, which shows up in this example as “pow” (the power function.)

wrap ∼ : wrap to the interval from 0 to 1. So, for instance, 1.2 becomes 0.2;

0.5 remains unchanged; and -0.6 goes to 0.4.

send ∼ , s ∼ : receive ∼ , r ∼ : signal versions of send and receive.
An audio signal sent to a send~ object appears at the outlets of any and all
receive~ objects of the same name. Unlike send and receive, you may not
have more than one send~ object with the same name (in that connection, see
the throw~ and catch~ objects).

In the example, part of the wavetable reading machinery is duplicated, using
identical calculations of “chunk-size-samples” (a message stream) and “read-pt”

2.6. EXAMPLES 57

hip~ 5

+~ 1

*~

+~ samphold~

samphold~

*~ r~ phase

s~ phase

r~ phase

r~ phase

r~ phase

0

r chunk-size

t b f

/

loadbang

-~ 0.5

*~ 0.5

cos~

expr pow(2, $f1/120)

phasor~

r~ read-pt

+~ 0.5

wrap~

s~ phase2

r chunk-size-samples

+~

tabread4~ table22

<-- transposition,

<- (second reader

not shown)

(a)

hip~ 5

10

*~

0

+~

samphold~

*~

r~ phase

s~ phase

r~ phase

r~ phase

s chunk-size

0

r chunk-size

t b f

-~ 0.5

*~ 0.5

cos~

phasor~

s~ read-pt

r~ read-pt

+~ 0.5

wrap~

s~ phase2

+~

* 0.001phasor~

*~ 0.9

*~ 44100

tabread4~ table23

r chunk-size

+~ 1

s precession

t b f

r precession

expr (pow(2, $f1/120)-$f3)/$f2

/ 0.9

* 0.01

loadbang

10

<-- precession
(percent)

<-- transposition

(tenths of a halftone)

<- (second reader

not shown)

chunk
size

(b)

<-(msec)

(chunk size and read point
controls not shown)

|

|
(OUT)

(OUT)

Figure 2.16: (a) two overlapped looping samplers (B10.sampler.overlap.pd); (b)
the same, but with a phasor-controlled read point (B11.sampler.rockafella.pd).

58 CHAPTER 2. WAVETABLES AND SAMPLERS

(an audio signal smoothed as before). However, the “phase” audio signal, in the
other copy, is replaced by “phase2”. The top part of the figure shows the
calculation of the two phase signals: the first one as the output of a phasor~

object, and the second by adding 0.5 and wrapping, thereby subtracting 0.5
cycles (π radians) from the phase. The two phase signals are each used, with
the same range adjustments as before, to calculate indices into the wavetable
and the cos~ object, and to control the two samphold~ objects. Finally, the
outputs of the two copies are added for output.

Automatic read point precession

Example B11.sampler.rockafella.pd, shown in part (b) of Figure 2.16, adapts the
ideas shown above to a situation where the read point is computed automati-
cally. Here we precess the read-point through the sample in a loop, permitting
us to speed up or slow down the playback independently of the transposition.

This example addresses a weakness of the preceding one, which is that, if the
relative precession speed is anywhere near one (i.e., the natural speed of listening
to the recorded wavetable), and if there is not much transposition either, it
becomes preferable to use larger grains and lower the frequency of repetition
accordingly (keeping the product constant to achieve the desired transposition.)
However, if the grain size is allowed to get large, it is no longer convenient to
quantize control changes at phase wrappings, because they might be too far
apart to allow for a reasonable response time to control changes.

In this patch we remove the samphold~ object that had controlled the read
point (but we leave in the one for chunk size which is much harder to change in
mid-loop.) Instead, we use the (known) rate of precession of the read point to
correct the sawtooth frequency, so that we maintain the desired transposition.
It turns out that, when transposition factor and precession are close to each
other (so that we are nearly doing the same thing as simple speed change)
the frequency will drop to a value close to zero, so we will have increased the
naturalness of the result at the same time.

In this patch we switch from managing read points, chunk sizes, etc., in
samples and use seconds instead, converting to samples (and shifting by one)
only just before the tabread4~ object. The wavetable holds one second of
sound, and we’ll assume here that the nominal chunk size will not exceed 0.1
second, so that we can safely let the read point range from 0 to 0.9; the “real”
chunk size will vary, and can become quite large, because of the moving read
pointer.

So the precession control sets the frequency of a phasor of amplitude 0.9,
and therefore the precession must be multiplied by 0.9 to set the frequency of
the phasor (so that, for a precession of one for instance, the amplitude and
frequency of the read point are both 0.9, so that the slope, equal to amplitude
over frequency, is one.) The output of this is named “read-pt” as before, and is
used by both copies of the wavetable reader.

The precession p and the chunk size c being known, and if we denote the
frequency of the upper (original) phasor~ by f , the transposition factor is given

2.6. EXAMPLES 59

by:
t = p + cf

and solving for f gives:

f =
t − p

c
=

2h/12 − p

c

where h is the desired transposition in half steps. This is the formula used in
the expr object.

Exercises

1. If a wavetable with 1000 samples is played back at unit transposition, at
a sample rate of 44100 Hz, how long does the resulting sound last?

2. A one-second wavetable is played back in 0.5 seconds. By what interval
is the sound transposed?

3. Still assuming a one-second wavetable, if we play it back periodically (in a
loop), at how many Hertz should we loop the wavetable to transpose the
original sound upward one half-step?

4. We wish to play a wavetable (recorded at R = 44100), looping ten times
per second, so that the original sound stored in the wavetable is transposed
up a perfect fifth (see page 14). How large a segment of the wavetable, in
samples, should be played back?

5. Suppose you wish to use waveform stretching on a wavetable that holds
a periodic waveform of period 100. You wish to hear the untransposed
spectrum at a period of 200 samples. By what duty factor should you
squeeze the waveform?

6. The first half of a wavetable contains a cycle of a sinusoid of peak am-
plitude one. The second half contains zeros. What is the strength of the
second partial of the wavetable?

7. A sinusoid is stored in a wavetable with period 4 so that the first four
elements are 0, 1, 0, and -1, corresponding to indices 0, 1, 2, and 3. What
value do we get for an input of 1.5: (a) using 2-point interpolation? (b)
using 4-point interpolation? (c) what’s the value of the original sinusoid
there?

8. If a wavetable’s contents all fall between -1 and 1 in value, what is the
range of possible outputs of wavetable lookup using 4-point interpolation?

60 CHAPTER 2. WAVETABLES AND SAMPLERS

Chapter 3

Audio and control
computations

3.1 The sampling theorem

So far we have discussed digital audio signals as if they were capable of describing
any function of time, in the sense that knowing the values the function takes
on the integers should somehow determine the values it takes between them.
This isn’t really true. For instance, suppose some function f (defined for real
numbers) happens to attain the value 1 at all integers:

f(n) = 1 , n = . . . ,−1, 0, 1, . . .

We might guess that f(t) = 1 for all real t. But perhaps f happens to be
one for integers and zero everywhere else—that’s a perfectly good function too,
and nothing about the function’s values at the integers distinguishes it from the
simpler f(t) = 1. But intuition tells us that the constant function is in the spirit
of digital audio signals, whereas the one that hides a secret between the samples
isn’t. A function that is “possible to sample” should be one for which we can
use some reasonable interpolation scheme to deduce its values on non-integers
from its values on integers.

It is customary at this point in discussions of computer music to invoke the
famous Nyquist theorem. This states (roughly speaking) that if a function is a
finite or even infinite combination of sinusoids, none of whose angular frequencies
exceeds π, then, theoretically at least, it is fully determined by the function’s
values on the integers. One possible way of reconstructing the function would
be as a limit of higher- and higher-order polynomial interpolation.

The angular frequency π, called the Nyquist frequency, corresponds to R/2
cycles per second if R is the sample rate. The corresponding period is two
samples. The Nyquist frequency is the best we can do in the sense that any
real sinusoid of higher frequency is equal, at the integers, to one whose fre-
quency is lower than the Nyquist, and it is this lower frequency that will get

61

62 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0
7

Figure 3.1: Two real sinusoids, with angular frequencies π/2 and 3π/2, showing
that they coincide at integers. A digital audio signal can’t distinguish between
the two.

reconstructed by the ideal interpolation process. For instance, a sinusoid with
angular frequency between π and 2π, say π + ω, can be written as

cos((π + ω)n + φ) = cos((π + ω)n + φ − 2πn)

= cos((ω − π)n + φ)

= cos((π − ω)n − φ)

for all integers n. (If n weren’t an integer the first step would fail.) So a sinusoid
with frequency between π and 2π is equal, on the integers at least, to one with
frequency between 0 and π; you simply can’t tell the two apart. And since
any conversion hardware will do the “right” thing and reconstruct the lower-
frequency sinusoid, any higher-frequency one you try to synthesize will come
out your speakers at the wrong frequency—specifically, you will hear the unique
frequency between 0 and π that the higher frequency lands on when reduced
in the above way. This phenomenon is called foldover, because the half-line
of frequencies from 0 to ∞ is folded back and forth, in lengths of π, onto the
interval from 0 to π. The word aliasing means the same thing. Figure 3.1
shows that sinusoids of angular frequencies π/2 and 3π/2, for instance, can’t be
distinguished as digital audio signals.

We conclude that when, for instance, we’re computing values of a Fourier
series (page 14), either as a wavetable or as a real-time signal, we had better
drop any sinusoid in the sum whose frequency exceeds π. But the picture in
general is not this simple, since most techniques other than additive synthesis
don’t lead to neat, band-limited signals (ones whose components stop at some
limited frequency.) For example, a sawtooth wave of frequency ω, of the form
put out by Pd’s phasor~ object but considered as a continuous function f(t),
expands to:

f(t) =
1

2
− 1

π

(

sin(ωt) +
sin(2ωt)

2
+

sin(3ωt)

3
+ · · ·

)

which enjoys arbitrarily high frequencies; and moreover the hundredth partial
is only 40 dB weaker than the first one. At any but very low values of ω, the

3.2. CONTROL 63

partials above π will be audibly present—and, because of foldover, they will
be heard at incorrect frequencies. (This does not mean that one shouldn’t use
sawtooth waves as phase generators—the wavetable lookup step magically fixes
the foldover problem—but one should think twice before using a sawtooth wave
itself as a digital sound source.)

Many synthesis techniques, even if not strictly band-limited, give partials
which may be made to drop off more rapidly than 1/n as in the sawtooth
example, and are thus more forgiving to work with digitally. In any case, it is
always a good idea to keep the possibility of foldover in mind, and to train your
ears to recognize it.

The first line of defense against foldover is simply to use high sample rates;
it is a good practice to systematically use the highest sample rate that your
computer can easily handle. The highest practical rate will vary according to
whether you are working in real time or not, CPU time and memory constraints,
and/or input and output hardware, and sometimes even software-imposed lim-
itations.

A very non-technical treatment of sampling theory is given in [Bal03]. More
detail can be found in [Mat69, pp. 1-30].

3.2 Control

So far we have dealt with audio signals, which are just sequences x[n] defined
for integers n, which correspond to regularly spaced points in time. This is
often an adequate framework for describing synthesis techniques, but real elec-
tronic music applications usually also entail other computations which have to
be made at irregular points in time. In this section we’ll develop a framework
for describing what we will call control computations. We will always require
that any computation correspond to a specific logical time. The logical time
controls which sample of audio output will be the first to reflect the result of
the computation.

In a non-real-time system (such as Csound in its classical form), this means
that logical time proceeds from zero to the length of the output soundfile. Each
“score card” has an associated logical time (the time in the score), and is acted
upon once the audio computation has reached that time. So audio and control
calculations (grinding out the samples and handling note cards) are each handled
in turn, all in increasing order of logical time.

In a real-time system, logical time, which still corresponds to the time of
the next affected sample of audio output, is always slightly in advance of real
time, which is measured by the sample that is actually leaving the computer.
Control and audio computations still are carried out in alternation, sorted by
logical time.

The reason for using logical time and not real time in computer music com-
putations is to keep the calculations independent of the actual execution time
of the computer, which can vary for a variety of reasons, even for two seemingly
identical calculations. When we are calculating a new value of an audio signal

64 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0 1

0

1 2 2 3

1 2

. . .

0 4 4 8

0 1 2 3 4 5 6 7

8

. . .

(a)

(b)

logical time

audio output

control

audio

Figure 3.2: Timeline for digital audio and control computation: (a) with a block
size of one sample; (b) with a block size of four samples.

or processing some control input, real time may pass but we require that the
logical time stay the same through the whole calculation, as if it took place
instantaneously. As a result of this, electronic music computations, if done cor-
rectly, are deterministic: two runs of the same real-time or non-real-time audio
computation, each having the same inputs, should have identical results.

Figure 3.2 (part a) shows schematically how logical time and sample com-
putation are lined up. Audio samples are computed periodically (as shown with
wavy lines), but before the calculation of each sample we do all the control
calculations (marked as straight line segments). First we do the control compu-
tations associated with logical times starting at zero, up to but not including
one; then we compute the first audio sample (of index zero), at logical time one.
We then do all control calculations up to but not including logical time 2, then
the sample of index one, and so on. (Here we are adopting certain conventions
about labeling that could be chosen differently. For instance, there is no funda-
mental reason control should be pictured as coming “before” audio computation
but it is easier to think that way.)

Part (b) of the figure shows the situation if we wish to compute the audio
output in blocks of more than one sample at a time. Using the variable B to
denote the number of elements in a block (so B = 4 in the figure), the first audio
computation will output samples 0, 1, ...B − 1 all at once in a block. We have
to do the relevant control computations for all four periods of time in advance.
There is a delay of B samples between logical time and the appearance of audio
output.

Most computer music software computes audio in blocks. This is done to
increase the efficiency of individual audio operations (such as Csound’s unit

3.3. CONTROL STREAMS 65

time

Figure 3.3: Graphical representation of a control stream as a sequence of points
in time.

generators and Max/MSP and Pd’s tilde objects). Each unit generator or tilde
object incurs overhead each time it is called, equal to perhaps twenty times the
cost of computing one sample on average. If the block size is one, this means
an overhead of 2,000%; if it is sixty-four (as in Pd by default), the overhead is
only some 30%.

3.3 Control streams

Control computations may come from a variety of sources, both internal and
external to the overall computation. Examples of internally engendered con-
trol computations include sequencing (in which control computations must take
place at pre-determined times) or feature detection of the audio output (for
instance, watching for zero crossings in a signal). Externally engendered ones
may come from input devices such as MIDI controllers, the mouse and keyboard,
network packets, and so on. In any case, control computations may occur at
irregular intervals, unlike audio samples which correspond to a steadily ticking
sample clock.

We will need a way of describing how information flows between control
and audio computations, which we will base on the notion of a control stream.
This is simply a collection of numbers—possibly empty—that appear as a re-
sult of control computations, whether regularly or irregularly spaced in logical
time. The simplest possible control stream has no information other than a time
sequence:

. . . , t[0], t[1], t[2], . . .

Although the time values are best given in units of samples, their values aren’t
quantized; they may be arbitrary real numbers. We do require them to be sorted
in nondecreasing order:

· · · ≤ t[0] ≤ t[1] ≤ t[2] ≤ · · ·

Each item in the list is called an event.
Control streams may be shown graphically in Figure 3.3. A number line

shows time and a sequence of arrows points to the times associated with each
event. The control stream shown has no data (it is a time sequence). If we want
to show data in the control stream we will write it at the base of each arrow.

66 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

A numeric control stream. is one that contains one number per time point,
so that it appears as a sequence of ordered pairs:

. . . , (t[0], x[0]), (t[1], x[1]), . . . ,

where the t[n] are the time points and the x[n] are the signal’s values at those
times.

A numeric control stream is roughly analogous to a “MIDI controller”, whose
values change irregularly, for example when a physical control is moved by a
performer. Other control stream sources may have higher possible rates of
change and/or more precision. On the other hand, a time sequence might be a
sequence of pedal hits, which (MIDI implementation notwithstanding) shouldn’t
be considered as having values, just times.

Numeric control streams are like audio signals in that both are just time-
varying numeric values. But whereas the audio signal comes at a steady rate
(and so the time values need not be specified per sample), the control stream
comes unpredictably—perhaps evenly, perhaps unevenly, perhaps never.

Let us now look at what happens when we try to convert a numeric control
stream to an audio signal. As before we’ll choose a block size B = 4. We will
consider as a control stream a square wave of period 5.5:

(2, 1), (4.75, 0), (7.5, 1), (10.25, 0), (13, 1), . . .

and demonstrate three ways it could be converted to an audio signal. Figure
3.4 (part a) shows the simplest, fast-as-possible, conversion. Each audio sample
of output simply reflects the most recent value of the control signal. So samples
0 through 3 (which are computed at logical time 4 because of the block size)
are 1 in value because of the point (2, 1). The next four samples are also one,
because of the two points, (4.75, 0) and (7.5, 1), the most recent still has the
value 1.

Fast-as-possible conversion is most appropriate for control streams which
do not change frequently compared to the block size. Its main advantages are
simplicity of computation and the fastest possible response to changes. As the
figure shows, when the control stream’s updates are too fast (on the order of
the block size), the audio signal may not be a good likeness of the sporadic one.
(If, as in this case, the control stream comes at regular intervals of time, we can
use the sampling theorem to analyze the result. Here the Nyquist frequency of
the output is lower than the input square wave’s frequency, and so the output
is aliased to a new frequency lower than the Nyquist frequency.)

Part (b) shows the result of nearest-sample conversion. Each new value of
the control stream at a time t affects output samples starting from index btc+1
(one more than the greatest integer not exceeding t). This is equivalent to using
fast-as-possible conversion at a block size of 1; in other words, nearest-sample
conversion hides the effect of the larger block size. This is better than fast-as-
possible conversion in cases where the control stream might change quickly.

Part (c) shows sporadic-to-audio conversion, again at the nearest sample,
but now also using two-point interpolation to further increase the time accuracy.

3.3. CONTROL STREAMS 67

0

0 1 2 3

. . .

a

4 8

4

12 16

(2, 1)

(4.75, 0)

(7.5, 1)

(10.25, 0)

(13, 1)

(15.75, 0)

(18.5, 1)

0

0 1 2 3

. . .

4 8

4

12 16

b

8 12 16

8 12 16

0

0 1 2 3

. . .

4 8

4

12 16

8 12 16

c

Figure 3.4: Three ways to change a control stream into an audio signal. A: as fast
as possible; B: delayed to the nearest sample; C: with two-point interpolation
for higher delay accuracy.

68 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

Conceptually we can describe this as follows. Suppose the value of the control
stream was last equal to x, and that the next point is (n + f, y), where n is an
integer and f is the fractional part of the time value (so 0 ≤ f < 1). The first
point affected in the audio output will be the sample at index n. But instead
of setting the output to y as before, we set it to

fx + (1 − f)y,

in other words, to a weighted average of the previous and the new value, whose
weights favor the new value more if the time of the sporadic value is earlier,
closer to n. In the example shown, the transition from 0 to 1 at time 2 gives

0 · x + 1 · y = 1,

while the transition from 1 to 0 at time 4.75 gives:

0.75 · x + 0.25 · y = 0.75.

This technique gives a still closer representation of the control signal (at least,
the portion of it that lies below the Nyquist frequency), at the expense of more
computation and slightly greater delay.

Numeric control streams may also be converted to audio signals using ramp
functions to smooth discontinuities. This is often used when a control stream is
used to control an amplitude, as described in section 1.5. In general there are
three values to specify to set a ramp function in motion: a start time and target
value (specified by the control stream) and a target time, often expressed as a
delay after the start time.

In such situations it is almost always accurate enough to adjust the start
and ending times to match the first audio sample computed at a later logical
time, a choice which corresponds to the fast-as-possible scenario above. Figure
3.5 (part a) shows the effect of ramping from 0, starting at time 3, to a value
of 1 at time 9, immediately starting back toward 0 at time 15, with block size
B = 4. The times 3, 9, and 15 are truncated to 0, 8, and 12, respectively.

In real situations the block size might be on the order of a millisecond,
and adjusting ramp endpoints to block boundaries works fine for controling
amplitudes; reaching a target a fraction of a millisecond early or late rarely
makes an audible difference. However, other uses of ramps are more sensitive
to time quantization of endpoints. For example, if we wish to do something
repetitively every few milliseconds, the variation in segment lengths will make
for an audible aperiodicity.

For situations such as these, we can improve the ramp generation algorithm
to start and stop at arbitrary samples, as shown in Figure 3.5 (part b), for
example. Here the endpoints of the line segments line up exactly with the
requested samples 3, 9, and 15. We can go even further and adjust for fractional
samples, making the line segments touch the values 0 and 1 at exactly specifiable
points on a number line.

For example, suppose we want to repeat a recorded sound out of a wavetable
100 times per second, every 441 samples at the usual sample rate. Rounding

3.4. CONVERTING FROM AUDIO SIGNALS TO NUMERIC CONTROL STREAMS69

. . .

9

0 8 12 4

a

b

3 15

15 3 9

Figure 3.5: Line segment smoothing of numeric control streams: (a) aligned to
block boundaries; (b) aligned to nearest sample.

errors due to blocking at 64-sample boundaries could detune the playback by
as much as a whole tone in pitch; and even rounding to one-sample boundaries
would introduce variations up to about 0.2%, or three cents. This situation
would call for sub-sample accuracy in sporadic-to-audio conversion.

3.4 Converting from audio signals to numeric
control streams

We sometimes need to convert in the other direction, from an audio signal to
a sporadic one. To go in this direction, we somehow provide a series of logical
times (a time sequence), as well as an audio signal. For output we want a control
stream combining the time sequence with values taken from the audio signal.
We do this when we want to incorporate the signal’s value as part of a control
computation.

For example, we might be controlling the amplitude of a signal using a line~

object as in Chapter 1, Example 3 (page 23). Suppose we wish to turn off the
sound at a fixed rate of speed instead of in a fixed amount of time. For instance,
we might want to re-use the network for another sound and wish to mute it as
quickly as possible without audible artifacts; we probably can ramp it off in
less time if the current amplitude is low than if it is high. To do this we must
confect a message to the line~ object to send it to zero in an amount of time
we’ll calculate on the basis of its current output value. This will require, first of
all, that we “sample” the line~ object’s output (an audio signal) into a control
stream.

The same issues of time delay and accuracy appear as for sporadic to audio
conversion. Again there will be a tradeoff between immediacy and accuracy.

Suppose as before that we are calculating audio in blocks of 4 samples, and
suppose that at logical time 6 we want to look at the value of an audio signal,

70 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

signal snapshot

(a) (b)

trigger

Figure 3.6: Conversion between control and audio: (a) control to signal; (b)
signal to control by snapshots.

and use it to change the value of another one. As shown in Figure 3.2 part
(b), the most recently calculated value of the signal will be for index 3 and the
earliest index at which our calculation can affect a signal is 4. We can therefore
carry out the whole affair with a delay of only one sample. However, we can’t
choose exactly which sample—the update can occur only at a block boundary.

As before, we can trade immediacy for increased time accuracy. If it matters
exactly at which sample we carry out the audio-to-control-to-audio computation,
we read the sample of index 2 and update the one at index 6. Then if we want
to do the same thing again at logical time 7, we read from index 3 and update
at index 7, and so on. In general, if the block size is B, and for any index n,
we can always read the sample at index n − B and affect the one at index n.
There is thus a round-trip delay of B samples in going from audio to control to
audio computation, which is the price incurred for being able to name the index
n exactly.

If we wish to go further, to being able to specify a fraction of a sample,
then (as before) we can use interpolation—at a slight further increase in delay.
In general, as in the case of sporadic-to-audio conversion, in most cases the
simplest solution is the best, but occasionally we have to do extra work.

3.5 Control streams in block diagrams

Figure 3.6 shows how control streams are expressed in block diagrams, using
control-to-signal and signal-to-control conversion as examples. Control streams
are represented using dots (as opposed to audio signals which appear as solid
arrows).

The signal operator converts from a numeric control stream to an audio
signal. The exact type of conversion isn’t specified at this level of detail; in the
Pd examples the choice of conversion operator will determine this.

The snapshot operator converts from audio signals back to numeric control

3.6. EVENT DETECTION 71

streams. In addition to the audio signal, a separate, control input is needed to
specify the time sequence at which the audio signal is sampled.

3.6 Event detection

Besides taking snapshots, a second mode of passing information from audio sig-
nals to control computations is event detection. Here we derive time information
from the audio signal. An example is threshold detection, in which the input is
an audio signal and the output is a time sequence. We’ll consider the example
of threshold detection in some detail here.

A defining situation in which we use threshold detection is to find out when
some kind of activity starts and stops, such as a performer playing an instru-
ment. We’ll suppose we already have a continuous measure of activity in the
form of an audio signal. (This can be done, for example, using an envelope
follower). What we want is a pair of time sequences, one which marks times in
which activity starts, and the other marking stops.

Figure 3.7 (part a) shows a simple realization of this idea. We assume the
signal input is as shown in the continuous graph. A horizontal line shows the
constant value of the threshold. The time sequence marked “onsets” contains
one event for each time the signal crosses the threshold from below to above;
the one marked “turnoffs” marks crossings in the other direction.

In many situations we will get undesirable onsets and turnoffs caused by
small ripples in the signal close to the threshold. This is avoided by debouncing,
which can be done in at least two simple ways. First, as shown in part (b)
of the figure, we can set two thresholds: a high one for marking onsets, and a
lower one for turnoffs. In this scheme the rule is that we only report the first
onset after each turnoff, and, vice versa, we only report one turnoff after each
onset. Thus the third time the signal crosses the high threshold in the figure,
there is no reported onset because there was no turnoff since the previous one.
(At startup, we act as if the most recent output was a turnoff, so that the first
onset is reported.)

A second approach to filtering out multiple onsets and turnoffs, shown in part
(c) of the figure, is to associate a dead period to each onset. This is a constant
interval of time after each reported onset, during which we refuse to report more
onsets or turnoffs. After the period ends, if the signal has dropped below the
threshold in the meantime, we belatedly report a turnoff. Dead periods may
also be associated with turnoffs, and the two time periods may have different
values.

The two filtering strategies may be used separately or simultaneously. It is
usually necessary to tailor the threshold values and/or dead times by hand to
each specific situation in which thresholding is used.

Thresholding is often used as a first step in the design of higher-level strate-
gies for arranging computer responses to audible cues from performers. A simple
example could be to set off a sequence of pre-planned processes, each one to be
set off by an onset of sound after a specified period of relative silence, such as

72 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

time

threshold

onsets

turnoffs

(a)

high threshold

low threshold

(b)

(c)

dead periods

Figure 3.7: Threshold detection: (a) with no debouncing; (b) debounced using
two threshold levels; (c) debounced using dead periods.

3.7. AUDIO SIGNALS AS CONTROL 73

you would see if a musician played a sequence of phrases separated by rests.
More sophisticated detectors (built on top of threshold detection) could de-

tect continuous sound or silence within an expected range of durations, or se-
quences of quick alternation between playing and not playing, or periods of time
in which the percentage of playing time to rests is above or below a threshold,
or many other possible features. These could set off predetermined reactions or
figure in an improvisation.

3.7 Audio signals as control

From the tradition of analog synthesis comes an elegant, old-fashioned approach
to control problems that can be used as an alternative to the control streams
we have been concerned with so far in this chapter. Instead, or in addition
to using control streams, we can use audio signals themselves to control the
production of other audio signals. Two specific techniques from analog synthesis
lend themselves well to this treatment: analog sequencing and sample-and-hold.

The analog sequencer [Str95, pp. 70-79] [?, pp. 93,304-308] was often used to
set off a regularly or semi-regularly repeating sequence of sounds. The sequencer
itself typically put out a repeating sequence of voltages, along with a trigger
signal which pulsed at each transition between voltages. One used the voltages
for pitches or timbral parameters, and the trigger to control one or more envelope
generators. Getting looped sequences of predetermined values in digital audio
practice is as simple as sending a phasor~ object into a non-interpolating table
lookup. If you want, say, four values in the sequence, scale the phasor~ output
to take values from 0 to 3.999 . . . so that the first fourth of the cycle reads point
0 of the table and so on.

To get repeated triggering, the first step is to synthesize another sawtooth
that runs in synchrony with the phasor~ output but four times as fast. This is
done using a variant of the technique of Figure 2.8, in which we used an adder
and a wraparound operator to get a desired phase shift. Figure 3.8 shows the
effect of multiplying a sawtooth wave by an integer, then wrapping around to
get a sawtooth at a multiple of the original frequency.

From there is is easy to get to a repeated envelope shape by wavetable lookup
for example (using an interpolating table lookup this time, unlike the sequence
voltages). All the waveform generation and altering techniques used for making
pitched sounds can also be brought to use here.

The other standard control technique from analog synthesizer control is the
sample and hold unit [Str95, pp. 80-83] [?, p. 92]. This takes an incoming
signal, picks out certain instantaneous values from it, and “freezes” those values
for its output. The particular values to pick out are selected by a secondary,
“trigger” input. At points in time specified by the trigger input a new, single
value is taken from the primary input and is output continuously until the next
time point, when it is replaced by a new value of the primary input.

In digital audio it is often useful to sample a new value on falling edges of
the trigger signal; i.e., whenever the current value of the trigger signal is smaller

74 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

0

OUT

frequency

1

WRAP

4 *

1

4

1

Figure 3.8: Multiplying and wrapping a sawtooth wave to generate a higher
frequency.

3.7. AUDIO SIGNALS AS CONTROL 75

OUT

S/H

trigger

IN

Figure 3.9: Sample and hold (“S/H”), using falling edges of the trigger signal.

76 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

than its previous value, as shown in Figure 3.9. This is especially convenient
for use with a sawtooth trigger, when we wish to sample signals in synchrony
with an oscillator-driven process.

3.8 Operations on control streams

So far we’ve discussed how to convert between control streams and audio streams.
In addition to this possibility, there are four types of operations you can per-
form on control streams to get other control streams. These control stream
operations have no corresponding operations on audio signals. Their existence
explains in large part why it is useful to introduce a whole control structure in
parallel with that of audio signals.

The first type consists of delay operations, which offset the time values
associated with a control stream. In real-time systems the delays can’t be
negative in value. A control stream may be delayed by a constant amount, or
alternatively, you can delay each event separately by different amounts.

Two different types of delay are used in practice: simple and compound.
Examples of each are shown in Figure 3.10. A simple delay acting on a control
stream schedules each event, as it comes in, for a time in the future. However,
if another event arrives at the input before the first event is output, the first
event is forgotten in favor of the second. In a compound delay, each event at the
input produces an output, even if other inputs arrive before the output appears.

A second operation on control steams is merging. This is simply taking any
two control streams and combining all the events into a new one. Figure 3.11
(part a) shows how this and the remaining operations can be shown in block
diagrams.

Part (b) shows the effect of merging two streams. Streams may contain more
than one event at the same time. If two streams to be merged contain events at
the same time, the merged stream contains them both, in a well-defined order.

A third type of operation on control streams is pruning. Pruning a control
stream means looking at the associated data and letting only certain elements
through. Figure 3.11 (part c) shows an example, in which events (which each
have an associated number) are passed through only if the number is positive.

Finally, there is the concept of resynchronizing one control stream to an-
other, as shown in part (d) of the figure. Here one control stream (the source)
contributes values which are put onto the time sequence of a second one (the
sync). The value given the output is always the most recent one from the source
stream. Note that any event from the source may appear more than once (as
suggested in the figure), or, on the other hand, it might not appear at all.

Again, we have to consider what happens when the two streams each contain
an event at the same time. Should the sync even be considered as happening
before the source (so that the output gets the value of the previous source event)?
Or should the source event be considered as being first so that its value goes
to the output at the same time? How this should be disambiguated is a design
question, to which various software environments take various approaches. (In

3.8. OPERATIONS ON CONTROL STREAMS 77

time

(b)

(c)

(a)delay

in

out

delay time

(input)

Figure 3.10: Delay as an operation on a control stream: (a) block diagram; (b)
effect of a simple delay on a control stream; (c) effect of a compound delay.

78 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

(a)

merge prune resync

sync data

(b)

(c)1 -2 3 -4

1 3

(d)
1 3

1 3 1

Figure 3.11: Operations on control streams (besides delay): (a) block diagrams;
(b) merging; (c) pruning; (d) resynchronizing.

3.9. CONTROL OPERATIONS IN PD 79

(a)
(b)

(c) (d)

delay

0

0

float

0

moses select

0
0

0

0

0

0 0

Figure 3.12: The four control operations in Pd: (a) delay; (b) merging; (c)
pruning; (d) resynchronizing.

Pd it is controlled explicitly by the user.)

3.9 Control operations in Pd

So far we have used Pd mostly for processing audio signals, although as early as
Figure 1.10 we have had to make the distinction between Pd’s notion of audio
signals and of control streams: thin connections carry control streams and thick
ones carry audio. Control streams in Pd appear as sequences of messages. The
messages may contain data (most often, one or more numbers), or not. A
numeric control stream (section 3.3) appears as a (thin) connection that carries
numbers as messages.

Messages not containing data make up time sequences. So that you can see
messages with no data, in Pd they are given the (arbitrary) symbol “bang”.

The four types of control operations described in the previous section can
be expressed in Pd as shown in Figure 3.12. Delays are accomplished using two
explicit delay objects:

del , delay : simple delay. You can specify the delay time in a creation

argument or via the right inlet. A “bang” in the left inlet sets the delay, which
then outputs “bang” after the specified delay in milliseconds. The delay is
simple in the sense that sending a bang to an already set delay resets it to the
new output time, canceling the previously scheduled one.

pipe : compound delay. Messages coming in the left inlet appear on the

output after the specified delay, which is set by the first creation argument. If
there are more creation arguments, they specify one or more inlets for numeric
or symbolic data the messages will contain. Any number of messages may be

80 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

stored by pipe simultaneously, and messages may be reordered as they are
output depending on the various delay times given for them.

Merging of control streams in Pd is accomplished not by explicit objects but
by Pd’s connection mechanism itself. This is shown in part (b) of the figure.

Pd offers several objects for pruning control streams, of which two are shown
in part (c) of the figure:

moses : prune for numeric range. Numeric messages coming in the left inlet
appear on the left output if they are smaller than a threshold value (set by a
creation argument or by the right inlet), and out the right inlet otherwise.

select , sel : prune for specific numbers. Numeric messages coming in the

left inlet produce a “bang” on the output only if they match a test value exactly.
The test value is set either by creation argument or from the right inlet.

Finally, Pd takes care of resynchronizing control streams implicitly in its
connection mechanism, as illustrated by part (d) of the figure. Most objects
with more than one inlet synchronize all other inlets to the leftmost one. So
the float object shown in the figure resynchronizes its right-hand-side inlet
(which takes numbers) to its left-hand-side one. Sending a “bang” to the left
inlet outputs the most recent number float has received beforehand.

3.10 Examples

Sampling and foldover

Example C01.nyquist.pd (Figure 3.13, part a) shows an oscillator playing a
wavetable, sweeping through frequencies from 500 to 1423. The wavetable con-
sists of only the 46th partial, which therefore varies from 23000 to 65458 Hz.
At a sample rate of 44100 these two frequencies sound at 21100 and 22742 Hz,
but sweeping from one to the other folds down through zero and back up.

Two other waveforms are provided to show the interesting effects of beat-
ing between partials which, although they “should” have been far apart, find
themselves neighbors through foldover. For instance, at 1423 Hz, the second
harmonic is 2846 Hz whereas the 33rd harmonic sounds at 1423*33-44100 =
2859 Hz—a hard dissonance.

Other less extreme examples can still produce audible foldover in less strik-
ing forms. Usually it is still objectionable and it is worth learning to hear it.
Example C02.sawtooth-foldover.pd (not pictured here) demonstrates this for a
sawtooth (the phasor~ object). For wavetables holding audio recordings, inter-
polation error can create extra foldover. The effects of this can vary widely; the
sound is sometimes described as “crunchy” or “splattering”, depending on the
recording, the transposition, and the interpolation algorithm.

3.10. EXAMPLES 81

line~

500, 1423 4000

tabosc4~ table24

(OUT)

(a)

*~ *~

line line~

pd metro

1 300 0 300

osc~ 880

(b)

pd metro

1 2 0 2

line~ vline~

(c)

output~

0dB

mute

output~

0dB

mute

output~

0dB

mute

output~

0dB

mute

table24

Figure 3.13: Sending an oscillator over the Nyquist frequency.

82 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

Converting controls to signals

Example C03.zipper.noise.pd (Figure 3.13 part b) demonstrates the effect of
converting a slowly-updated control stream to an audio signal. This introduces
a new object:

line : a ramp generator with control output. Like line~, line takes pairs of
numbers as (target, time) pairs and ramps to the target in the given amount of
time; however, unlike line~, the output is a numeric control stream, appearing,
by default, at 20 msec time intervals.

In the example you can compare the sound of the rising and falling amplitude
controlled by the line output with one controlled by the audio signal generated
by line~.

The output of line is converted to an audio signal at the input of the *~

object. The conversion is implied here by connecting a numeric control stream
into a signal inlet. In Pd, implicit conversions from numeric control streams to
audio streams is done in the fast-as-possible mode shown in Figure 3.4 (part
a). The line output becomes a staircase signal with 50 steps per second. The
result is commonly called “zipper noise”.

Whereas the limitations of the line object for generating audio signals were
clearly audible even at such long time periods as 300 msec, the signal variant,
line~, does not yield audible problems until the time periods involved become
much shorter. Example C04.control.to.signal.pd (Figure 3.13, part c) demon-
strates the effect of using line~ to generate a 250 Hz. triangle wave. Here
the effects shown in Figure 3.5 come into play. Since line~ always aligns line
segments to block boundaries, the exact durations of line segments vary, and in
this example the variation (on the order of a millisecond) is a significant fraction
of their length.

A more precise object (and a more expensive one, in terms of computation
time) is provided for these situations:

vline ∼ : exact line segment generator. This third member of the “line” family
outputs an audio signal (like line~), but aligns the endpoints of the signal to
the desired time points, accurate to a fraction of a sample. (The accuracy
is limited only by the floating-point numerical format used by Pd.) Further,
many line segments may be specified withing a single audio block; vline~ can
generate waveforms at periods down to two samples (beyond which you will just
get foldover instead).

The vline~ object can also be used for converting numeric control streams
to audio streams in the nearest-sample and two-point-interpolation modes as
shown in Figure 3.4 (parts b and c). To get nearest-sample conversion, simply
give vline~ a ramp time of zero. For linear interpolation, give it a ramp time
of one sample (0.0227 msec if the sample rate is 44100 Hz.)

3.10. EXAMPLES 83

adc~ 1

hip~ 5

*~

r cutoff

r phase

bang

delay 5

<-- play the sample

;
cutoff 0 5

cut the

sound off

Wait for the
cutoff to finish

set the upper line~ to start

<-- record

line~
*~

del 3990

0 10

vline~

vline~

tabwrite~ tab28

tabread4~ tab28

;
phase 1, 4.41e+08 1e+07;
cutoff 1

0, 1 5

(OUT)

start new playback

forever (or until next trigger)

at the first sample and play

|

Figure 3.14: Non-looping sampler.

Non-looping wavetable player

One application area requiring careful thought about the control stream/audio
signal boundary is sampling. Until now our samplers have skirted the issue
by looping perpetually. This allows for a rich variety of sound that can be
accessed by making continuous changes in parameters such as loop size and
envelope shape. However, many uses of sampling require the internal features
of a wavetable to emerge at predictable, synchronizable moments in time. For
example, recorded percussion soundss are usually played from the beginning,
are not often looped, and are usually played in a determined time relationship
with the rest of the music.

In this situation, control streams are better adapted than audio signals as
triggers. Example Example C05.sampler.oneshot.pd (Figure 3.14) shows one
possible way to accomplish this. The four tilde objects at bottom left form the
signal processing network for playback. One vline~ object generates a phase
signal (actually just a table lookup index) to the tabread4~ object; this replaces
the phasor~ of Example B03.tabread4.pd (page 51) and its derivatives.

The amplitude of the output of tabread4~ is controlled by a second vline~

84 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

object, in order to prevent discontinuities in the output in case a new event is
started while the previous event is still playing. The “cutoff” vline~ object
ramps the output down to zero (whether or not it is playing) so that, once the
output is zero, the index of the wavetable may be changed discontinuously.

In order to start a new “note”, first, the “cutoff” vline~ object is ramped to
zero; then, after a delay of 5 msec (at which point vline~ has reached zero) the
phase is reset. This is done with two messages: first, the phase is set to 1 (with
no time value so that it jumps to 1 with no ramping). The value “1” specifies the
first readable point of the wavetable, since we are using 4-point interpolation.
Second, in the same message box, the phase is sent to 441,000,000 over a time
period of 10,000,000 msec. (In Pd, large numbers are shown using exponential
notation; these two appear as 4.41e+08 and 1e+07.) Tbeir quotient is 44.1 (in
units per millisecond) giving a transposition of one. The upper vline~ object
(which generates the phase) receives these messages via the “r phase” object
above it.

The example assumes that the wavetable is ramped smoothly to zero at ei-
ther end, and the bottom right portion of the patch shows how to record such a
wavetable (in this case four seconds long). Here a regular (and computationally
cheaper) line~ object suffices. Although the wavetable should be at least 4 sec-
onds long for this to work, you may record shorter wavetables simply by cutting
the line~ object off earlier. The only caveat is that, if you are simultaneously
reading and writing from the same wavetable, you may have to avoid situations
where read and write operations attack the same portion of the wavetable at
once.

The vline~ objects surrounding the tabread4~ were chosen over line~ be-
cause the latter’s rounding of breakpoints to the nearest block boundary (typi-
cally 1.45 msec) can make for audible aperiodicities in the sound if the wavetable
is repeated more than 10 or 20 times per second, and would prevent you from
getting a nice, periodic sound at higher rates of repetition.

We will return to vline~-based sampling in the next chapter, to add trans-
position, envelopes, and polyphony.

Signals to controls

Example C06.signal.to.control.pd (not pictured) demonstrates conversion from
audio signals back to numeric control streams, via a new tilde object introduced
here.

snapshot ∼ : convert audio signal to control messages. This always gives the

most recently computed audio sample (fast-as-possible conversion), so the exact
sampling time varies by up to one audio block.

It is frequently desirable to sense the audio signal’s amplitude rather than
peek at a single sample; Example C07.envelope.follower.pd (also not pictured)
introduces another object which does this.

env ∼ : RMS envelope follower. Outputs control messages giving the short-
term RMS amplitude (in dB) of the incoming audio signal. A creation argument

3.10. EXAMPLES 85

allows you to select the number of samples used in the RMS computation;
smaller numbers give faster (and possibly less stable) output.

Analog-style sequencer

Example C08.analog.sequencer.pd (Figure 3.15) realizes the analog sequencer
and envelope generation described in section 3.7. The “sequence” table, with
nine elements, holds a sequence of frequencies. The phasor~ object at top cycles
through the sequence table at 0.6 Hz. Non-interpolating table lookup (tabread~
instead of tabread4~) is used to read the frequencies in discrete steps. (Such
situations, in which we prefer non-interpolating table lookup, are rare.)

The wrap~ object converts the amplitude-9 sawtooth to a unit-amplitude
one as described earlier in Figure 3.8, which is then used to obtain an envelope
function from a second wavetable. This is used to control grain size in a loop-
ing sampler (from section 2.6). Here the “sample” consists of six periods of a
sinusoid. The grains are smoothed by multiplying by a raised cosine function
(cos~ and + 1).

Example C09.sample.hold.pd (not pictured here) shows a sample-and-hold
unit, another useful device for doing control tasks in the audio signal domain.

MIDI-style synthesizer

Example C10.monophonic.synth.pd (Figure 3.16) also implements a monophonic,
note-oriented synthesizer, but in this case oriented toward MIDI controllability.
Here the tasks of envelope generation and sequencing pitches are handled using
control streams instead of audio signals. New control objects are needed for this
example:

notein : MIDI note input. Three outlets give the pitch, velocity, and channel
of incoming MIDI note-on and note-off events (with note-off events appearing
as velocity-zero note-on events). The outputs appear in Pd’s customary right-
to-left order.

stripnote : filter out note-off messages. This passes (pitch, velocity) pairs

through whenever the velocity is nonzero, dropping the others. Unlike notein,
stripnote does not cause hardware MIDI input or output.

trigger , t : copy a message to outlets in right to left order, with type con-

version. The creation arguments (“b” and “f” in this example) specify two
outlets, one giving “bang” messages, the other “float” (i.e., numbers). One out-
let is created for each creation argument. The outputs appear in Pd’s standard
right-to-left order.

The patch’s control objects feed frequencies to the phasor~ object whenever
a MIDI note-on message is received. Controlling the amplitude (via the line~

object) is more difficult. When a note-on message is received, the sel 0 object
outputs the velocity at right (because the input failed to match 0); this is divided

86 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

*~

wrap~

*~ 100

+~ 1

phasor~

-~ 0.5

cos~

*~

*~ 128

+~ 129

+~ 1

*~ 9

phasor~ 0.6

main loop: sawtooth of amplitude 9

read frequency sequence

9x original frequency sawtooth

multiply by raised-cosine smoothing function

(out)

tabread~ sequence

tabread4~ envelope

tabread4~ sample

multiply by audio-frequency sawtooth

envelope sample

adjust for reading

and center for wavetable

adjust amplitude

|

sequence sample

envelope

Figure 3.15: An analog-synthesizer-style sequencer.

3.10. EXAMPLES 87

mtof

stripnote

select

float

t b f

float

f - store pitch below

velocity stored here

off

recall pitch

notein

line~

$1 100 0 1000

b - bang to recall velocity

sel 0

on

*~

phasor~

-~ 0.5

cos~

*~ +~ 1

cos~

pitch

test for note on or off

test against latest

note-on pitch

filter
note-on

*~

/ 127

*~ 2

+~ 0.5

This replaces the tabread4~

in the previous patch.
(OUT)

envelope generator now controls
amplitude as well as grain size

velpit

|

Figure 3.16: A MIDI-style monophonic synthesizer.

88 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

by the maximum MIDI velocity of 127 and packed into a message for line~ with
a time of 100 msec.

However, when a note-off is received, it is only appropriate to stop the sound
if the note-off pitch actually matches the pitch the instrument is playing. For
example, suppose the messages received are “60 127”, “72 127”, “60 0”, and “72
0”. When the note-on at pitch 72 arrives the pitch should change to 72, and
then the “60 0” message should be ignored, with the note playing until the “72
0” message.

To accomplish this, first we store the velocity in the upper float object.
Second, when the pitch arrives, it too is stored (the lower float object) and
then the velocity is tested against zero (the “bang” outlet of t b f recalls the
velocity which is sent to sel 0). If this is zero, the second step is to recall the
pitch and test it (the select object) against the most recently received note-on
pitch. Only if these are equal (so that “bang” appears at the left-hand-side
outlet of select) does the message “0 1000” go to the line~ object.

Exercises

1. How many partials of a tone at A 440 can be represented digitally at a
sample rate of 44100 Hz?

2. What frequency would you hear if you synthesized a sine wave at 88000
Hz. at a sample rate of 44100?

3. Suppose you are synthesizing sound at 44100 kHz., and are computing 64-
sample audio blocks. A control event is scheduled to happen at an elapsed
time of exactly one second, using the fast-as-possible update scheme. At
what sample does the update actually occur?

4. Sampling at 44100, we wish to approximately play a tone at middle C by
repeating a fixed waveform every N samples. What value of N should we
choose, and how many cents (page 9) are we off from the “true” middle
C?

5. Two sawtooth waves, of unit amplitude, have frequencies 200 and 300 Hz.,
respectively. What is the periodicity of the sum of the two? What if you
then wrapped the sum back to the range from 0 to 1? Does this result
change depending on the relative phase of the two?

6. Two sawtooth waves, of equal frequency and amplitude and one half cycle
out of phase, are summed. What is the waveform of the sum, and what
are its amplitude and frequency?

7. What is the relative level, in decibels, of a sawtooth wave’s third harmonic
(three times the fundamnetal) compared to that of the fundamental?

8. Suppose you synthesize a 44000-Hz. sawtooth wave at a sample rate of
44100 Hz. What is the resulting waveform?

3.10. EXAMPLES 89

9. Using the techniques of section 3.7, draw a block diagram for generating
two phase-locked sinusoids at 500 and 700 Hz.

10. Draw a block diagram showing how to use thresholding to detect when
one audio signal exceeds another one in value. (You might want to do this
to detect and filter out feedback from speakers to microphones.)

90 CHAPTER 3. AUDIO AND CONTROL COMPUTATIONS

Chapter 4

Automation and voice
management

It is often desirable to control musical objects or events as aggregates rather than
individually. Aggregates might take the form of a series of events spaced in time,
in which the details of the events follow from the larger arc (for instance, notes
in a melody). Or the individuals might sound simultaneously, as with voices
in a chord, or partials in a complex tone. Often some or all properties of the
individual elements are best inferred from those of the whole.

A rich collection of tools and ideas has arisen in the electronic music reper-
tory for describing individual behaviors from aggregate ones. In this chapter
we cover two general classes of such tools: envelope generators and voice banks.
The envelope generator automates behavior over time, and the voice bank over
aggregates of simultaneous processes (such as signal generators).

4.1 Envelope Generators

An envelope generator (sometimes, and more justly, called a transient generator)
makes an audio signal that smoothly rises and falls as if to control the loudness
of a musical note as it rises and falls. Envelope generators were touched on
earlier in section 1.5. Amplitude control by multiplication (figure 1.4) is the
most direct, ordinary way to use one, but there are many other possible uses.

Envelope generators have come in many forms over the years, but the sim-
plest and the perennial favorite is the ADSR envelope generator. “ADSR” is
an acronym for “Attack, Decay, Sustain, Release”, the four segments of the
ADSR generator’s output. The ADSR generator is turned on and off by a con-
trol stream called a “trigger”. Triggering the ADSR generator “on” sets off its
attack, decay, and sustain segments. Triggering it “off” starts the release seg-
ment. Figure 4.1 shows the block diagram representation of an ADSR envelope
generator.

There are five parameters controlling the ADSR generator. First, a level

91

92 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

trigger

Figure 4.1: ADSR envelope as a block diagram, showing the trigger input (a
control stream) and the audio output.

parameter sets the output value at the end of the attack segment (normally the
highest value output by the ADSR generator.) Second and third, the attack
and decay parameters give the time duration of the attack and decay segments.
Fourth, a sustain parameter gives the level of the sustain segment, as a fraction
of the level parameter. Finally, the release parameter gives the duration of the
release segment. These five values, together with the timing of the “on” and
“off” triggers, fully determines the output of the ADSR generator. For example,
the duration of the sustain portion is equal to the time between “on” and “off”
triggers, minus the durations of the attack and decay segments.

Figure 4.2 graphs some possible outputs of an ADSR envelope generator. In
part (a) we assume that the “on” and “off” triggers are widely enough separated
that the sustain segment is reached before the “off” trigger is received. Parts
(b) and (c) of Figure 4.2 show the result of following an “on” trigger quickly by
an “off” one: (b) during the release segment, and (c) even earlier, during the
attack. The ADSR generator reacts to these situations by canceling whatever
remains of the attack and decay segments and continuing straight to the release
segment. Also, an ADSR generator may be retriggered “on” before the release
segment is finished or even during the attack, decay, or sustain segments. Part
(d) of the figure shows a reattack during the sustain segment, and part (e),
during the decay segment.

The classic application of an ADSR envelope is using a voltage-control key-
board or sequencer to make musical notes on a synthesizer. Depressing and re-
leasing a key (for example) would generate “on” and “off” triggers. The ADSR
generator could then control the amplitude of synthesis so that “notes” would
start and stop with the keys. In addition to amplitude, the ADSR generator
can (and often is) made to control timbre, which can then be made to evolve
naturally over the course of each note.

4.1. ENVELOPE GENERATORS 93

time

(a)

attack

decay

sustain

release

(b)

(c)

(d)

(e)

offon

offon

offon

on on

on on

Figure 4.2: ADSR envelope output: (a) with “on” and “off” triggers separated;
(b), (c) with early “off” trigger; (d), (e) re-attacked.

94 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

4.2 Linear and Curved Amplitude Shapes

Suppose you wish to fade a signal in over a period of ten seconds—that is, you
wish to multiply it by an amplitude-controlling signal y[n] which rises from 0
to 1 in value over 10R samples, where R is the sample rate. The most obvious
choice would be a linear ramp: y[n] = n/(10R). But this will not turn out to
yield a smooth increase in perceived loudness. Over the first second y[n] rises
from −∞ dB to -20 dB, over the next four by another 14 dB, and over the
remaining five, only by the remaining 6 dB. Over most of the ten second period
the rise in amplitude will be barely perceptible.

Another possibility would be to ramp y[n] exponentially, so that it rises at a
constant rate in dB. You would have to fix the initial amplitude to be inaudible,
say 0 dB (if we fix unity at 100 dB). Now we have the opposite problem: for the
first five seconds the amplitude control will rise from 0 dB (inaudible) to 50 dB
(pianissimo); this part of the fade-in should only have taken up the first second
or so.

The natural progression should perhaps have been: 0-ppp-pp-p-mp-mf-f-ff-
fff, so that each increase of one dynamic marking would take roughly one second,
and would correspond to one “step” in loudness.

A fade-in ideally should obey some scale in between logarithmic and linear.
A somewhat arbitrary choice, but useful in practice, is the quartic curve:

y[n] =
(n

N

)4

,

where N is the number of samples to fade in over (in the example above, it’s
10R). So, after the first second of the ten we would have risen to -80 dB, after
five seconds to -24 dB, and after nine, about -4 dB.

Figure 4.3 shows three amplitude transfer functions:

f1(x) = x (linear),

f2(x) = 102(x−1) (dB to linear),

f3(x) = x4 (quartic).

The second function converts from dB to linear, arranged so that the input
range, from 0 to 1, corresponds to 40 dB. (This input range of 40 dB corresponds
to a reasonable dynamic range, allowing 5 dB for each of 8 steps in dynamic.)
The quartic curve imitates the exponential (dB) curve fairly well for higher
amplitudes, but drops off more rapidly for small amplitudes, reaching true zero
at right (whereas the exponential curve only goes down to 1/100).

We can think of the three curves as showing transfer functions, from an
abstract control (ranging from 0 to 1) to a linear amplitude. After we choose a
suitable transfer function f , we can compute a corresponding amplitude control
signal; if we wish to ramp over N samples from silence to unity gain, the control
signal would be:

y[n] = f(n/N).

4.2. LINEAR AND CURVED AMPLITUDE SHAPES 95

linear

decibels
quartic

units

ampli-

0

1

0 1

tude

Figure 4.3: Three amplitude transfer functions. The horizontal axis is in linear,
logarithmic, or fourth-root units depending on the curve.

96 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

OUT

FREQUENCY

f()
-1

1

Figure 4.4: Using a transfer function to alter the shape of amplitude curves.

A block diagram for this is shown in Figure 4.4. Here we are introducing a new
type of block to represent the application of a transfer function. For now we
won’t worry about its implementation; depending on the function desired, this
might be best done arithmetically or using table lookup.

4.3 Continuous and discontinuous control changes

Synthesis algorithms vary widely in their ability to deal with discontinuously
changing controls. Until now in this chapter we have assumed that controls
must change continuously, and the ADSR envelope generator turns out to be
ideally suited to controlling such a parameter. It may even happen that the
maximum amplitude of a note is less than the current value of the amplitude of
its predecessor (using the same generator) and the ADSR envelope will simply
ramp down (instead of up) to the new value for an attack.

This isn’t necessarily desirable, however, in situations where an envelope
generator is in charge of some aspect of timbre: perhaps, for example, we don’t
want the sharpness of a note to decrease during the attack to a milder one, but
rather to jump to a much lower value so as always to be able to rise during the
attack.

This situation also can arise with pitch envelopes: it may be desirable to slide
pitch from one note to the next, or it may be desirable that the pitch trajectory
of each note start anew at a point independent of the previous sound.

Two situations arise when we wish to make discontinuous changes to syn-
thesis parameters: either we can simply make them without disruption (for
instance, making a discontinuous change in pitch); or else we can’t, such as a
change in a wavetable index (which makes a discontinuous change in the out-
put). There are even parameters that can’t possibly be changed continuously;

4.3. CONTINUOUS AND DISCONTINUOUS CONTROL CHANGES 97

time

(a)

(b)

Figure 4.5: Muting technique for hiding discontinuous changes: (a) the enve-
lope (upper graph) is set discontinuously to zero and the muting signal (lower
graph) ramps down in advance to prepare for the change, and then is restored
(discontinuously) to its previous value; (b) the envelope changes discontinuously
between two nonzero values; the muting signal must both ramp down before-
hand and ramp back up afterward.

for example, a selection among a collection of wavetables. In general, discontin-
uously changing the phase of an oscillator or the amplitude of a signal will cause
an audible artifact, but phase increments (such as pitches) may jump without
bad results.

In those cases where a parameter change can’t be made continuously for
one reason or another, there are at least two strategies for making the change
cleanly: muting and switch-and-ramp.

Muting

The muting technique is to apply an envelope to the output amplitude, which
is quickly ramped to zero before the parameter change and then restored after-
ward. It may or may not be the case that the discontinuous changes will result
in a signal that rises smoothly from zero afterward. In Figure 4.5 (part a),
we take the example of an amplitude envelope (the output signal of an ADSR
generator), and assume that the discontinuous change is to start a new note at
amplitude zero.

To change the ADSR generator’s output discontinuously we reset it. This is

98 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

a different operation from triggering it; the result is to make it jump to a new
value, after which we may either simply leave it there or trigger it anew. Figure
4.5 (part a) shows the effect of resetting and retriggering an ADSR generator.

Below the ADSR generator output we see the muting signal, which ramps to
zero to prepare for the discontinuity. The amount of time we allow for muting
should be small (so as to disrupt the previous sound as little as possible) but
not so small as to cause audible artifacts in the output. A working example of
this type of muting was already shown on page 83; there we allowed 5 msec for
ramping down.

Figure 4.5 (part b) shows the situation in which we suppose the discontinuous
change is between two nonzero values. Here the muting signal must not only
ramp down as before (in advance of the discontinuity) but must also ramp back
up afterward. The ramp-down time need not equal the ramp-up time; these
must be chosen, as always, by listening to the output sound.

In general, muting presents the difficulty that you must start the muting
operation in advance of making the desired control change. In real-time settings,
this often requires that we intentionally delay the control change. This is another
reason for keeping the muting time as low as possible. (Moreover, it’s a bad
idea to try to minimize delay by conditionally omitting the ramp-down period
when it isn’t needed; a constant delay is much better than one that varies, even
if it is smaller on average.)

Switch-and-ramp

The switch-and-ramp technique also seeks to remove discontinuities resulting
from discontinuous control changes, but does so in a different way: by synthe-
sizing an opposing discontinuity which cancels the original one out. Figure 4.6
shows an example in which a synthetic percussive sound (an enveloped sinusoid)
starts a note in the middle of a previous one. The attack of the sound derives
not from the amplitude envelope but from the initial phase of the sinusoid, as is
often appropriate for percussive sounds. The lower graph in the figure shows a
compensating audio signal with an opposing discontinuity, which can be added
to the upper one to remove the discontinuity. The advantages of this technique
over muting are, first, that there need be no delay between the decision to make
an attack and the sound of the attack; and second, that any artifacts arising
from this technique are more likely to be masked by the new sound’s onset.

Figure 4.7 shows how the switch-and-ramp technique can be realized in a
block diagram. The box marked with ellipsis (“...”) may hold any synthesis
algorithm, which we wish to interrupt discontinuously so that it restarts from
zero (as in, for example, the previous figure). At the same time we trigger what-
ever control changes are necessary (exemplified by the top ADSR generator), we
also reset and trigger another ADSR generator (middle right) to cancel out the
discontinuity. The discontinuity is minus the last value of the synthesis output
just before it is reset to zero.

To do this we measure the level the ADSR generator must now jump to.
This is its own current level (which may not be zero) minus the discontinuity

4.3. CONTINUOUS AND DISCONTINUOUS CONTROL CHANGES 99

time

Figure 4.6: The switch-and-ramp technique for canceling out discontinuous
changes. A discontinuity (upper graph) is measured and canceled out with
a signal having the opposite discontinuity (lower graph), which then decays
smoothly.

snapshot

trigger

...

OUT

+ +

trigger level
reset/

Figure 4.7: Block diagram for the switch-and-ramp technique.

100 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

(or equivalently, plus the synthesis output’s last value). The two are added (by
the +~ object at bottom right), and then a snapshot is taken. The cancelling
envelope generator (at right) is reset discontinuously to this new value, and
then triggered to ramp back to zero. The +~ object at bottom left adds the
synthesizer output to the discontinuity-cancelling signal.

4.4 Polyphony

In music, the term polyphony is usually used to mean “more than one separate
voices singing or playing at different pitches one from another”. When speak-
ing of electronic musical instruments we use the term to mean “maintaining
several copies of some process in parallel.” We usually call each copy a “voice”
in keeping with this analogy, although the voices needn’t be playing separately
distinguishable sounds.

In this language, a piano is a polyphonic instrument, with 88 “voices”. Each
voice of the piano is normally capable of playing exactly one pitch. There is
never a question of which voice to use to play a note of a given pitch, and no
question, either, of playing several notes simultaneously of the same pitch.

Many polyphonic electronic musical instruments take a more flexible ap-
proach to voice management. Most software synthesis programs (like csound)
use a dynamic voice allocation scheme, so that, in effect, a new voice is created
for every note in the score. In systems such as Max or Pd which are oriented
toward real-time interactive use, a voice bank is allocated in advance, and the
work to be done (playing notes, or whatever) is distributed among the voices in
the bank.

This is diagrammed in Figure 4.8, where the several voices each produce one
output signal, which are all added to make the total output of the voice bank.
Frequently the individual voices will need several separate outputs; for instance,
they might output several channels so that they may be panned individually;
or they might have individual effect sends so that each may have its own send
level.

4.5 Voice allocation

It is frequently desirable to automate the selection of voices to associate with
individual tasks (such as notes to play). For example, a musician playing at a
keyboard can’t practically choose which voice should go with each note played.
To automate voice selection we need a voice allocation algorithm, to be used as
shown in Figure 4.9.

Armed with a suitable voice allocation algorithm, the control source need
not concern itself with the detail of which voice is taking care of which task;
algorithmic note generators and sequencers frequently rely on this. On the
other hand, musical writing for ensembles frequently specifies explicitly which

4.6. VOICE TAGS 101

OUT

+

voice 1

voice 2

voice 3

control

Figure 4.8: A voice bank for polyphonic synthesis.

instrument plays which note, so that the notes will connect to each other end-
to-end in a desirable way.

One simple voice allocation algorithm works as shown in Figure 4.10. Here
we suppose that the voice bank has only two voices, and we try to allocate voices
for the tasks a, b, c, and d. Things go smoothly until task d comes along, but
then we see no free voices (they are taken up by b and c). We could now elect
either to drop task d, or else to steal the voice of either task b or c. In practice
the best choice is usually to steal one. In this particular example, we chose to
steal the voice of the oldest task, b.

If we happen to know the length of the tasks b and c at the outset of task d,
we may be able to make a better choice of which voice to steal. In this example
it might have been better to steal from c, so that d and b would be playing
together at the end and not d alone. In some situations this information will be
available when the choice must be made, and in some (live keyboard input, for
example) it will not.

4.6 Voice tags

Suppose now that we’re using a voice bank to play notes, as in the example
above, but suppose the notes a, b, c, and d all have the same pitch, and further-
more that all their other parameters are identical. How can we design a control
stream so that, when any one note is turned off, we know which one it is?

This question doesn’t come up if the control source is a clavier keyboard

102 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

OUT

+

voice 1

voice 2

voice 3

allocation

voice

"notes"

Figure 4.9: Polyphonic voice allocation

a

time

b

c

d

voice 1...

voice 2.......

............

...

Figure 4.10: A polyphonic voice allocation algorithm, showing voice stealing.

4.6. VOICE TAGS 103

because it’s impossible to play more than one simultaneous note on a single
key. But it could easily arise algorithmically, or simply as a result of merging
two keyboard streams together. Moreover, turning notes off is only the simplest
example of a more general problem, which is how, once having set an task off
in a voice bank, we can get back to the same voice to guide its evolution as a
function of real-time inputs or any other unpredictable factor.

To deal with situations like this we can add one or more tags to the message
starting a note (or, in general, a task). A tag is any collection of data with
which we can later identify the task, which we can later use to search for the
voice that is allocated for it.

Taking again the example of Figure 4.10, here is one way we might write
those four tasks as a control stream:

start-time end-time pitch ...

1 3 60 ...

2 8 62

4 6 64

5 8 65

In this representation we have no need of tags because each message (each
line of text) contains all the information we need in order to specify the entire
task. (Here we have assumed that the tasks a, . . . , d are in fact musical notes
with pitches 60, 62, 64, and 65.) In effect we’re representing each task as a
single event in a control stream (section 3.3).

On the other hand, if we suppose now that we do not know in advance the
length of each note, a better representation would be this one:

time tag action parameters

1 a start 60 ...

2 b start 62 ...

3 a end

4 c start 64 ...

5 d start 65 ...

6 c end

8 b end

8 d end

Here each note has been split into two separate events to start and end it.
The labels a, ..., d are used as tags; we know which start goes with which end
since their tags are the same. Note that the tag is not necessarily related at all
to the voice that will be used to play each note.

The MIDI standard does not supply tags; in normal use, the pitch of a note
serves also as its tag (so tags are constantly being re-used.) If two notes having
the same pitch must be addressed separately (to slide their pitches in different

104 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

directions for example), the MIDI channel may be used (in addition to the note)
as a tag.

In real-time music software it is often necessary to pass back and forth be-
tween the event-per-task representation and the tagged representation above,
since the first representation is better suited to storage and graphical represen-
tation, while the second is often better suited to real-time operations.

4.7 Encapsulation in Pd

The examples for this chapter will use Pd’s encapsulation mechanism, which
permits the building of patches that may be reused any number of times. One or
more object boxes in a Pd patch may be subpatches, which are separate patches
encapsulated inside the boxes. These come in two types: one-off subpatches and
abstractions. In either case the subpatch appears as an object box in another
patch, called the parent.

If you type “pd” or “pd my-name” into an object box, this creates a one-off
subpatch. The contents of the subpatch are saved as part of the parent patch,
in one file. If you make several copies of a subpatch you may change them
individually. On the other hand, you can invoke an abstraction by typing into
the box the name of a Pd patch saved to a file (without the “.pd” extension).
In this situation Pd will read that file into the subpatch. In this way, changes
to the file propagate everywhere the abstraction is invoked.

A subpatch (either one-off or abstraction) may have inlets and outlets that
appear on the box in the parent patch. This is specified using the following
objects:

inlet , inlet ∼ : create inlets for the object box containing the subpatch. The
inlet~ version creates an inlet for audio signals, whereas inlet creates one for
control streams. In either case, whatever shows up on the inlet of the box in
the parent patch comes out of the inlet or inlet~ object in the subpatch.

outlet , outlet ∼ : Corresponding objects for output from subpatches.
Pd provides an argument-passing mechanism so that you can parametrize

different invocations of an abstraction. If in an object box you type “$1”, it is
expanded to mean “the first creation argument in my box on the parent patch”,
and similarly for “$2” and so on. The text in an object box is interpreted at
the time the box is created, unlike the text in a message box. In message boxes,
the same “$1” means “the first argument of the message I just received” and is
interpreted whenever a new message comes in.

An example of an abstraction, using inlets, outlets, and parametrization, is
shown in Figure 4.11. In part (a), a patch invokes plusminus in an object box,
with a creation argument equal to 5. The number 8 is fed to the plusminus

object, and out comes the sum and difference of 8 and 5.
The plusminus object is not defined by Pd, but is rather defined by the

patch residing in the file named “plusminus.pd”. This patch is shown in part
(b) of the figure. The one inlet and two outlet objects correspond to the

4.8. EXAMPLES 105

inlet

outlet outlet

+ $1 − $1

8

13

plusminus 5

3

(a) (b)

Figure 4.11: Pd’s abstraction mechanism: (a) invoking the abstraction,
plusminus with 5 as a creation argument; (b) the contents of the file, “plusmi-
nus.pd”.

inlets and outlets of the plusminus object. The two “$1” arguments (to the
+ and - objects) are replaced by 5 (the creation argument of the plusminus

object).

We have already seen one abstraction in the examples: the output~ object
introduced in Figure 1.10 (page 18). That example also shows that an abstrac-
tion may display controls as part of its box on the parent patch; see the Pd
documentation for a description of this feature.

4.8 Examples

ADSR envelope generator

Example D01.envelope.gen.pd (figure 4.12) shows how the line~ object may
be used to generate an ADSR envelope to control a synthesis patch (only the
ADSR envelope is shown in the figure). The “attack” button, when pressed,
has two effects. The first (leftmost in the figure) is to set the line~ object on
its attack segment, with a target of 10 (the peak amplitude) over 200 msec (the
attack time). Second, the attack button sets a delay 200 object, so that after
the attack segment is done, the decay segment can start. The decay segment
falls to a target of 1 (the sustain level) after another 2500 msec (the decay time).

The “release” button sends the same line~ object back to zero over 500 more
milliseconds (the release time). Also, in case the delay 200 object happens to
be set at the moment the “release” button is pressed, a “stop” message is sent
to it. This prevents the ADSR generator from launching its decay segment after
launching its release segment.

In Example D02.adsr.pd (figure 4.13) we encapsulate the ADSR generator

106 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

attack release

line~

0 500

*~

1 2500

10 200 del 200

stop

(IN)

(OUT)

|

|

Figure 4.12: Using a line~ object to generate an ADSR envelope.

adsr 1 100 200 50 300

osc~ 440

*~

trigger

(OUT)
|

Figure 4.13: Invoking the adsr abstraction.

in a Pd abstraction (named adsr) so that it can easily be replicated. The design
of the adsr abstraction makes it possible to control the five ADSR parameters
either by supplying creation arguments or by connecting control streams to its
inlets.

In this example the five creation arguments (1, 100, 200, 50, and 300) specify
the peak level, attack time, decay time, sustain level (as a percentage of peak
level), and release time. There are six control inlets: the first to trigger the
ADSR generator, and the others to update the values of the five parameters.
The output of the abstraction is an audio signal.

This abstraction is realized as shown in figure 4.14. (You can open this patch
by clicking on the adsr object in the patch.) The only signal objects are line~

and outlet~. The three pack objects correspond to the three message objects
from the earlier figure 4.12. From left to right, they take care of the attack,
decay, and release segments.

The attack segment goes to a target specified as ”$1” (the first creation

4.8. EXAMPLES 107

inlet

inlet

trigger

sel 0
t b

f $1

pack 0 $2

inlet

del $2

line~

f $4

pack 0 $3

inlet inlet

inlet

stop

pack 0 $5

level

* $1

outlet~

and pack with

attack time

if zero
release

decay

back to zero

* 0.01

attack decay sustain

release

attack

moses

t b b

0

optionally

ATTACK:

test for negative trigger

if so, zero the output

... then

recall peak level

peak

... do this

cancel

DECAY

RELEASE: ramp

anyway

to zero

jump

Figure 4.14: Inside the adsr abstraction.

108 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

osc~

*~

line~

line~

osc~

*~

line~line~

sqrt

sqrt

sqrt

sqrt

*~

*~

*~

*~

unpack unpack

r freq

r amp

r freq r amp

LINEAR QUARTIC

;
freq 1760 5000

;
freq 55 5000

sample messages

|
(OUT)

|
(OUT)

Figure 4.15: Linear and quartic transfer functions for changing amplitude and
pitch.

argument of the abstraction) over “$2” milliseconds; these values may be over-
written by sending numbers to the “peak level” and “attack” inlets. The release
segment is similar, but simpler, since the target is always zero. The hard part is
the decay segment, which again must be set off after a delay equal to the attack
time (the del $2 object). The sustain level is calculated from the peak level
and the sustain percentage (multiplying the two and dividing by 100).

The trigger inlet, if sent a number other than zero, triggers an onset (the
attack and decay segments), and if sent zero, triggers the release segment. Fur-
thermore, the ADSR generator may be reset to zero by sending a negative trigger
(which also generates an onset).

Transfer functions for amplitude control

Section 4.2 described using ADSR envelopes to control amplitude, for which
exponential or quartic-curve segments often give more natural-sounding results
than linear ones. Patches D03.envelope.dB.pd and D04.envelope.quartic.pd (the
latter shown in Figure 4.15) demonstrate the use of decibel and quartic segments.
In addition to amplitude, in Example D04.envelope.quartic.pd the frequency of
a sound is also controlled, using linear and quartic shapes, for comparison.

Since converting decibels to linear amplitude units is a costly operation (at

4.8. EXAMPLES 109

least when compared to an oscillator or a ramp generator), Example D03.envelope.dB.pd
uses table lookup to implement the necessary transfer function. This has the
advantage of efficiency, but the disadvantage that we must decide on the range
of admissible values in advance (here from 0 to 120 dB).

For a quartic segment as in Example D04.envelope.quartic.pd no table lookup
is required; we simply square the line~ object’s output signal twice in succes-
sion. To compensate for raising the output to the fourth power, the target
values sent to the line~ object must be the fourth root of the desired ones.
Thus, messages to ramp the frequency or amplitude are first unpacked to sepa-
rate the target and time interval, and the target’s fourth root is taken (via two
square roots in succession) and the two are then sent to the line~ object. Here
we have made use of one new Pd object:

unpack : unpack a list of numbers (and/or symbols) and distribute them to

separate outlets. As usual the outputs appear in right-to-left order. The number
of outlets and their types are determined by the creation arguments. (See also
pack, p. 50).

The next two patches, D05.envelope.pitch.pd and D06.envelope.portamento.pd,
use an ADSR envelope generator to make a pitch envelope and a simple line~

object, also controlling pitch, to make portamento. In both cases exponential
segments are desirable, and they are calculated using table lookup.

Additive synthesis: Risset’s bell

The abstraction mechanism of Pd, which we used above to make a reusable
ADSR generator, is also useful for making voice banks. Here we will use ab-
stractions to organize banks of oscillators for additive synthesis. There are many
possible ways of organizing oscillator banks besides those shown here.

The simplest and most direct organization of the sinusoids is to form partials
to add up to a note. The result is monophonic, in the sense that the patch will
play only one note at a time, which, however, will consist of several sinusoids
whose individual frequencies and amplitudes might depend both on those of the
note we’re playing, and also on their individual placement in a harmonic (or
inharmonic) overtone series.

For example, Example D07.additive.pd (Figure 4.16) uses a bank of 11 copies
of an abstraction named partial (Figure 4.17) in an imitation of a well-known
bell instrument by Jean-Claude Risset. As described in [DJ85, p. 94], the
bell sound has 11 partials, each with its own relative amplitude, frequency, and
duration.

For each note, the partial abstraction computes a simple (quartic) ampli-
tude envelope consisting only of an attack and a decay segment; there is no
sustain or release segment. This is multiplied by a sinusoid, and the product is
added into a summing bus. Two new object classes are introduced to implement
the summing bus:

catch~ : define and output a summing bus. The creation argument (“sum-
bus” in this example) gives the summing bus a name so that throw~ objects

110 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

catch~ sum

s frequency

s duration

0

* 100

mtof

0

of a second

pitch

partial 1 1 0.56 0

s trigger

<-- click to play

(out)

duration, tenths

partial 0.67 0.9 0.56 1

partial 1 0.65 0.92 0

partial 1.8 0.55 0.92 1.7

partial 2.67 0.325 1.19 0

partial 1.67 0.35 1.7 0

partial 1.46 0.25 2 0

partial 1.33 0.2 2.74 0

partial 1.33 0.15 3 0

partial 1 0.1 3.76 0

partial 1.33 0.075 4.07 0

|

Figure 4.16: A Pd realization of Jean-Claude Risset’s bell instrument. The bell
sound is made by summing 11 sinusoids, each made by a copy of the partial

abstraction.

4.8. EXAMPLES 111

sqrt

trigger

*~
line~

*~

*~

0 $1

sqrt

r trigger

float $1

r duration
r frequency

t b b

throw~ sum

$1 5

del 5

* 0.1

+ $4

float $2

* actual duration

float $3

*

osc~

plus detune

add to global
summing bus

arguments:

relative
frequency

times global
frequency

ATTACK

DECAY

relative
duration

quartic amplitude
curve

$1 amplitude;
$2 relative duration;
$3 relative frequency;
$4 detune

attack time
5 msec

Figure 4.17: The partial abstraction used by Risset’s bell instrument from
figure 4.16.

112 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

below can refer to it. You may have as many summing busses (and hence catch~
objects) as you like but they must all have different names.

throw~ : add to a summing bus. The creation argument selects which sum-
ming bus to use.

The control interface is crude: number boxes control the “fundamental”
frequency of the bell and its duration. Sending a “bang” message to the s

trigger object starts a note. (The note then decays over the period of time
controlled by the duration parameter; there is no separate trigger to stop the
note.) There is no amplitude control except via the output~ object.

The four arguments to each invocation of partial abstraction specify:

1. amplitude. The peak amplitude of the partial at its peak, at the end of
the attack and the beginning of the decay of the note

2. relative duration. This is multiplied by the overall note duration (con-
trolled in the main patch) to determine the duration of the decay portion
of the sinusoid. Individual partials may thus have different decay times,
so that some partials die out faster than others, under the main patch’s
overall control.

3. relative frequency. As with the relative duration, this controls each par-
tial’s frequency as a multiple of the overall frequency controlled in the
main patch.

4. detune. A frequency in Hz. to be added to the product of the global
frequency and the relative frequency.

Inside the partial abstraction, the amplitude is simply taken directly from the
“$1” argument (multiplying by 0.1 to adjust for the high individual amplitudes);
the duration is calculated from the r duration object, multiplying it by the
“$2” argument. The frequency is thus equal to fp + d where f is the global
frequency (from the r frequency object), p is the relative frequency of the
partial, and d is the detune frequency.

Additive synthesis: spectral envelope control

The next patch example, D08.table.spectrum.pd(Figure 4.18), shows a very
different application of additive synthesis from the previous patch. Here the
sinusoids are managed by the spectrum-partial abstraction shown in Figure
4.19. Each partial computes its own frequency as in the previous patch. Each
partial also computes its own amplitude periodically (when triggered by the r

poll-table object), using a tabread4 object. The contents of the table (which
has a nominal range of 50 dB) are converted to linear units and used as an
amplitude control in the usual way.

A similar example, Example D09.shepard.tone.pd(not pictured), makes a
Shepard tone using the same technique. Here the frequencies of the sinusoids
sweep over a fixed range, finally jumping from the end back to the beginning

4.8. EXAMPLES 113

s pitch

50

0

s whammybar spectrum-partial 1

loadbang

metro 30

s poll-table

spectrum-partial 2

spectrum-partial 3

send bangs to "poll-table"

needed by the abstraction

spectrum-tab

Figure 4.18: Additive synthesis for a specified spectral envelope, drawn in a
table.

and repeating. The spectral envelope is arranged to have a peak at the middle
of the pitch range and drop off to inaudibility at the edges of the range so that
we hear only the continuous sweeping and not the jumping. The result is the
famous auditory conundrum of an infinitely ascending or descending tone.

The general technique of synthesizing to a specified spectral envelope can be
generalized in many ways: the envelope may be made to vary in time either as
a result of a live analysis of another signal, or by calculating from a set of com-
positional rules, or by cross-fading between a collection of pre-designed spectral
envelopes, or by frequency-warping the envelopes, to name a few possibilities.

Polyphonic synthesis: sampler

We move now to an example using dynamic voice allocation as described in
section 4.5. In the additive synthesis examples shown previously, each voice is
used for a fixed purpose. In the present example, we allocate voices from a bank
as needed to play notes in a control stream.

Example D11.sampler.poly.pd (figure 4.20) shows the polyphonic sampler,
which uses the abstraction sampvoice (whose interior is shown in figure 4.21).
The techniques for altering the pitch and other parameters in a one-shot sampler

114 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

osc~

r poll−table

+ 50

dbtorms

0

pack 0 30

line~

throw~ sum−bus

*~

r pitch

mtof

f

* $1

ftom

− r whammybar

pitch to frequency

then get the frequency of this specific partial

... and then convert back to pitch.

... at which time we get the pitch back...

tabread4 spectrum−tab

$1: partial number

calling patch bangs this every 30 msec.

get the strength from the table

and transpose by shifting table index.

but we want true zero when

the table value is 0 or less.

The vertical scale is dB from 1 to 50,
moses 1

Figure 4.19: The spectrum-partial abstraction used in Figure 4.18.

4.8. EXAMPLES 115

are shown in Example D10.sampler.notes.pd (not shown) which in turn is de-
rived from the original one-shot sampler from the previous chapter (C05.sampler.oneshot.pd,
shown in figure 3.14).

The sampvoice objects in Figure 4.20 are arranged in a different kind of
summing bus from the ones before; here, each one adds its own output to the
signal on its inlet, and puts the sum on its outlet. At the bottom of the eight
objects, the outlet therefore holds the sum of all eight. This has the advantage
of being more explicit than the throw~ / catch~ busses, and is preferable when
visual clutter is not a problem.

The main job of the patch, though, is to distribute the “note” messages to
the sampvoice objects. To do this we must introduce some new Pd objects:

mod : Integer modulus. For instance, 17 mod 10 gives 7, and -2 mod 10 gives
8. There is also an integer division object named div ; dividing 17 by 10 via
div gives 1, and -2 by 10 gives -1.

poly : Polyphonic voice allocator. Creation arguments give the number of

voices in the bank and a flag (1 if voice stealing is needed, 0 if not). The inlets
are a numeric tag at left and a flag at right indicating whether to start or stop
a voice with the given tag (nonzero numbers meaning “start” and zero, “stop”.)
The outputs are, at left, the voice number, the tag again at center, and the
start/stop flag at right. In MIDI applications, the tag can be pitch and the
start/stop flag can be the note’s velocity.

makenote : Supply delayed note-off messages to match note-on messages. The
inlets are a tag and start/stop flag (“pitch” and “velocity” in MIDI usage) and
the desired duration in milliseconds. The tag/flag pair are repeated to the two
outlets as they are received; then, after the delay, the tag is repeated with flag
zero to stop the note after the desired duration.

The “note” messages contain fields for pitch, amplitude, duration, sample
number, start location in the sample, rise time, and decay time. For instance,
the message,

60 90 1000 2 500 10 20

(if received by the r note object) means to play a note at pitch 60 (MIDI
units), amplitude 90 dB, one second long, from the wavetable named “sample2”,
starting at a point 500 msec into the wavetable, with rise and decay times of 10
and 20 msec.

After unpacking the message into its seven components, the patch creates
a tag for the note. To do this, first the t b f object outputs a bang after the
last of the seven parameters appear separately. The combination of the +, f,
and mod objects acts as a counter that repeats after a million steps, essentially
generating a unique number corresponding to the note.

The next step is to use the poly object to determine which voice to play
which note. The poly object expects separate messages to start and stop tasks
(i.e., notes). So the tag and duration are first fed to the makenote object, whose
outputs include a flag (“velocity”) at right and the tag again at left. For each

116 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

sampvoice

r note

unpack 0 0 0 0 0 0 0

t b f

f + 1

mod 1e+06

makenote 64

poly 8 1

stripnote

pack 0 0 0 0 0 0 0 0

route 1 2 3 4 5 6 7 8

(OUT)

counter to

supply later

allocate voice

note-off

get rid of
note-off

route to a voice depending
on voice number from poly

generate tags

abstraction

for each

one "sampvoice"

voice, each

adding its

own output

to a sum (left

inlets and

outlets)
sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

sampvoice

|

Figure 4.20: A polyphonic sampler demonstrating voice allocation and use of
tags.

4.8. EXAMPLES 117

*~

outlet~

makefilename sample%d

set $1

tabread4~ sample1

dbtorms

unpack

sqrt

sqrt

line~

*~

*~

*~

bang

delay 5
unpack 0 0 0 0 0 0 0

f

f f f f f

mtof

/ 261.62

* 4.41e+08

+

delay

pack 0 0 0 0 0

t b b b

+ 1

* 44.1

0 5 1 5 0, $1 $2$3, $4 1e+07 $5 0 $1

inlet

inlet~

+~

delay for
note end

mute

vline~ vline~

amplitude
envelope

wavetable
index

starting

store parameters first in

read
point

ending
read
point

attack decay
mute and

unmute

select
wavetable

add to
summing

bus

mute to
delay for

take effect

floats below until muted

Figure 4.21: The sampvoice abstraction used in the polyphonic sampler of
Figure 4.20.

118 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

tag makenote receives, two pairs of numbers are output, one to start the note,
and another, after a delay equal to the note duration, to stop it.

Having treated poly to this separated input, we now have to strip the mes-
sages corresponding to the ends of notes, since we really only need combined
“note” messages with duration fields. The stripnote object does this job. Fi-
nally, the voice number we have calculated is prepended to the seven parameters
we started with (the pack object), so that the output of the pack object looks
like this:

4 60 90 1000 2 500 10 20

where the “4” is the voice number output by the poly object. The voice number
is used to route the message to the desired voice using the route object. The
appropriate sampvoice object then gets the original list starting with “60”.

Inside the sampvoice object (Figure 4.21), the message is used to control the
tabread4~ and surrounding line~ and vline~ objects. The control takes place
with a delay of 5 msec as in the earlier sampler example. Here, however, we
must store the seven parameters of the note (earlier there were no parameters).
This is done using the six f objects, plus the right inlet of the rightmost delay
object. These values are used after the delay of 5 msec. This is done in tandem
with the muting mechanism described on page 97, using the line~ object.

When the 5 msec have elapsed, the vline~ object in charge of generating the
wavetable index gets its marching orders (and, simultaneously, the wavetable
number is set for the tabread4~ object and the amplitude envelope generator
starts its attack.) The wavetable index must be set discontinuously to the start-
ing index, then ramped to an ending index over an appropriate time duration
to obtain the needed transposition. The starting index in samples is just 44.1
times the starting location in milliseconds, plus one to allow for four-point table
interpolation. This becomes the third number in a packed list generated by the
pack object at the center of the voice patch.

We arbitrarily decide that the ramp will last ten thousand seconds (this is
the “1e+07” appearing in the message box sent to the wavetable index genera-
tor), hoping that this is at least as long as any note we will play. The ending
index is the starting index plus the number of samples to ramp through. At
a transposition factor of one, we should move by 441,000,000 samples during
those 10,000,000 milliseconds, or proportionally more or less depending on the
transposition factor. This transposition factor is computed by the mtof ob-
ject, dividing by 261.62 (the frequency corresponding to MIDI note 60) so that
inputting 60 results in a transposition factor of one.

These and other parameters are combined in one message via the pack object
so that the following message boxes can generate the needed control messages.
The only novelty is the makefilename object, which converts numbers such as
“2” to symbols such as “sample2” so that the tabread4~ object’s wavetable
may be set.

At the bottom of the voice patch we see how a summing bus is implemented
inside a subpatch; an inlet~ object picks up the sum of all the preceding voices,

4.8. EXAMPLES 119

the output of the current voice is added in, and the result is sent on to the next
voice via the outlet~ object.

Exercises

1. An envelope generator rises from zero to a peak value during its attack
segment. How many decibels less than the peak has the output reached
halfway into the attack, assuming linear output? Fourth-power output?

2. What input to a fourth-power transfer function gives an output of -12 dB,
if an input of 1 outputs 0 dB?

3. A three-note chord, lasting 1.5 seconds, is played starting once every sec-
ond. How many voices would be needed to synthesize this without cutting
off any notes?

120 CHAPTER 4. AUTOMATION AND VOICE MANAGEMENT

Chapter 5

Modulation

Emerging now from a two-chapter detour into aspects of control and organiza-
tion in electronic music, we return to describing audio synthesis and processing
techniques. So far we have seen additive and wavetable-based methods. In
this chapter we will introduce three so-called modulation techniques: amplitude
modulation, frequency modulation, and waveshaping. The term “modulation”
refers loosely to any technique that systematically alters the shape of a wave-
form by bending its graph vertically or horizontally. Modulation is widely used
for building synthetic sounds with various families of spectra, for which we must
develop some terminology before getting into the techniques.

5.1 Taxonomy of spectra

Figure 5.1 introduces a way of visualizing the spectrum of an audio signal. The
spectrum describes, roughly speaking, how the signal’s power is distributed into
frequencies. (Much more precise definitions can be given than those that we’ll
develop here, for those readers who .)

Part (a) of the figure shows the spectrum of a harmonic signal, which is
a periodic signal whose fundamental frequency is in the range of perceptible
pitches, roughly between 50 and 4000 Hz. The Fourier series (page 14) gives a
description of a periodic signal as a sum of sinusoids. The frequencies of the
sinusoids are in the ratio 0 : 1 : 2 : · · ·. (The constant term in the Fourier series
may be thought of as a sinusoid,

a0 = a0 cos(0 · ωn),

whose frequency is zero.)
In a harmonic signal, the power shown in the spectrum is concentrated on a

discrete subset of the frequency axis (a discrete set consists of isolated points,
only finitely many in any bounded interval). We call this a discrete spectrum.
Furthermore, the frequencies where the signal’s power lies are in the 0 : 1 : 2 · · ·
ratio that arises from a periodic signal. (It’s not necessary for all of the harmonic

121

122 CHAPTER 5. MODULATION

frequency

amplitude spectral
envelope

(a) harmonic

(b) inharmonic

(c.) continuous

Figure 5.1: A taxonomy of timbres. The spectral envelope describes the shape
of the spectrum. The sound may be discretely or continuously distributed in
frequency; if discretely, it may be harmonic or inharmonic.

5.1. TAXONOMY OF SPECTRA 123

frequencies to be present; some harmonics may have zero amplitude.) For a
harmonic signal, the graph of the spectrum shows the amplitudes of the partials
of the signals. Knowing the amplitudes and phases of all the partials fully
determines the original signal.

Part (b) of the figure shows a spectrum which is also discrete, so that the
signal can again be considered as a sum of a series of partials. In this case,
however, there is no fundamental frequency, i.e., no audible common submultiple
of all the partials. This is called an inharmonic signal. (The terms harmonic
and inharmonic may be used to describe both the signals and their spectra.)

When dealing with discrete spectra, we report a partial’s amplitude in a
slightly non-intuitive way. Each component sinusoid,

a cos(ωn + φ),

only counts as having amplitude a/2 as long as the angular frequency ω is
nonzero. On the other hand, for a DC component, where ω = φ = 0, the
amplitude is given as a—without dividing by two. This convention will simplify
the mathematics later in this chapter. A deeper reason for this convention will
become apparent in Chapter 7.

Part (c) of the figure shows a third possibility, which is that the spectrum
might not be concentrated into a discrete set of frequencies, but instead might
be spread out among all possible frequencies. This can be called a continuous,
or noisy spectrum. Spectra don’t necessarily fall into either the discrete or
continuous categories; real sounds, in particular, are usually complex mixtures
of the two.

Each of the three parts of the figure shows a continuous curve called the
spectral envelope. In general, sounds don’t have a single, well-defined spectral
envelope; there may be many ways to draw a smooth-looking curve through a
spectrum. On the other hand, a spectral envelope may be specified intentionally;
in that case, it is usually clear how to make a spectrum conform to the specified
spectral envelope. For a discrete spectrum, for example, we could simply read
off, from the spectral envelope, the desired amplitude of each partial and make
it so.

A sound’s pitch can sometimes be inferred from its spectrum. For discrete
spectra, the pitch is primarily encoded in the frequencies of the partials. Har-
monic signals have a pitch determined by their fundamental frequency; for inhar-
monic ones, the pitch may be clear, ambiguous, or absent altogether, according
to complex and incompletely understood rules. A noisy spectrum may also have
a perceptible pitch if the spectral envelope contains one or more narrow peaks.

A sound’s loudness and timbre depend more on its spectral envelope than
on the frequencies in the spectrum, although the distinction between continuous
and discrete spectra may also be heard as a difference in timbre. The timbre,
as well as the pitch, may evolve over the life of a sound.

We have been speaking of spectra here as static entities, not considering
whether they change in time or not. If a signal’s pitch and timbre are changing
over time, we would like to think of the pitch and spectrum as descriptions of
the signal’s momentary behavior, which can also change over time.

124 CHAPTER 5. MODULATION

This way of viewing sounds is greatly oversimplied. The true behavior of
audible pitch and timbre has many aspects which can’t be explained in terms of
this model. For instance, the timbral quality called “roughness” is sometimes
thought of as being encoded in rapid changes in the spectral envelope over time.
The simplified description developed here is useful nonetheless in discussions
about how to construct discrete or continuous spectra for a wide variety of
musical purposes, as we will begin to show in the rest of this chapter.

5.2 Multiplying audio signals

We have been routinely adding audio signals together, and multiplying them by
slowly-varying signals (used, for example, as amplitude envelopes) since Chapter
1. For a full understanding of the algebra of audio signals we must also consider
the situation where two audio signals, neither of which may be assumed to
change slowly, are multiplied. The key to understanding what happens is the
Cosine Product Formula:

cos(a) cos(b) =
1

2

[

cos(a + b) + cos(a − b)
]

To see why this formula holds, we can use the formula for the cosine of a sum
of two angles:

cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

to evaluate the right hand side of the cosine product formula; it immediately
collapses to the left hand side.

We can use this formula to see what happens when we multiply two sinusoids
(page 3):

cos(αn + φ) cos(βn + ξ) =

=
1

2

[

cos ((α + β)n + (φ + ξ)) + cos ((α − β)n + (φ − ξ))
]

In words, multiply two sinusoids and you get a result with two partials, one
at the sum of the two original frequencies, and one at their difference. (If the
difference α − β happens to be negative, simply switch α and β in the formula
and the difference will then be positive.) These two new components are called
sidebands.

This gives us a technique for shifting the component frequencies of a sound,
called ring modulation, which is shown in its simplest form in Figure 5.2. An os-
cillator provides a carrier signal, which is simply multiplied by the input. In this
context the input is called the modulating signal. The term “ring modulation”
is often used more generally to mean multiplying any two signals together, but
here we’ll just consider using a sinusoidal carrier signal. (The technique of ring
modulation dates from the analog era [Str95]; digital multipliers now replace
both the VCA (Section 1.5) and the ring modulator.)

Figure 5.3 shows a variety of results that may be obtained by multiplying
a (modulating) sinusoid of angular frequency α and peak amplitude 2a, by a

5.2. MULTIPLYING AUDIO SIGNALS 125

OUT
-1

1
IN

Figure 5.2: Block diagram for ring modulating an input signal with a sinusoid.

(carrier) sinusoid of angular frequency β and peak amplitude 1:

[2a cos(αn)] · [cos(βn)]

(For simplicity the phase term is omitted.) Each part of the figure shows both
the modulation signal and tbe result in the same spectrum. The modulating
signal appears as a single frequency, α, at amplitude a. The product in general
has two component frequencies, each at an amplitude of a/2.

Parts (a) and (b) of the figure show “general” cases where α and β are
nonzero and different from each other. The component frequencies of the output
are α + β and α − β. In part (b), since α − β < 0, we get a negative frequency
component. Since cosine is an even function, we have

cos((α − β)n) = cos((β − α)n)

so the negative component is exactly equivalent to one at the positive frequency
β − α, at the same amplitude. We still refer to the two resulting peaks as
sidebands, even when they both happen to lie to the right of the original peak.

In the special case where α = β, the second (difference) sideband has zero
frequency. In this case phase will be significant so we rewrite the product with
explicit phases, replacing β by α, to get:

2a cos(αn + φ) cos(αn + ξ) =

= a cos (2αn + (φ + ξ)) + a cos (φ − ξ).

The second term has zero frequency; its amplitude depends on the relative phase
of the two sinusoids and ranges from +a to −a as the phase difference φ − ξ
varies from 0 to π radians. This situation is shown in part (c) of Figure 5.3.

Finally, part (d) shows a carrier signal whose frequency is zero. Its value is
the constant a (not 2a; zero frequency is a special case). Here we get only one
sideband, of amplitude a/2 as usual.

We can use the distributive rule for multiplication to find out what happens
when we multiply signals together which consist of more than one partial each.

126 CHAPTER 5. MODULATION

frequency

amplitude

a

a/2a/2

a

a/2

(a)

a

a/2a/2

−

−

+

(b)

a

a/2

(c)

(d)

z

=

= 0

IN OUTOUT

Figure 5.3: Sidebands arising from multiplying two sinusoids of frequency α
and β: (a) with α > β > 0; (b) with β > α so that the lower sideband is
reflected about the f = 0 axis; (c) with α = β, for which the amplitude of the
zero-frequency sideband depends on the phases of the two sinusoids; (d) with
α = 0.

5.2. MULTIPLYING AUDIO SIGNALS 127

frequency

amplitude

(a)

(b)

(c)

Figure 5.4: Result of ring modulation of a complex signal by a pure sinusoid:
(a) the original signal’s spectrum and spectral envelope; (b) modulated by a
relatively low modulating frequency (1/3 of the fundamental); (c) modulated
by a higher frequency, 10/3 of the fundamental.

For example, in the situation above we can replace the signal of frequency α
with a sum of several sinusoids, such as:

a1 cos(α1n) + · · · + ak cos(αkn).

Multiplying by the signal of frequency β gives partials at frequencies equal to:

α1 + β, α1 − β, . . . , αk + β, αk − β

As before if any frequency is negative we take its absolute value.
Figure 5.4 shows the result of multiplying a complex periodic signal (with

several components tuned in the ratio 0:1:2:· · ·) by a sinusoid. Both the spectral
envelope and the component frequencies of the result transform by relatively
simple rules.

The resulting spectrum is essentially the original spectrum combined with
its reflection about the vertical axis. This combined spectrum is then shifted to

128 CHAPTER 5. MODULATION

the right by the modulating frequency. Finally, if any components of the shifted
spectrum are still left of the vertical axis, they are reflected about it to make
positive frequencies again.

In part (b) of the figure, the modulating frequency (the frequency of the
sinusoid) is below the fundamental frequency of the complex signal. In this case
the shifting is by a relatively small distance, so that re-folding the spectrum
at the end almost places the two halves on top of each other. The result is a
spectral envelope roughly the same as the original (although half as high) and
a spectrum twice as dense.

A special case, not shown, is modulation by a frequency exactly half the
fundamental. In this case, pairs of partials will fall on top of each other, and
will have the ratios 1/2 : 3/2 : 5/2 :· · · - an odd-partial-only signal an octave
below the original. This is a very simple and effective octave divider for a
harmonic signal, asuming you know or can find its fundamental frequency. If
you want even partials as well as odd ones (for the octave-down signal), simply
mix the original signal with the modulated one.

Part (c) of the figure shows the effect of using a modulating frequency much
higher than the fundamental frequency of the complex signal. Here the unfolding
effect is much more clearly visible (only one partial, the leftmost one, had to be
reflected to make its frequency positive). The spectral envelope is now widely
displaced from the original; this displacement is often a more strongly audible
effect than the relocation of partials.

As a special case, the modulating frequency may be a multiple of the funda-
mental of the complex periodic signal; then the partials all land back on other
partials of the same fundamental, and the only effect is the shift in spectral
envelope.

5.3 Waveshaping

Another approach to modulating a signal, called waveshaping, is simply to pass
it through a suitably chosen nonlinear function. A block diagram for doing this
is shown in Figure 5.5. The function f() (called the transfer function) distorts
the incoming waveform into a different shape. The new shape depends on the
shape of the incoming wave, on the transfer function, and also—crucially—on
the amplitude of the incoming signal. Since the amplitude of the input waveform
affects the shape of the output waveform (and hence the timbre), this gives us
an easy way to make a continuously varying family of timbres, simply by varying
the input level of the transformation. For this reason, it is customary to include
a leading amplitude control as part of the waveshaping operation, as shown in
the block diagram.

The amplitude of the incoming waveform is called the waveshaping index.
In many situations a small index leads to relatively little distortion (so that
the output closely resembles the input) and a larger one gives a more distorted,
hence richer, timbre.

Figure 5.6 shows a familiar example of waveshaping, in which f() amounts to

5.3. WAVESHAPING 129

OUT

f()

IN

Figure 5.5: Block diagram for waveshaping an input signal using a nonlinear
function f(). An amplitude adjustment step precedes the function lookup, to
take advantage of the different effect of the wavetable lookup at different am-
plitudes.

a clipping function. This example shows clearly how the input amplitude—the
index—can affect the output waveform. The clipping function passes its input
to the output unchanged as long as it stays in the interval between -0.3 and +0.3.
So when the input does not exceed 0.3 in absolute value, the output is the same
as the input. But when the input grows past the 0.3 limit, it is limited to 0.3;
and as the amplitude of the signal increases the effect of this clipping action
is progressively more severe. In the figure, the input is a decaying sinusoid.
The output evolves from a nearly square waveform at the beginning to a pure
sinusoid at the end. This effect will be well known to anyone who has played
an instrument through an overdriven amplifier. The louder the input, the more
distorted will be the output. For this reason, waveshaping is also sometimes
called distortion.

Figure 5.7 shows a much simpler and easiest to analyse situation, in which
the transfer function simply squares the input:

f(x) = x2

For a sinusoidal input,
x[n] = a cos(ωn + φ)

we get

f(x[n]) =
a2

2
(1 + cos(2ωn + 2φ))

If the amplitude a equals one, this just amounts to ring modulating the sinusoid
by a sinusoid of the same frequency, whose result we described in the previous

130 CHAPTER 5. MODULATION

(a)

(b)

(c)

0.3

-0.3

1

-1

0.3

-0.3

Figure 5.6: Clipping as an example of waveshaping: (a) the input, a sinusoid of
varying amplitude; (b) the waveshaping function, which clips its input to the
interval between -0.3 and +0.3; (c) the result.

5.3. WAVESHAPING 131

(a)

(b)

(c)

1

-1

1

1

-1

1

Figure 5.7: Waveshaping using a quadratic transfer function f(x) = x2: (a) the
input; (b) the transfer function; (c) the result, sounding at twice the original
frequency.

section: the output is a DC (zero-frequency) signal plus a signal at twice the
original frequency. However, in this waveshaping example, unlike the situation
in ring modulation, the amplitude of the output grows as the square of the
input.

Keeping the same transfer function, we now consider the effect of sending in
a combination of two sinusoids with amplitudes a and b, and angular frequencies
α and β. For simplicity, we’ll omit the initial phase terms. We set:

x[n] = a cos(αn) + b cos(βn)

and plugging this into f gives

f(x[n]) =
a2

2
(1 + cos(2αn))

+
b2

2
(1 + cos(2βn))

+ab [cos((α + β)n) + cos((α − β)n)]

132 CHAPTER 5. MODULATION

The first two terms are just what we would get by sending the two sinusoids
through separately. The third term is twice the product of the two input terms,
which comes from the middle, cross term in the expansion,

f(x + y) = x2 + 2xy + y2

This effect, called intermodulation, becomes more and more dominant as the
number of terms in the input increases; if there are k sinusoids in the input
there are only k “straight” terms in the product, but there are (k2 − k)/2
intermodulation terms.

In contrast with ring modulation, which is a linear function of its input
signal, waveshaping is nonlinear. While we were able to analyze linear processes
by considering their action separately on all the components of the input, in this
nonlinear case we also have to consider the interactions between components.
The results are far more complex—sometimes sonically much richer, but, on the
other hand, harder to understand or predict.

In general, we can show that a periodic input, no matter how complex, will
repeat at the same period: if the period is τ so that

x[n + τ] = x[n]

then we immediately get

f(x[n + τ]) = f(x[n])

(In some special cases the output can repeat at a submultiple of τ , so that we
get a harmonic of the input as a result; this happens for example in Figure 5.4.)

Combinations of periodic tones at consonant intervals can give rise to dis-
tortion products at subharmonics. For instance, if two periodic signals x and y
are a musical fourth apart (periods in the ratio 4:3), then the sum of the two
repeats at the lower rate given by the common subharmonic. In equations we
would have:

x[t + τ/3] = x[t]

y[t + τ/4] = y[t]

which implies

x[t + τ] + y[t + τ] = x[t] + y[t]

and so the distorted sum f(x + y) would repeat after a period of τ :

f(x + y)[n + τ] = f(x + y)[n].

This has been experienced by every electric guitarist who has set the amplifier
to “overdrive” and played the open B and high E strings together: the distortion
product sometimes sounds at the pitch of the low E string, two octaves below
the high one.

5.3. WAVESHAPING 133

To get a somewhat more explicit analysis of the effect of waveshaping on
an incoming signal, it is sometimes useful to write the function f as a finite or
infinite power series:

f(x) = f0 + f1x + f2x
2 + f3x

3 + · · ·

If the input signal x[n] is a sinusoid, a cos(ωn), we can consider the action of
the above terms separately:

f(x[n]) = f0 + af1 cos(ωn) + a2f2cos
2(ωn) + a3f3cos

3(ωn) + · · ·

Since the higher order terms are multiplied by higher powers of the amplitude
a, a lower value of a will weight the earlier terms more heavily, and a higher
value will make the higher-order terms more prominent.

The individual terms’ spectra can be found by applying the cosine product
formula repeatedly:

1 = cos(0)

x[n] = cos(ωn)

x2[n] =
1

2
+

1

2
cos(2ωn)

x3[n] =
1

4
cos(−ωn) +

2

4
cos(ωn) +

1

4
cos(3ωn)

x4[n] =
1

8
cos(−2ωn) +

3

8
cos(0) +

3

8
cos(2ωn) +

1

8
cos(4ωn)

x5[n] =
1

16
cos(−3ωn)+

4

16
cos(−ωn)+

6

16
cos(ωn)+

4

16
cos(3ωn)+

1

16
cos(5ωn)

and so on. The relative weights of the components will be recognized as Pas-
cal’s triangle. Each kth row can be approximated by a Gaussian curve whose
standard deviation (a measure of width) is proportional to the square root of k.

The negative-frequency terms (which have been shown separately here for
clarity) are to be combined with the positive ones; the spectral envelope is folded
into itself in the same way as in the ring modulation example of Figure 5.4.

As long as the coefficients fk are all positive numbers or zero, then so are
all the amplitudes of the sinusoids in the expansions above. In this case all the
phases stay coherent as a varies and so we get a widening of the spectrum (and
possibly a drastically increasing amplitude) with increasing values of a. On the
other hand, if some of the fk are positve and others negative, the different ex-
pansions will interfere destructively; this will give a more complicated-sounding
spectral evolution.

Note also that the successive expansions all contain only even or only odd
partials. If the transfer function (in series form) happens to contain only even
powers:

f(x) = f0 + f2x
2 + f4x

4 + · · ·
then the result, having only even partials, will sound an octave higher than the
incoming sinusoid. If only odd powers show up in the expansion of f(x), then

134 CHAPTER 5. MODULATION

the output will contain only odd partials. Even if f can’t be expressed exactly
as a power series (for example, the clipping function of Figure 5.3), it is still
true that if f is an even function, i.e., if

f(−x) = f(x)

you will get only even harmonics and if f is an odd function,

f(−x) = −f(x)

you will get odd harmonics.

Many mathematical tricks have been proposed to use waveshaping to gen-
erate specified spectra. It turns out that you can generate pure sinusoids at
any harmonic of the fundamental by using a Chebyshef polynomial as a trans-
fer function [Leb79] [DJ85], and from there you can go on to build any desired
static spectrum (example 5.5 demonstrates this.) Generating families of spec-
tra by waveshaping a sinusoid of variable amplitude turns out to be trickier,
although several interesting special cases have been found, some of which are
developed in detail in Chapter 6.

5.4 Frequency and phase modulation

If a sinusoid is given a frequency which varies slowly in time we hear it as having
a varying pitch. But if the pitch changes so quickly that our ears can’t track the
change—for instance, if the change itself occurs at or above the fundamental
frequency of the sinusoid—we hear a timbral change. The timbres so generated
are rich and widely varying. The discovery by John Chowning of this possibility
[Cho73] revolutionized the field of computer music. Here we develop frequency
modulation, usually called FM, as a special case of waveshaping [Leb79] [DJ85,
pp.155-158]; the analysis given here is somewhat different [Puc01].

The FM technique, in its simplest form, is shown in Figure 5.8 (part a).
A frequency-modulated sinusoid is one whose frequency varies sinusoidally, at
some angular frequency ωm, about a central frequency ωc, so that the instan-
taneous frequencies vary between (1 − r)ωc and (1 + r)ωc, with parameters ωm

controlling the frequency of variation, and r controlling the depth of variation.
The parameters ωc, ωm, and r are called the carrier frequency, the modulation
frequency, and the index of modulation, respectively.

It is customary to use a simpler, essentially equivalent formulation in which
the phase, instead of the frequency, of the carrier sinusoid is modulated sinu-
soidally. (This gives an equivalent result since the instantaneous frequency is
the rate of change of phase, and since the rate of change of a sinusoid is just
another sinusoid.) The phase modulation formulation is shown in part (b) of
the figure.

We can analyze the result of phase modulation as follows, assuming that
the modulating oscillator and the wavetable are both sinusoidal, and that the

5.4. FREQUENCY AND PHASE MODULATION 135

N

0

OUT

frequency

-1

1

modulation
frequency

frequency
carrier

index of
modulation

-1

1

(a)

carrier

OUT

-1

1

modulation
frequency

(b)

1

index of
modulation

Figure 5.8: Block diagram for frequency modulation (FM) synthesis: (a) the
classic form; (b) realized as phase modulation.

carrier and modulation frequencies don’t themselves vary in time. The resulting
signal can then be written as

x[n] = cos(a cos(ωmn) + ωcn)

The parameter a, which takes the place of the earlier parameter r, is also called
the index of mosulation; it too controls the extent of frequency variation relative
to the carrier frequency ωc. If r = 0, there is no frequency variation and
the expression reduces to the unmodified, carrier sinusoid; as r increases the
waveform becomes more complex.

To analyse the resulting spectrum we can rewrite the signal as,

x[n] = cos(ωcn) ∗ cos(a cos(ωmn))

− sin(ωcn) ∗ sin(a cos(ωmn))

136 CHAPTER 5. MODULATION

We can consider the result as a sum of two waveshaping generators, each oper-
ating on a sinusoid of frequency ωm and with a waveshaping index a, and each
ring modulated with a sinusoid of frequency ωc. The waveshaping function f is
given by f(x) = cos(x) for the first term and by f(x) = sin(x) for the second.

Returning to Figure 5.4, we can predict what the spectrum will look like.
The two harmonic spectra, of the waveshaping outputs

cos(r cos(ωmn))

and
sin(r cos(ωmn))

have, respectively, harmonics tuned to

0, 2ωm, 4ωm, . . .

and
ωm, 3ωm, 5ωm, . . .

and each is multiplied by a sinusoid at the carrier frequency. So there will be
a spectrum centered at the carrier frequency ωc, with sidebands at both even
and odd multiples of the modulation frequency ωm, contributed respectively by
the sine and cosine waveshaping terms above. The index of modulation r, as
it changes, controls the relative strength of the various partials. The partials
themselves are situated at the frequencies

ωc + mωm

where
m = . . . − 2,−1, 0, 1, 2, . . .

As with any situation where two periodic signals are multiplied, if there is some
common supermultiple of the two periods, the resulting product will repeat at
that longer period. So if the two periods are kτ and mτ , where k and m are
relatively prime, they both repeat after a time interval of kmτ . In other words,
if the two have frequencies which are both multiples of some common frequency,
so that ωm = kω and ωc = mω, again with k and m relatively prime, the result
will repeat at a frequency of the common submultiple ω. On the other hand, of
no common submultiple ω can be found, or if the only submultiples are lower
than any discernable pitch, then the result will be inharmonic.

Much more about FM can be found in textbooks [Moo90, p. 316] [DJ85,
pp.115-139] [Bou00] and the research literature. Some of the possibilities are
shown in the following examples.

5.5 Examples

Ring modulation and spectra

Example E01.spectrum.pd, serves to introduce a spectrum measurement tool
we’ll be using; here we’ll skip to the second example, E02.ring.modulation.pd,

5.5. EXAMPLES 137

which shows the effect of ring modulating a harmonic spectrum (which was
worked out theoretically in Section 5.2 and shown in Figure 5.4). In the example
we consider a signal whose harmonics (from 0 through 5) all have unit amplitude.
The harmonics may be turned on and off separately using toggle switches. When
they are all on, the spectral envelope peaks at DC (because the constant signal
is twice as strong as the other sinusoids), has a flat region from harmonics 1
through 5, and then descends to zero.

In the signal generation portion of the patch (part (a) of the figure), we sum
the six partials and multiply the sum by the single, modulating oscillator. (The
six signals are summed implicitly by connecting them all to the same inlet of
the *~ object.) The value of “fundamental” at the top is computed to line up
well with the spectral analysis, whose result is shown in part (b) of the figure.

The spectral analysis (which uses techniques which won’t be described until
Chapter 9) shows the location of the sinusoids (assuming a discrete spectrum)
on the horizontal axis and their magnitudes on the vertical one. So the presence
of a peak at DC of magnitude one in the spectrum of the input signal predicts,
ala Figure 5.3, that there should be a peak in the output spectrum, at the
modulating frequency, of height 1/2. Similarly, the two other sinusoids in the
input signal, which have height 1/2 in the spectrum, give rise to two peaks each,
of height 1/4, in the output. One of these four has been reflected about the left
edge of the figure (the f = 0 axis).

Octave divider and formant adder

As suggested in Section 5.2, when considering the result of modulating a complex
harmonic (i.e., periodic) signal by a sinusoid, an interesting special case is to
set the modulating oscillator to 1/2 the fundamental frequency, which drops
the resulting sound an octave with only a relatively small deformation of the
spectral envelope. Another is to modulate by a sinusoid at several times the
fundamental frequency, which in effect displaces the spectral envelope without
changing the fundamental frequency of the result. This is demonstrated in
Example E03.octave.divider.pd(Figure 5.10). The signal we process here is a
recorded, spoken voice.

The subpatches pd looper and pd delay hide details. The first is a looping
sampler as introduced in Chapter 2. The second is a delay of 1024 samples,
which uses objects that are introduced later in Chapter 7. We will introduce
one object class here:

fiddle~ : pitch tracker. The inlet takes a signal to analyze, and messages
to change settings. Depending on its creation arguments fiddle~may have a
variable number of outlets offering various information about the input signal.
As shown here, with only one creation argument to specify window size, the
third outlet attempts to report the pitch of the input, and the amplitude of
that portion of the input which repeats (at least approximately) at the reported
pitch. These are output as a list of two numbers. The pitch, which is in MIDI
units, is reported as zero if none could be identified.

138 CHAPTER 5. MODULATION

r fundamental

osc~

*~

osc~

*~

osc~

*~

* 2

osc~

*~

osc~

*~

osc~

*~

* 0 * 1 * 3 * 4 * 5

<−− On/Off

*~

partials

osc~

200 modulation

frequency

1 2 3 4 5 6 7 0
−− partial number −−

SPECTRUM

0

1

0.5

(out)

.

(a)

(b)

Figure 5.9: Ring modulation of a complex tone by a sinusoid: (a) its realization;
(b) a measured spectrum

5.5. EXAMPLES 139

fiddle~ 2048

unpack

osc~

moses 1

*~

mtof

*

0.5

0.5

15

pd pd

*~ 2

loadbang

pd looper

pd delay

on/off for original
<−−and processed sounds

<−− multiplier

ring modulation

extra gain

(out)

+~

Figure 5.10: Lowering the pitch of a sound by an octave by determining its
pitch and modulating at half the fundamental.

140 CHAPTER 5. MODULATION

+~

/ 100

50

clip~ −1 1

225

osc~ 200

*~

loadbang

50

loadbang

<−− frequency of second tone

osc~ 300

225

<−− before clipping

amplitude of sum

(out)

Figure 5.11: Nonlinear distortion of a sum of two sinusoids to create a difference
tone.

In this patch the third outlet is unpacked into its pitch and amplitude com-
ponents, and the pitch component is filtered by the moses object so that only
successful pitch estimates (nonzero ones) are considered. These are converted
to units of frequency by the mtof object. Finally, the frequency estimates are
either reduced by 1/2 or else multiplied by 15, depending on the selected mul-
tiplier, to provide the modulation frequency. In the first case we get an octave
divider, and in the second, additional high harmonics that deform the vowels.

Waveshaping and difference tones

Example E04.difference.tone.pd(Figure 5.11) introduces waveshaping, demon-
strating the nonlinearity of the process. Two sinusoids (300 and 225 Hz, or a
ratio of 4 to 3) are summed and then clipped, using a new object class:

clip~ : signal clipper. When the signal lies between the limits specified by

the arguments to the clip~ object, it is passed through unchanged; but when
it falls below the lower limit or rises above the upper limit, it is replaced by the
lower or upper limit, respectively. The effect of clipping a sinusoidal signal was
shown graphically in Figure 5.6.

As long as the amplitude of the sum of sinusoids is less than 50 percent, the
sum can’t exceed one in absolute value and the clip~ object passes the pair of
sinusoids through unchanged to the output. As soon as the amplitude exceeds
50 percent, however, the nonlinearity of the clip~ object brings forth distor-
tion products (at frequencies 300m + 225n for integers m and n), all of which
happening to be multiples of 75, which is thus the fundamental of the resulting

5.5. EXAMPLES 141

/ 100

0

*~

osc~ 220

pack 0 50

line~

*~ 128

tabread4~ E05-tab

+~ 129

hip~ 5

<- index

(OUT)
|

E05-tab

Figure 5.12: Using Chebychev polynomials as waveshaping transfer functions.

tone. Seen another way, the shortest common period of the two sinudusoids is
1/75 second (which is four periods of the 300 Hz, tone and three periods of the
225 Hz, tone), so the result repeats repeats 75 times per second.

The frequency of the 225 Hz. tone in the patch may be varied. If it is
moved slightly away from 225, a beating sound results. Other values find other
common subharmonics, and still others give rise to rich, inharmonic tones.

Waveshaping using Chebychev polynomials

Example E05.chebychev.pd(Figure 5.12) demonstrates how you can use wave-
shaping to generate pure harmonics. We’ll limit ourselves to a specific example
here in which we would like to generate the pure fifth harmonic,

cos(5ωn)

by waveshaping a sinusoid
x[n] = cos(ωn)

We need to find a suitable transfer function f(x). First we recall the formula
for the waveshaping function f(x) = x5 (page 133), which gives first, third and
fifth harmonics:

16x5 = cos(5ωn) + 5 cos(3ωn) + 10 cos(ωn)

Next we add a suitable multiple of x3 to cancel the third harmonic:

16x5 − 20x3 = cos(5ωn) − 5 cos(ωn)

142 CHAPTER 5. MODULATION

and then a multiple of x to cancel the first harmonic:

16x5 − 20x3 + 5x = cos(5ωn)

So for our waveshaping function we choose

f(x) = 16x5 − 20x3 + 5x

This procedure allows us to isolate any desired harmonic; the resulting functions
f are known as Chebychev polynomials [Leb79].

To incorporate this in a waveshaping instrument, we simply build a patch
that works as in Figure 5.5, computing the expression

x[n] = f(a[n] cos(ωn))

where a[n] is a suitable index which may vary as a function of the sample number
n. When a happens to be one in value, out comes the pure fifth harmonic. Other
values of a give varying spectra which, in general, have first and third harmonics
as well as the fifth.

By suitably combining Chebychev polynomials we can fix any desired su-
perposition of components in the output waveform (again, as long as the wave-
shaping index is one). But the real promise of waveshaping—that by simply
changing the index we can manufacture spectra that evolve in a variety of in-
teresting ways—is not addressed, at least directly, in the Chebychev picture.

Waveshaping using an exponential function

We return now to the spectra computed on Page 133, corresponding to wave-
shaping functions of the form f(x) = xk. We note with pleasure that not only
are they all in phase (so that they can be superposed with easily predictable
results) but also that the spectra spread out as k increases. Also, in a series of
the form,

f(x) = f0 + f1x + f2x
2 + · · · ,

a higher index of modulation will lend more relative weight to the higher power
terms in the expansion; as we saw seen earlier, if the index of modulation is a,
the various xk terms are multiplied by f0, af1, a2f2, and so on.

Now suppose we wish to arrange for different terms in the above expansion
to dominate the result in a predictable way as a function of the index a. To
choose the simplest possible example, suppose we wish f0 to be the largest term
for 0 < a < 1, then for it to be overtaken by the more quickly growing af1 term
for 1 < a < 2, which is then overtaken by the a2f2 term for 2 < a < 3 and so
on, so that each nth term takes over at index n. To make this happen we just
require that

f1 = f0, 2f2 = f1, 3f3 = f2, . . .

and so fixing f0 at 1, we get f1 = 1, f2 = 1/2, f3 = 1/6, and in general,

fk =
1

1 · 2 · 3 · ... · k

5.5. EXAMPLES 143

These are just the coefficients of the power series for the function

f(x) = ex

where e ≈ 2.7 is Euler’s constant.

Before plugging in ex as a transfer function it’s wise to plan how we will deal
with signal amplitude, since ex grows quickly as a function of x. If we’re going
to plug in a sinusoid of amplitude a, the maximum output will be ea, occuring
whenever the phase is zero. A simple and natural choice is simply to divide by
ea to reduce the peak to one, giving:

f(a cos(ωn))

ea
= ea(cos(ωn)−1)

This is realized in Example E06.exponential.pd. Resulting spectra for a = 0, 4,
and 16 are shown in Figure 5.13. As the waveshaping index rises, progressively
less energy is present in the fundamental; the energy is increasingly spread over
the partials.

Sinusoidal waveshaping: evenness and oddness

Another interesting class of waveshaping transfer functions is the sinusoids:

f(x) = cos(x + φ)

which include the cosine and sine functions (got by choosing φ = 0 and φ =
−π/2, respectively.) These functions, one being even and the other odd, give
rise to even and odd harmonic spectra:

cos(a cos(ωn)) = J0(a)−2J2(a) cos(2ωn)+2J4(a) cos(4ωn)−2J6(a) cos(6ωn)±· · ·

sin(a cos(ωn)) = 2J1(a) cos(ωn) − 2J3(a) cos(3ωn) + 2J5(a) cos(5ωn) ∓ · · ·

The functions Jk(a) are the Bessel functions of the first kind, which engineers
sometimes use to solve problems about vibrations or heat flow on discs. For
other values of φ, we can expand the expression for f :

f(x) = cos(x) cos(φ) − sin(x) sin(φ)

so the result is a mix between the even and the odd harmonics, with φ con-
trolling the relative amplitudes of the two. This is demonstrated in Patch
E07.evenodd.pd, shown in Figure 5.14.

Phase modulation and FM

Example E08.phase.mod.pd, shown in Figure 5.15, shows how to use Pd to re-
alize true frequency modulation (part a) and phase modulation (part b). These

144 CHAPTER 5. MODULATION

0

1

0

0.25

1 2 3 4 5 6 7 0
−− partial number −−

0

0.25

a=4

a=16

a=0

Figure 5.13: Spectra of waveshaping output using an exponential transfer func-
tion. Indices of modulation of 0, 4, and 16 are shown; note the different vertical
scales.

5.5. EXAMPLES 145

*~

cos~

+~ 0.1

0

0.1

0.25

osc~

symmetry

even

odd

mixed

(frequency)
|

|
(index)

(OUT)
|

Figure 5.14: Using an additive offset to a cosine transfer function to alter the
symmetry between even and odd. With no offset the symmetry is even. For odd
symmetry, a quarter cycle is added to the phase. Smaller offsets give a mixture
of even and odd.

correspond to the block diagrams of Figure 5.8. To accomplish phase modula-
tion, the carrier oscillator is split into its phase and cosine lookup components.
The signal is of the form

x[t] = cos(ωcn + a cos(ωmn))

where ωc is the carrier frequency, ωm is the modulation frequency, and a is the
index of modulation—all in angular units.

We can predict the spectrum by expanding the outer cosine:

x[t] = cos(ωcn) cos(a cos(ωmn)) − sin(ωcn) sin(a cos(ωmn))

Plugging in the expansions from example 5.5 and simplifying yields:

x[t] = J0(a) cos(ωcn)

+J1(a) cos((ωc + ωm)n +
π

2
) + J1(a) cos((ωc − ωm)n +

π

2
)

+J2(a) cos((ωc + 2ωm)n + π) + J2(a) cos((ωc − 2ωm)n + π)

+J3(a) cos((ωc + 3ωm)n +
3π

2
) + J3(a) cos((ωc − 3ωm)n +

3π

2
) + · · ·

So the components are centered about the carrier frequency ωc with sidebands
extending in either direction, each spaced ωm from the next. The amplitudes
are functions of the index of modulation, and don’t depend on the frequencies.
Figure 5.16 shows some two-operator phase modulation spectra, measured using
Example E09.FM.spectrum.pd.

Phase modulation can thus be seen simply as a form of ring modulated
waveshaping. So we can use the strategies described in Section 5.2 to generate

146 CHAPTER 5. MODULATION

modulation

osc~

*~

+~

osc~

frequency
|

modulation
index
|

carrier
frequency

|

osc~

*~

+~

modulation
frequency

|

modulation
index
|

frequency
|

carrier

(OUT)
| |

(OUT)

cos~

phasor~

(a) (b)

Figure 5.15: Pd patches for: (a) frequency modulation; (b) phase modulation.

particular combinations of frequencies. For example, if the carrier frequency is
half the modulation frequency, you get a sound with odd harmonics exactly as
in the octave dividing example (5.5).

Frequency modulation need not be restricted to purely sinusoidal carrier or
modulation oscillators. One well-trodden path is to effect phase modulation on
the phase modulation spectrum itself. There are then two indices of modulation
(call them a and b) and two frequencies of modulation (ωm and ωp) and the
waveform is:

x[n] = cos(ωcn + a cos(ωmn) + b cos(ωpn))

To analyze the result, just rewrite the original FM series above, replacing ωcn
everywhere with ωcn + b cos(ωpn). The third positive sideband becomes for
instance:

J3(a) cos((ωc + 3ωm)n +
3π

2
+ b cos(ωpn))

This is itself just another FM spectrum, with its own sidebands of frequency

ωc + 3ωm + kωp, k = 0,±1,±2, . . .

having amplitude J3(a)Jk(b) and phase (3+k)π/2 [Leb77]. Example E10.complex.FM.pd
(not shown here) illustrates this by graphing spectra from a two-modulator FM
instrument.

Since early times [Sch77] researchers have sought combinations of phases,
frequencies, and modulation indices, for simple and compact phase modulation
instruments, that manage to imitate familiar instrumental sounds. This became
a major industry with the introduction of commercial FM synthesizers.

5.5. EXAMPLES 147

2 4 0

−− partial number −−

0

0.5

6 8 10 12 14

2 4 0
0

0.25

6 8 10 12 14

2 4 0
0

0.25

6 8 10 12 14
a=0.84

a=0.38

a=0.15

Figure 5.16: Spectra from phase modulation at three different indices. The
indices are given as multiples of 2π radians.

148 CHAPTER 5. MODULATION

Exercises

1. A sound has fundamental 440. How could it be ring modulated to give
a tone at 110 Hz with only odd partials? How could you then fill in the
even ones if you wanted to?

2. a sinusoid with frequency 400 and unit peak amplitude is squared. What
are the amplitudes and frequencies of the new signal’s components?)

3. What carrier and modulation frequencies would you give a two-operator
FM instrument to give frequencies of 618, 1000, and 2618 Hz? (This is a
prominent feature of Chowning’s Stria [DJ85].)

4. Two sinusoids with frequency 300 and 400 Hz. and peak amplitude one
(so RMS amplitude ≈0.707) are multiplied. What is the RMS amplitude
of the product?

5. Suppose you wanted to make FM yet more complicated by modulating
the modulating oscillator, as in:

cos(ωcn + a cos(ωmn + b cos(ωpn)))

How would the spectrum differ from that of the simple two-modulator
example (Section 5.5)?

6. A sinusoid at a frequency ω is ring modulated by another sinusoid at
exactly the same frequency. At what phase differences will the DC com-
ponent of the result disappear?

Chapter 6

Designer spectra

As suggested at the beginning of the previous chapter, a powerful way to syn-
thesize musical sounds is by specfying—and then realizing—specific trajectories
of pitch (or more generally, frequencies of partials), along with trajectories of
spectral envelope [Puc01]. The spectral envelope is used to determine the ampli-
tude of the individual partials, as a function of their frequencies, and is thought
of as controlling the sound’s (possibly time-varying) timbre.

A simple example of this would be to imitate a plucked string by constructing
a sound with harmonically spaced partials in which the spectral envelope starts
out rich but then dies away exponentially with higher frequencies decaying faster
than lower ones, so that the timbre mellows over time. Spectral-evolution models
for various acoustic instruments have been proposed [GM77] [RM69] . A more
complicated example is the spoken or sung voice, in which vowels appear as
spectral envelopes, dipthongs and many consonants appear as time variations
in the spectral envelopes, and other consonants appear as spectrally shaped
noise.

Spectral envelopes may be obtained from analysis of recorded sounds (de-
veloped in Chapter 9) or from purely synthetic criteria. To specify a spectral
envelope from scratch for every possible frequency would be tedious, and in most
cases you would want to describe them in terms of their salient features. The
most popular way of doing this is to specify the size and shape of the spectral
envelope’s peaks, which are called formants. Figure 6.1 shows a spectral enve-
lope with two formants. Although the shapes of the two peaks in the spectral
envelope are different, they can both be roughly described by giving the coordi-
nates of each apex (which give the formant’s center frequency and amplitude)
and each formant’s bandwidth. A typical measure of bandwidth would be the
width of the peak at a level 3 decibels below its apex. Note that if the peak is
at (or near) the f = 0 axis, we pretend it falls off to the left at the same rate as
(in reality) it falls off to the right.

Suppose we wish to generate a harmonic sound with a specified collection
of formants. Independently of the fundamental frequency desired, we wish the
spectrum to have peaks with prescribed center frequencies, amplitudes, and

149

150 CHAPTER 6. DESIGNER SPECTRA

frequency

1

1
b

2
b

(f
1

, a)

(f , a)
2 2

tude
ampli-

Figure 6.1: A spectral envelope showing the frequencies, amplitudes, and band-
widths of two formants.

bandwidths. Returning to the phase modulation spectra shown in Figure 5.16,
we see that, at small indices of modulation at least, the result has a single,
well-defined spectral peak. We can imagine adding several of these, all shar-
ing a fundamental (modulating) frequency but with carriers tuned to different
harmonics to select the various desired center frequencies, and with indices of
modulation chosen to give the desired bandwidths. This was first explored by
Chowning [Cho89] who arranged formants generated by phase modulation to
synthesize singing voices. In this chapter we’ll establish a general framework for
building harmonic spectra with desired, possibly time-varying, formants.

6.1 Carrier/modulator model

Earlier we saw how to use ring modulation to modify the spectrum of a peri-
odic signal, placing spectral peaks in specified locations (see Figure 5.4, page
127). To do so we need to be able to generate periodic signals whose spectra
have maxima at DC and fall off monotonically with increasing frequency. If we
can make a signal with a formant at frequency zero—and no other formants
besides that one—we can use ring modulation to displace the formant to any
desired harmonic. If we use waveshaping to generate the initial formant, the
ring modulation product will be of the form

x[n] = cos(ωcn)f(a cos(ωmn))

where ωc (the carrier frequency) is set to the formant center frequency and f(a ·
cos(ωmn)) is a signal with fundamental frequency determined by ωm, produced

6.1. CARRIER/MODULATOR MODEL 151

-1

1

modulation
frequency

frequency
carrier

-1

1

index of
modulation

-1

1

OUT

Figure 6.2: Ring modulated waveshaping for formant generation

using a waveshaping function f and index a. This second term is the signal we
wish to give a formant at DC with a controllable bandwidth. A block diagram
for synthesizing this signal is shown in Figure 6.2.

Much earlier in Section 2.4 we introduced the technique of timbre stretching,
as part of the discussion of wavetable synthesis. This technique, which is capable
of generating complex, variable timbres, can be fit into the same framework. The
enveloped wavetable output for one cycle is:

x(φ) = T (cφ) ∗ W (aφ),

where φ, the phase, satisfies −π ≤ φ ≤ π. Here T is a function stored in a
wavetable, W is a windowing function, and c and a are the wavetable stretching
and a modulation index for the enveloping wavetable. Figure 6.3 shows how to
realize this in block diagram form. Comparing this to Figure 2.7, we see that
the only significant new feature is the addition of an index to the waveshaping
function.

In this setup, as in the previous one, the first term specifies the placement
of energy in the spectrum—in this case, with the parameter c acting to stretch
out the wavetable spectrum. This is the role that was previously carried out by
the choice of ring modulation carrier frequency ωc.

152 CHAPTER 6. DESIGNER SPECTRA

-1

1

OUT

frequency

1

1

0

N

stretch

-1

index

-N -M M

Figure 6.3: Wavetable synthesis generalized as a variable spectrum generator

6.2. PULSE TRAINS 153

Both of these (ring modulated waveshaping and stretched wavetable synthe-
sis) can be considered as particular cases of a more general approach which is
to compute functions of the form,

x[n] = c(ωn)ma(ωn)

where c is a periodic function describing the carrier signal, and ma is a periodic
modulator function which depends on an index a. The modulation functions
we’re interested in will usually take the form of pulse trains, and the index a will
control the width of the pulse; higher values of a will give narrower pulses. In the
wavetable case, the modulation function must reach zero at phase wraparound
points to suppress any discontinuities in the carrier function when the phase
wraps around. The carrier signal will give rise to a single spectral peak (a
formant) in the ring modulated waveshaping case; for wavetables, it may have
a more complicated spectrum.

In the next section we will further develop the two forms of modulating
signal we’ve introduced here, and in the following one we’ll look more closely at
the carrier signal.

6.2 Pulse trains

Pulse trains may be generated either using the waveshaping formulation or the
stretched wavetable one. The waveshaping formulation is easier to analyze and
control, and we’ll consider it first.

6.2.1 Pulse trains via waveshaping

When we use waveshaping the shape of the formant is determined by a modu-
lation term

ma[ωn] = f(a cos(ωmn))

For small values of the index a, the modulation term varies only slightly from
the constant value f(0), so most of the energy is concentrated at DC. As a
increases, the energy spreads out among progressively higher harmonics of the
fundamental ωm. Depending on the function f , this spread may be orderly
or disorderly. An orderly spread may be desirable and then again may not,
depending on whether our goal is a predictable spectrum or a wide range of
different (and perhaps hard-to-predict) spectra.

The waveshaping function f(x) = ex, analyzed on page 142, gives well-
behaved, simple and predictable results. After normalizing suitably, we got the
spectra shown in Figure 5.13. A slight rewriting of the waveshaping modulator
for this choice of f (and taking the renormalization into account) gives:

ma(ωn) = ea·(cos(ωn)−1))

= e−[b sin ω

2]
2

154 CHAPTER 6. DESIGNER SPECTRA

where b2 = 2a so that b is proportional to the bandwidth. This can be rewritten
as

ma(ωn) = g(b sin
ω

2
n)

with
g(x) = e−x2

Except for a missing normalization factor, this is a Gaussian distribution, some-
times called a “bell curve”. The amplitudes of the harmonics are given by Bessel
“I” type functions.

Another fine choice is the (again unnormalized) Cauchy distribution:

h(x) =
1

1 + x2

which gives rise to a spectrum of exponentially falling harmonics:

h(b sin(ωn/2)) = G ·
(

1

2
+ H cos(ωn) + H2 cos(2ωn) + · · ·

)

where G and H are functions of the index b (explicit formulas are given in
[Puc95a]).

In both this and the Gaussian case above, the bandwidth (counted in peaks,
i.e., units of ω) is roughly proportional to the index b, and the amplitude of the
DC term (the peak of the spectrum) is roughly proportional to 1/(1 + b) . For
either waveshaping function (g or h), if b is larger than about 2, the waveshape of
ma(ωn) is approximately a (forward or backward) scan of the transfer function,
so the result looks like pulses whose widths decrease as the specified bandwidth
increases.

6.2.2 Pulse trains via wavetable stretching

In the wavetable formulation, a pulse train can be made by a stretched wavetable:

Ma(φ) = W (aφ),

where −π ≤ φ ≤ π is the phase. The function W should be zero at and beyond
the points −π and π, and rise to a maximum at 0. A possible choice for the
function W is

W (φ) =
1

2
(cos(φ) + 1)

which is graphed in part (a) of Figure 6.4. This is known as the von Hann
window function; it will come up again in Chapter 9.

Realizing this as a repeating waveform, we get a succession of (appropriately
sampled) copies of the function W , whose duty cycle is 1/a (parts b and c of the
figure). If you don’t wish the copies to overlap the index a must be at least 1.
If you want to allow overlap the best strategy is to duplicate the block diagram
(Figure 6.3) out of phase, as described in Section 2.4 and realized in Section 2.6.

6.2. PULSE TRAINS 155

(a)

(b)

(c)

Figure 6.4: Pulse width modulation using the von Hann window function: a.
the function W (φ) = (1+cos(φ))/2; b. the function repeated at a duty cycle of
100% (modulation index a = 1); c. the function at a 50% duty cycle (a = 2).

156 CHAPTER 6. DESIGNER SPECTRA

(a)

(b)

Figure 6.5: Audio signals resulting from multiplying a cosine (partial number
6) by pulse trains: (a). windowing function from the wavetable formulation; (b)
waveshaping output using the Gaussian lookup function.

6.2.3 Resulting spectra

Before considering more complicated carrier signals to go with the modulators
we’ve seen so far, it is instructive to see what multiplication by a pure sinusoid
gives us as waveforms and spectra. Figure 6.5 shows the result of multiplying
two different pulse trains by a sinusoid at the sixth partial:

cos(6ωn)Ma(ωn)

where the index of modulation a is two in both cases. In part (a) Ma is the
stretched von Hann windowing function; part (b) shows waveshaping via the
unnormalized Cauchy distribution. One period of each waveform is shown.

In both situations we see, in effect, the sixth harmonic (the carrier signal)
enveloped into a wave packet centered at the middle of the cycle, where the
phase of the sinusoid is zero. Changing the frequency of the sinusoid changes
the center frequency of the formant; changing the width of the packet (the
proportion of the waveform during which the sinusoid is strong) changes the
bandwidth. Note that the stretched von Hann window function is zero at the
beginning and end of the period, unlike the waveshaping packet.

Figure 6.6 shows how the shape of the formant depends on the method of
production. The stretched wavetable form (part (a) of the figure) behaves well
in the neighborhood of the peak, but somewhat oddly starting at four partials’
distance from the peak, past which we see what are called sidelobes: spurious
extra peaks at lower amplitude than the central peak. As the analysis of Section
2.4 predicts, the entire formant, sidelobes and all, stretches or contracts inversely
as the pulse train is contracted or stretched in time.

6.2. PULSE TRAINS 157

0 2 4 6 ...

(dB)

partial number

amplitude

Gaussian

20

40

60

80

100

Cauchy

20

40

60

80

100

Hanning

20

40

60

80

100

Figure 6.6: Spectra of three ring-modulated pulse trains: (a) the von Hann
window function, 50% duty cycle (corresponding to an index of 2); (b) a wave-
shaping pulse train using a Gaussian transfer function; (c) the same, with a
Cauchy transfer function. Amplitudes are in decibels.

158 CHAPTER 6. DESIGNER SPECTRA

The first, strongest sidelobes on either side are about 37 dB lower in ampli-
tude than the main peak. Further sidelobes drop off slowly when expressed in
decibels; the amplitudes decrease as the square of the distance from the center
peak so that the sixth sidelobe to the right, three times further than the first
one from the center frequency, is about twenty decibels further down. The effect
of these sidelobes is often audible as a slight buzziness in the sound.

This formant shape may be made arbitrarily fat (i.e., high bandwidth), but
there is a limit on how thin it can be made, since the duty cycle of the waveform
cannot exceed 100%. At this maximum duty cycle the formant strength drops to
zero at two harmonics’ distance from the center peak. If a still lower bandwidth
is needed, waveforms may be made to overlap as described in Section 2.6.

Parts (b) and (c) of the figure show formants generated using ring modu-
lated waveshaping, with Gaussian and Cauchy transfer functions. The index of
modulation is two in both cases (the same as for the von Hann window of part
(a)), and the bandwidth is comparable to that of the von Hann example. In
these examples there are no sidelobes, and moreover, the index of modulation
may be dropped all the way to zero, giving a pure sinusoid; there is no lower
limit on bandwidth. On the other hand, since the waveform does not reach zero
at the ends of a cycle, this type of pulse train cannot be used to window an
arbitrary wavetable, as the von Hann pulse train could.

The Cauchy example is particularly handy for designing spectra, since the
shape of the formant is a perfect Isosocles triangle, when graphed in decibels. On
the other hand, the Gaussian example gathers more energy toward the formant,
and drops off faster at the tails, and so has a cleaner sound and offers better
protection against foldover.

6.3 Movable ring modulation

We turn now to the carrier signal, seeking ways to make it more controllable.
We would particularly like to be able to slide the spectral energy continuously
up and down. Simply sliding the frequency of the carrier oscillator will not
accomplish this, since the spectra won’t be harmonic except when the carrier is
an integer multiple of the fundamental frequency.

In the stretched wavetable approach we can accomplish this simply by sam-
pling a sinusoid and transposing it to the desired “pitch”. The transposed pitch
isn’t heard as a periodicity since the wavetable itself is read periodically at
the fundamental frequency. Instead, the sinusoid is transposed as a spectral
envelope.

Figure 6.7 shows a carrier signal produced in this way, tuned to produce a
formant centered at 1.5 times the fundamental frequency. The signal has no
outright discontinuity at the phase wraparound frequency, but it does have a
discontinuity of slope, which, if not removed by applying a suitable modulation
signal, would have very audible high-frequency components.

Using this idea we can make a complete description of how to use the block
diagram of Figure 6.3 to produce a desired formant. The wavetable lookup on

6.3. MOVABLE RING MODULATION 159

Figure 6.7: Waveform for a wavetable-based carrier signal tuned to 1.5 times
the fundamental. Two periods are shown.

the left hand side would hold a sinusoid (placed symmetrically so that the phase
is zero at the center of the wavetable). The right-hand-side wavetable would hold
a von Hann or other appropriate window function. If we desire the fundamental
frequency to be ω, the formant center frequency to be ωf , and the bandwidth to
be ωb, we set the “stretch” parameter to the center frequency quotient defined
as ωf/ω, and the index of modulation to the bandwidth quotient, ωb/ω.

The output signal is simply a sample of a cosine wave at the desired center
frequency, repeated at the (unrelated in general) desired period, and windowed
to take out the discontinuities at period boundaries.

Although we aren’t able to derive this result yet (we will need Fourier anal-
ysis), it will turn out that, in the main lobe of the formant, the phases are all
zero at the center of the waveform (i.e., the components are all cosines if we con-
sider the phase to be zero at the center of the waveform). This means we may
superpose any number of these formants to build a more complex spectrum and
the amplitudes of the partials will combine by addition. (The sidelobes don’t
behave so well: they are alternately of opposite sign and will produce cancella-
tion patterns; but we can often just shrug them off as a small, uncontrollable,
residual signal.)

This method leads to an interesting generalization, which is to take a se-
quence of recorded wavetables, align all their component phases to those of
cosines, and use them in place of the cosine function as the carrier signal. The
phase alignment is necessary to allow coherent cross-fading between samples so
that the spectral envelope can change smoothly. If, for example, we use succes-
sive snippets of a vocal sample as input, we get a strikingly effective vocoder;
see Section 9.6.

Another technique for making carrier signals that can be slid continuously
up and down in frequency while maintaining a fundamental frequency is simply
to cross-fade between harmonics. The carrier signal is then:

c(φ) = c(ωn) = p cos(kωn) + q cos((k + 1)ωn)

where p + q = 1 and k is an integer, all three chosen so that

(k + q) ∗ ω = ωf

160 CHAPTER 6. DESIGNER SPECTRA

so that the spectral center of mass of the two cosines is placed at ωf . (Note
that we make the amplitudes of the two cosines add to one instead of setting
the total power to one; we do this because the modulator will operate phase-
coherently on them.) To accomplish this we simply set k and q to be the integer
and fractional part, respectively, of the center frequency quotient ωf/ω.

The simplest way of making a control interface for this synthesis technique
would be to use ramps to update ω and ωf , and then to compute q and k as
audio signals from the ramped, smoothly varying ω and ωf . Oddly enough,
despite the fact that k, p, and q are discontinuous functions of ωf/ω, the carrier
c(φ) turns out to vary continuously with ωf/ω, and so if the desired center
frequency is ramped from value to value the result is a continuous sweep in
center frequency. However, more work is needed if discontinuous changes in
center frequency are needed. This is not an unreasonable thing to wish for,
being analogous to changing the frequency of an oscillator discontinuously.

There turns out to be a good way to accomodate this. The trick to updating
k and q is to note that c(φ) = 1 whenever φ is a multiple of 2π, regardless of the
choice of k, p, and q as long as p + q = 1. Hence, we may make discontinuous
changes in k, p, and q once per period (right when the phase is a multiple of
2π), without making discontinuities in the carrier signal.

In the specific case of FM, if we wish we can now go back and modify the
original formulation:

p cos(nω2t + r cos(ω1t))+

+q cos((n + 1)ω2t + r cos(ω1t))

This allows us to add glissandi (which are heard as dipthongs) to Chowning’s
original phase-modulation-based vocal synthesis technique.

6.4 Phase-aligned formant (PAF) generator

Combining the two-cosine carrier signal with the waveshaping pulse generator
gives the phase-aligned formant generator, usually called by its acronym, PAF.
The combined formula is,

x[n] = g (a sin(ωn/2))
︸ ︷︷ ︸

modulator

[p cos(kωn) + q cos((k + 1)ωn)]
︸ ︷︷ ︸

carrier

Here the function g may be either the Gaussian or Cauchy waveshaping function,
ω is the fundamental frequency, a is a modulation index controlling bandwidth,
and k, p, and q control the formant center frequency.

Figure 6.8 shows the PAF as a block diagram. The block diagram is sep-
arated into a phase generation step, a carrier, and a modulator. The phase
generation step outputs a sawtooth signal at the fundamental frequency.

The modulator is done by standard waveshaping, with a slight twist added.
The formula for the modulator signals in the PAF call for an incoming sinusoid
at half the fundamental frequency, i.e., sin(ω

2), and this nominally would require
us to use a phasor tuned to half the fundamental frequency. However, since

6.4. PHASE-ALIGNED FORMANT (PAF) GENERATOR 161

S/H

trigger

phase

fundamental
frequency

1

0

0 1

index

-10 10

OUT

modulator

phase generator

k

WRAP

0 1

WRAP

0 1

k+1

p q

carrier

Figure 6.8: The PAF generator as a block diagram.

162 CHAPTER 6. DESIGNER SPECTRA

the waveshaping function is even, we may substitute the absolute value of the
sinusoid: ∣

∣
∣sin(

ω

2
)
∣
∣
∣

which repeats at the frequency ω (the first half cycle is the same as the second
one.) We can compute this simply by using a half-cycle sinusoid as a wavetable
lookup function (with phase running from −π/2 to π/2), and it is this rectified
sinusoid that we pass to the waveshaping function.

Although we picture the wavetable function over both negative and positive
values (reaching from -10 to 10), in fact we’re only using the positive side for
lookup, ranging from 0 to b, the index of modulation. If the index of modulation
exceeds the input range of the table (here set to stop at 10 as an example), the
table lookup address should be clipped. The table should extend far enough into
the tail of the waveshaping function so that the effect of clipping is inaudible.

The carrier signal is a weighted sum of two cosines, whose frequencies are
increased by multiplication (by k and k +1, respectively) and wrapping. In this
way all the lookup phases are controlled by the same sawtooth oscillator.

The quantities k, q, and the wavetable index b (labeled “index” in the fig-
ure), are calculated as shown in Figure 6.9. They are functions of the specified
fundamental frequency, the formant center frequency, and the bandwidth, which
are the original parameters of the algorithm. The quantity p, not shown in the
figure, is just 1 − q.

As described in the previous section, the quantities k, p, and q should only
change at phase wraparound points, that is to say, at periods of 2π/ω. Since the
calculation of k, etc., depends on the value of the parameter ω, it follows that
ω itself should only be updated when the phase is a multiple of 2π; otherwise,
a change in ω could send the center frequency (k + q)ω to an incorrect value for
a (very audible) fraction of a period. In effect, all the parameter calculations
should be synchronized to the phase of the original oscillator.

Having the oscillator’s phase control the updating of its own frequency is
the first example we have seen of feedback, which in general means using any
process’s output as one of its inputs. When processing digital audio signals at
a fixed sample rate (as we’re doing), it is never possible to have the process’s
current output as an input, since at the time we would need it we haven’t
yet calculated it. The best we can hope for is to use the previous sample of
output—in effect, adding one sample of delay. In block environments (such as
Max, Pd, and Csound) the situation becomes more complicated, but we will
delay discussing that until the next chapter (and simply wish away the problem
in the examples at the end of this one).

The amplitude of the central peak in the spectrum of the PAF generator is
roughly 1/(1 + b); in other words, close to unity when the index b is smaller
than one, and falling off inversely with larger values of b. For values of b less
than about ten, the loudness of the output does not vary greatly, since the
introduction of other partials, even at lower amplitudes, offsets the decrease of
the center partial’s amplitude. However, if using the PAF to generate formants
with specified peak amplitudes, the output should be multiplied by 1 + b (or

6.4. PHASE-ALIGNED FORMANT (PAF) GENERATOR 163

frequency

WRAP

center

S/H

trigger

phase

bandwidth

frequency
fundamental

S/H

trigger

phase

frequency
fundamental

k

index

q

Figure 6.9: Calculation of the time-varying parameters a (the waveshaping in-
dex), k, and q for use in the block diagram of Figure 6.8.

even, if necessary, a better approximation of the correction factor, whose exact
value depends on the waveshaping function). This amplitude correction should
be ramped, not sampled-and-held.

Since the expansion of the waveshaping (modulator) signal consists of all co-
sine terms (i.e., since they all have initial phase zero), as do the two components
of the carrier, it follows from the cosine product formula that the components
of the result are all cosines as well. This means that any number of PAF gen-
erators, if they are made to share the same oscillator for phase generation, will
all be in phase and combining them gives the sum of the individual spectra. So
we can make a multiple-formant version as shown in Figure 6.10.

Figure 6.11 shows a possible output of a pair of formants generated this way;
the first formant is centered halfway between partials 3 and 4, and the second
at partial 12, with lower amplitude and bandwidth. The Cauchy waveshaping
function was used, which makes linearly sloped spectra (viewed in dB). The two
superpose additively, so that the spectral envelope curves smoothly from one
formant to the other. The lower formant also adds to its own reflection about
the vertical axis, so that it appars slightly curved upward there.

The PAF generator can be altered if desired to make inharmonic spectra by
sliding the partials upward or downward in frequency. To do this, add a second
oscillator to the phase of both carrier cosines, but not to the phase of the
modulation portion of the diagram, nor to the controlling phase of the sample-

164 CHAPTER 6. DESIGNER SPECTRA

frequency

X

OUT

fundamental

+

phase

generation

index 1

modulator 1 carrier 1

p1, q1
k1,

X

modulator 2 carrier 2

index 2

k2,
p2, q2

Figure 6.10: Block diagram for making a spectrum with two formants using the
PAF generator.

6.5. EXAMPLES 165

partial number

0 2 4 6 ...

(dB)

ampli-

tude

.

20

40

60

80

100

Figure 6.11: Spectrum from a two-formant PAF generator.

and-hold units. It turns out that the sample-and-hold strategy for smooth
parameter updates still works; and furthermore, mutiple PAF generators sharing
the same phase generation portion will still be in phase with each other.

This technique for superposing spectra does not work as predictably for
phase modulation as it does for the PAF generator; the partials of the phase
modulation output have complicated phase relationships and they seem difficult
to combine coherently. In general, phase modulation will give more complicated
patterns of spectral evolution, whereas the PAF is easier to predict and turn to
specific desired effects.

6.5 Examples

Wavetable pulse train

Example F01.pulse.pd (Figure 6.12) generates a variable-width pulse train using
stretched wavetable lookup. Figure 6.13 shows two intermediate products of the
patch and its output. The patch carries out the job in the simplest possible way,
placing the pulse at phase π instead of phase zero; in later examples this will
be addressed by adding 0.5 to the phase and wrapping.

The initial phase is adjusted to run from -0.5 to 0.5 and then scaled by a
multiplier of at least one, resulting in the signal of Figure 6.13 (part a); this
corresponds to the output of the *~ object, fifth from bottom in the patch
shown. The graph in part (b) shows the result of clipping the sawtooth wave
back to the interval between −0.5 and 0.5, using the clip~ object. If the scaling
multiplier were at its minimum (one), the sawtooth would only range from -0.5
to 0.5 anyway and the clipping would have no effect. For any value of the

166 CHAPTER 6. DESIGNER SPECTRA

line~

107

cos~

pack 0 50

0

-~ 0.5

*~

/ 10

clip~ -0.5 0.5

smooth it

add 1

cosine wave lookup (-1/2 and 1/2 give -1)

+~ 1

+~ 1

*~ 0.5

add one (range now from 0 to 2)

...and now from 0 to 1

(OUT)

clip to range -1/2 to 1/2

<-index

<-frequency

phasor~

increase amplitude of sawtooth

0-centered sawtooth

...in tenths

|

Figure 6.12: Example patch F01.pulse.pd, which synthesizes a pulse train using
stretched wavetable lookup.

6.5. EXAMPLES 167

0.5

-0.5

1

0.5

-0.5

0

(a)

(b)

(c)

phase

clipped

output

Figure 6.13: Intermediate audio signals from Figure 6.12: (a) the result of
multiplying the phasor by the “index”; (b) the same, clipped to lie between -0.5
and 0.5; (c) the output.

168 CHAPTER 6. DESIGNER SPECTRA

0

pd pulse-train

<-- bandwidth

*~

<-- modulation frequency as
multiple of fundamental

modulating oscillator

RING MODULATED PULSE TRAINS

0

osc~

* r freq

pulse train
generator from before

|
(OUT)

Figure 6.14: Excerpts from example F05.ring.modulation.pd combining ring
modulation with a stretched wavetable pulse generator

scaling multiplier greater than one, the clipping output sits at the value -0.5,
then ramps to 0.5, then sits at 0.5. The higher the multiplier, the faster the
waveform ramps and the more time it spends clipped at the bottom and top.

The cos~ object then converts this waveform into a pulse. Inputs of both
-0.5 and 0.5 go to -1 (they are one cycle apart); at the midpoint of the waveform,
the input is 0 and the output is thus 1. The output therefore sits at -1, traces a
full cycle of the cosine function, then comes back to rest at -1. The proportion
of time the waveform spends tracing the cosine function is one divided by the
multiplier; so it’s 100% for a multiplier of 1, 50% for 2, and so on. Finally, the
pulse output is adjusted to range from 0 to 1 in value; this is graphed in part
(c) of the figure.

Simple formant generator

The next three examples demonstrate the sound of the varying pulse width,
graph its spectrum, and contrast the waveshaping pulse generator. Skipping
to Example F05.ring.modulation.pd (Figure 6.14), we show the simplest way
of combining the pulse generator with a ring modulating oscillator to make a
formant. The pulse train from the previous example is contained in the pd

pulse-train subpatch. It is multiplied by an oscillator whose frequency is
controlled as a multiple of the fundamental frequency. If the multiple is an
integer, a harmonic sound results. No attempt is made to control the relative
phases of the components of the pulse train and of the carrier sinusoid.

The next example, F06.packets.pd(Figure 6.15), shows how to combine the

6.5. EXAMPLES 169

cos~

-~ 0.5

*~

clip~ -0.5 0.5

bandwidth

+~ 1

cos~

*~

*~

phasor~ 100

center

fundamental)

*~ 0.5

raised
cosine

|
(frequency)

pulse

carrier

frequency

(as multiple of

fundamental)

(as multiple of

|

|

phase signal

magnified

|
(OUT)

Figure 6.15: Using stretched wavetable synthesis to make a formant with mov-
able center frequency.

stretched wavetable pulse train with a sampled sinusoid to realize movable for-
mants, as described in Section 6.3. The pulse generator is as before, but now
the carrier signal is a broken sinusoid. Since its phase is the fundamental phase
times the center frequency quotient, the sample-to-sample phase increment is
the same as for a sinusoid at the center frequency. However, when the phase
wraps around, the carrier phase jumps to a different place in the cycle, as was
illustrated in Figure 6.7. Although the relative bandwidth must be at least
one, the relative center frequency (the quotient between center frequency and
fundamental) may be as low as zero if desired.

Two-cosine carrier signal

Example F08.two.cosines.pd (Figure 6.16) shows how to make a carrier signal
that cross-fades between harmonics to make continuously variable center fre-
quencies. The center frequency quotient (the center frequency divided by the
fundamental) appears as the output of a line~ object. This is separated into
its fractional part (using the wrap~ object) and its integer part (by subtracting
the fractional part from the original). These are labelled as q and k to agree
with the treatment in Section 6.3.

170 CHAPTER 6. DESIGNER SPECTRA

cos~

*~

fundamental
frequency

cos~

wrap~

-~

+~

-~

*~

+~

phasor~

center frequency
(relative to fundamental)

line~
|

|

|
(OUT)

the fractional part "q"

synthesize two partials "c1" and "c2"

c2 - c1

q * (c2 - c1)

q * c2 + (1-q) * c1

subtract to get the integer part "k"

multiply phase by k and k+1

Figure 6.16: Cross-fading between sinusoids to make movable center frequencies.

The phase—a sawtooth wave at the fundamental frequency—is multiplied
by both k and k+1 (the latter by adding the original sawtooth into the former),
and the cosines of both are taken; they are therefore at k and k + 1 times the
fundamental frequency and have no discontinuities at phase wrapping points.
The next several objects in the patch compute the weighted sum pc1 + qc2,
where c1, c2 are the two sinusoids and p = 1 − q, by evaluating an equivalent
expression, c1 + q(c2 − c1). This gives us the desired movable-frequency carrier
signal.

Example F09.declickit.pd (not shown here) shows how, by adding a samphold~
object after the line~ object controlling center frequency, you can avoid dis-
continuities in the output signal even if the desired center frequency changes
discontinuously. In the particular example shown, the frequency quotient (i.e.,
carrier divided by fundamental) alternates between 4 and 13.5. At ramp times
below about 20 msec there are audible artifacts when using the line~ object
alone which disappear when the samphold~ object is added. (A disadvantage
of sample-and-holding the frequency quotient is that, for very low fundamental
frequencies, the changes can be heard as discrete steps. So in situations where
the fundamental frequency is low and the center frequency need not change very
quickly, it may be better to omit the sample-and-hold step.)

The next two examples demonstrate using the crossfading-oscillators carrier
as part of the classic two-modulator phase modulation technique. The same
modulating oscillator is added separately to the phases of the two cosines. The
resulting spectra can be made to travel up and down in frequency, but because

6.5. EXAMPLES 171

cos~

*~

cos~

wrap~-~

+~

-~

*~ +~

samphold~

0

center

line~

pack 0 50

phasor~

0

fundamental

0

line~

*~

pack 0 50

cos~

-~ 0.25

+~ 100

tabread4~ bell-curve

*~

waveshaper

mtof

expr 1/$f1

mtof

*~

bandwidth

mtof

*~

*~ 25

range for table

C.F. relative
to fundamental

(MIDI units)

ring mod

*~ 0.5

divide by

fundamental

offset to middle

of table

|
(OUT)

frequency

Figure 6.17: The phase-aligned formant (PAF) synthesis algorithm.

of the complicated phase relationships between neighboring peaks in the phase
modulation spectrum, no matter how you align two such spectra you can never
avoid getting phase cancellations where they overlap.

The PAF generator

Example F12.paf.pd (Figure 6.17) is a realization of the PAF generator, de-
scribed in Section 6.4. The control inputs specify the fundamental frequency,
the center frequency, and the bandwidth, all in “MIDI” units. The first steps
taken in the realization are to divide center frequency by fundamental (to get
the center frequency quotient) and bandwidth by fundamental to get the index
of modulation for the waveshaper. The center frequency quotient is sampled-

172 CHAPTER 6. DESIGNER SPECTRA

t b b

f + 1

0
until

t f f

tabwrite bell-curve

expr exp(-$f1*$f1)

sel 199

expr ($f1-100)/25

bell-curve

Figure 6.18: Filling in the wavetable for Figure 6.17.

and-held so that it is only updated at periods of the fundamental.
The one oscillator (the phasor~ object) runs at the fundamental frequency.

This is used both to control a samphold~ object which synchronizes updates
to the center frequency quotient (labeled “C.F. relative to fundamental” in the
figure), and to compute phases for both cos~ objects which operate as shown
earlier in Figure 6.16.

The waveshaping portion of the patch uses a half period of a sinusoid as
a lookup function (to compensate for the frequency doubling because of the
symmetry of the lookup function). To get a half-cycle of the sine function we
multiply the phase by 0.5 and subtract 0.25, so that the adjusted phase runs
from -0.25 to +0.25, once each period. This scans the positive half of the cycle
defined by the cos~ object.

The amplitude of the half-sinusoid is then adjusted by an index of modulation
(which is just the quotient of bandwidth to fundamental frequency). The table
(“bell-curve”) holds a Gaussian curve (unnormalized as before) sampled from
-4 to 4 over 200 points (25 points per unit), so the center of the table, at point
100, corresponds to the central peak of the bell curve. Outside the interval from
-4 to 4 the Gaussian curve is negligibly small.

Figure 6.18 shows how the Gaussian wavetable is prepared. One new control
object is needed:

until : When the left, “start” inlet is banged, output sequential bangs (with
no elapsed time between them) iteratively, until the right, “stop” inlet is banged.
The stopping “bang” message must originate somehow from the until object’s
outlet; otherwise, the outlet will send “bang” messages forever, freezing out any
other object which could break the loop.

As used here, a loop driven by an until object counts from 0 to 199, inclu-

6.5. EXAMPLES 173

sive. The loop count is maintained by the “f” and “+ 1” objects, each of which
feeds the other. But since the “+ 1” object’s output goes to the right inlet of
the “f”, its result (one greater) will only emerge from the “f” the next time it
is banged by “until”. So each bang from “until” increments the value by one.

The way the loop is started up matters: the upper “t b b” object (short for
“trigger bang bang”) must first send the number zero to the “f”, thus initializing
it, and then set the until object sending bangs, incrementing the value, until
stopped. To stop it when the value reaches 199, a select object matches that
value and, when it sees the match, bangs the “stop” inlet of the until object.

Meanwhile, for every number from 0 to 199 which comes out of the “f”
object, we create an ordered pair of messages to the tabwrite object. First, at
right, goes the index itself, from 0 to 199. Then for the left inlet, the first expr
object adjusts the index to range from -4 to 4 (it previously ranged from 0 to
199) and the second one evaluates the Gaussian function.

In this patch we have not fully addressed the issue of updating the car-
rier/fundamental quotient at the appropriate times. Whenever the carrier fre-
quency is changed the sample-and-hold step properly delays the update of the
quotient. But if, instead or in addition, the fundamental itself changes abruptly,
then for a fraction of a period the phasor~ object’s frequency and the quotient
are out of sync. Pd does not allow the samphold~ output to be connected back
into the phasor~ input without the inclusion of an explicit delay (see the next
chapter) and there is no simple way to modify the patch to solve this problem.

Assuming that we did somehow clock the phasor~ object’s input synchronously
with its own wraparound points, we would then have to do the same for the
bandwidth/fundamental quotient on the right side of the patch as well. In the
current scenario, however, there is no problem updating that value continuously.

A practical solution to this updating problem has been simply to rewrite
the entire patch in C as a Pd class; this also turns out to use much less CPU
time than the pictured patch, and is the more practical solution overall—as long
as you don’t want to experiment with making embellishments or other changes
to the algorithm. Such embellishments might include: adding an inharmonic
upward or downward shift in the partials; allowing to switch between smooth
and sampled-and-held center frequency updates; adding separate gain controls
for even and odd partials; introducing gravel by irregularly modulating the
phase; allowing mixtures of two or more waveshaping functions; or making
sharper percussive attacks by aligning the phase of the oscillator with the timing
of an amplitude envelope generator.

One final detail about amplitude is in order: since the amplitude of the
strongest partial decreases roughly as 1/(1 + b) where b is the index of modu-
lation, it is sometimes (but not always) desirable to correct the amplitude of
the output by multiplying by 1 + b. This is only an option if b is smoothly up-
dated (as in this example), not if it is sampled-and-held. One situation in which
this is appropriate is in simulating plucked strings (by setting center frequency
to the fundamental, starting with a high index of modulation and dropping it
exponentially); it would be appropriate to hear the fundamental dropping, not
rising, in amplitude as the string decays.

174 CHAPTER 6. DESIGNER SPECTRA

Stretched wavetables

Instead of using waveshaping, fomant synthesis is also possible using stretched
wavetables, as demonstrated Example F14.wave.packet.pd (not shown here).
The technique is essentially that of Example B10.sampler.overlap.pd (described
in section 2.6), with a cosine lookup instead of the more general wavetable, but
with the addition of a control to set the duty cycle of the amplitude envelopes.
The units are adjusted to be compatible with those of the previous example.

Exercises

1. To synthesize a formant at 2000 Hz. center frequency and fundamental
300 Hz., what should the values of k and q be (in the terminology of Figure
6.8)?

2. A pulse train consists of von Hann windows, end to end, without any gaps
between them. What is the resulting spectrum?

Chapter 7

Time shifts and delays

At 5:00 some afternoon, put on your favorite recording of the Ramones string
quarter number 5. The next Saturday, play the same recording at 5:00:01,
one second later in the day. The two playings ideally should sound the same.
Shifting the whole thing one second (or, if you like, a few days and a second)
has no physical effect on the sound.

But now suppose you played it at 5:00 and 5:00:01 on the same day (on two
different playback systems, since the music lasts much longer than one second.)
Now the sound is much different. Moreover, the difference, whatever it is, clearly
resides in neither of the two individual sounds, but rather in the interference
between the two. This interference can be perceived in at least four different
ways:

Canons: combining two copies of a signal with a time shift sufficient for the
signal to change appreciably, we might hear the two as separate musical
streams, in effect comparing the signal to its earlier self. If the signal is a
melody, the time shift might be comparable to the length of one or several
notes.

Echos: At time shifts between about 30 milliseconds and about a second, the
later copy of the signal can sound like an echo of the earlier one. An
echo may reduce the intelligibility of the signal (especially if it consists
of speech), but usually won’t change the overall “shape” of melodies or
phrases.

Filtering: At time shifts below about 30 milliseconds, the copies are too close
together in time to be perceived separately, and the dominant effect is
that some frequencies are enhanced and others suppressed. This changes
the spectral envelope of the sound.

Altered room quality: If the second copy is played more quietly than the first,
and especially if we add many more delayed copies at reduced amplitudes,
the result can mimic the echos that arise in a room or other acoustic space.

175

176 CHAPTER 7. TIME SHIFTS AND DELAYS

Z=a+bi

a

b

|Z|

arg(Z)

Figure 7.1: A number, Z, in the complex plane. The axes are for the real part
a and the imaginary part b.

The overall quality of a given arrangement of delayed copies of a signal may
combine two or more of these affects.

Mathematically, the effect of a time shift on a signal can be described as a
phase change of each of the signal’s sinusoidal components. The phase shift of
each component is different depending on its frequency (as well as on the amount
of time shift). In the rest of this chapter we will often consider superpositions
of sinusoids at different phases. Heretofore we have been content to use real-
valued sinusoids in our analysis, but in this and later chapters the formulas will
become more complicated and we will need more powerful mathematical tools
to manage them. So in a preliminary section of this chapter we will develop the
additional background needed.

7.1 Complex numbers

Complex numbers are written as:

Z = a + bi

where a and b are real numbers and i =
√
−1. (In this book we’ll use the

upper case letters such as Z to denote complex numbers. Real numbers appear
as lower case Roman or Greek letters, except that sometimes upper case H,
M , and N are used for integer bounds.) Since a complex number has two real
components, we use a Cartesian plane (in place of a number line) to graph it, as
shown in Figure 7.1. The quantities a and b are called the real and imaginary
parts of Z, written as:

a = re(Z),

b = im(Z)

7.1. COMPLEX NUMBERS 177

If Z is a complex number, its magnitude, written as |Z|, is just the distance
in the plane from the origin to the point (a, b):

|Z| =
√

(a2 + b2)

and its argument, written as 6 (Z), is the angle from the positive a axis to the
point (a, b):

6 (Z) = arctan

(
b

a

)

If we know the magnitude and argument of a complex number (say they are r
and θ, for instance) we can reconstruct the real and imaginary parts:

a = r cos(θ)

b = r sin(θ)

A complex number may be written in terms of its real and imaginary parts a
and b (this is called rectangular form), or alternatively in polar form, in terms
of r and θ:

Z = r · [cos(θ) + i sin(θ)]

The rectangular and polar formulations are equivalent, and the equations above
show how to compute a and b from r and θ and vice versa.

The main reason we use complex numbers in electronic music is because
they magically automate trigonometric calculations. We frequently have to add
angles together in order to talk about the changing phase of an audio signal as
time progresses (or as it is shifted in time, as in this chapter). It turns out that,
if you multiply two complex numbers, the argument of the product is the sum
of the arguments of the two factors. To see how this happens, we’ll multiply
two numbers Z1 and Z2, written in polar form:

Z1 = r1 · [cos(θ1) + i sin(θ1)]

Z2 = r2 · [cos(θ2) + i sin(θ2)]

giving:
Z1Z2 = r1r2 · [cos(θ1) cos(θ2) − sin(θ1) sin(θ2)

+i (sin(θ1) cos(θ2) + cos(θ1) sin(θ2))]

Here the minus sign in front of the sin(θ1) sin(θ2) term comes from multiplying i
by itself, which gives −1. We can spot the cosine and sine summation formulas
in the above expression, and so it simplifies to:

Z1Z2 = r1r2 · [cos(θ1 + θ2) + i sin(θ1 + θ2)]

And so, by inspection, it follows that the product Z1Z2 has magnitude r1r2 and
argument θ1 + θ2.

We can use this property of complex numbers to add and subtract angles
(by multiplying and dividing complex numbers with the appropriate arguments)
and then to take the cosine and sine of the result by extracting the real and
imaginary parts.

178 CHAPTER 7. TIME SHIFTS AND DELAYS

Z

Z 2

1

Z −1

2

A
AZ

AZ

Figure 7.2: The powers of a complex number Z with |Z| = 1, and the same
sequence multiplied by a constant A.

7.1.1 Sinusoids as geometric series

Recall the formula for a (real-valued) sinusoid from page 3:

x[n] = a cos(ωn + φ)

This is a sequence of cosines of angles (called phases) which increase arithmeti-
cally with the sample number n. The cosines are all adjusted by the factor a.
We can now re-write this as the real part of a much simpler and easier to manip-
ulate sequence of complex numbers, by using the properties of their arguments
and magnitudes.

Suppose that a complex number Z happens to have magnitude one and
argument ω, so that it can be written as:

Z = cos(ω) + i sin(ω)

Then for any integer n, the number Zn must have magnitude one as well (be-
cause magnitudes multiply) and argument nω (because arguments add). So,

Zn = cos(nω) + i sin(nω)

This is also true for negative values of n, so for example,

1

Z
= Z−1 = cos(ω) − i sin(ω)

Figure 7.2 shows graphically how the powers of Z wrap around the unit circle,
which is the set of all complex numbers of magnitude one. They form a geometric
sequence:

. . . , Z0, Z1, Z2, . . .

7.2. TIME SHIFTS AND PHASE CHANGES 179

and taking the real part of each term we get a real sinusoid with initial phase
zero and amplitude one:

. . . , cos(0), cos(ω), cos(2ω), . . .

Furthermore, suppose we multiply the elements of the sequence by some (com-
plex) constant A with magnitude a and argument φ. This gives

. . . , A,AZ,AZ2, . . .

The magnitudes are all a and the argument of the nth term is φ + nω, so the
sequence is equal to

AZn = a · [cos(nω + φ) + i sin(nω + φ)]

and the real part is just the real-valued sinusoid:

re(AZn) = a · [cos(nω + φ)]

The complex amplitude A encodes both the amplitude (equal to its magnitude
a) and the inital phase (its argument φ); the unit-magnitude complex number
Z controls the frequency which is just its argument ω.

Figure 7.2 also shows the sequence A,AZ,AZ2, . . .; in effect this is the same
sequence as 1, Z, Z2, . . ., but amplified and rotated according to the amplitude
and initial phase. In a complex sinusoid of this form, A is called the complex
amplitude.

Using complex numbers to represent the amplitudes and phases of sinusoids
can clarify manipulations that otherwise might seem unmotivated. For instance,
suppose we want to know the amplitude and phase of the sum of two sinusoids
with the same frequency. In the language of this chapter, we let the two sinusoids
be written as:

X[n] = AZn, Y [n] = BZn

where A and B encode the phases and amplitudes of the two signals. The sum
is then equal to:

X[n] + Y [n] = (A + B)Zn

which is a sinusoid whose amplitude equals |A + B| and whose phase equals
6 (A + B). This is clearly a much easier way to manipulate amplitudes and
phases than using series of sines and cosines. Eventually, of course, we will take
the real part of the result; this can usually be left to the very last step of the
calculation.

7.2 Time shifts and phase changes

Starting from any (real or complex) signal X[n], we can make other signals by
time shifting the signal X by a (positive or negative) integer d:

Y [n] = X[n − d]

180 CHAPTER 7. TIME SHIFTS AND DELAYS

so that the dth sample of Y is the 0th sample of X and so on. If the integer d is
positive, then Y is a delayed copy of X. If d is negative, then Y anticipates X;
this can be done to a recorded sound but isn’t practical as a real-time operation.

Time shifting is a linear operation (considered as a function of the input
signal X); if you time shift a sum X1 + X2 you get the same result as if you
time shift them separately and add afterward.

Time shifting has the further property that, if you time shift a sinusoid of
frequency ω, the result is another sinusoid of the same frequency; time shifting
never introduces frequencies that weren’t present in the signal before it was
shifted. This property, called time invariance, makes it easy to analyze the ef-
fects of time shifts—and linear combinations of them—by considering separately
what the operations do on individual sinusoids.

Furthermore, the effect of a time shift on a sinusoid is simple: it just changes
the phase. If we use a complex sinusoid, the effect is even simpler. If for instance

X[n] = AZn

then
Y [n] = X[n − d] = AZ(n−d) = Z−dAZn = Z−dX[n]

so time shifting a complex sinusoid by d samples is the same thing as scaling it
by Z−d—it’s just an amplitude change by a particular complex number. Since
|Z| = 1 for a sinusoid, the amplitude change does not change the magnitude of
the sinusoid, only its phase.

The phase change is equal to −dω, where ω = 6 (Z) is the angular frequency
of the sinusoid. This is exactly what we should expect since the sinusoid ad-
vances ω radians per sample and it is offset (i.e., delayed) by d samples.

7.3 Delay networks

If we consider our digital audio samples X[n] to correspond to successive mo-
ments in time, then time shifting the signal by d samples corresponds to a delay
of d/R time units, where R is the sample rate. (If d is negative, then we are
saying that the output predicts the input; this isn’t practical in systems, such
as Pd, that schedule computations in order of time.)

Figure 7.3 shows one example of a linear delay network : an assembly of delay
units, possibly with amplitude scaling operations, combined using addition and
subtraction. The output is a linear function of the input, in the sense that adding
two signals at the input is the same as processing each one separately and adding
the results. Moreover, linear delay networks create no new frequencies in the
output that weren’t present in the input, as long as the network remains time
invariant, so that the gains and delay times do not change with time.

In general there are two ways of thinking about delay networks. We can
think in the time domain, in which we draw waveforms as functions of time (or
of the index n), and consider delays as time shifts. Alternatively we may think
in the frequency domain, in which we dose the input with a complex sinusoid (so

7.3. DELAY NETWORKS 181

IN

OUT

d

Figure 7.3: A delay network. Here we add the incoming signal to a delayed copy
of itself.

that its output is a sinusoid at the same frequency) and report the amplitude
and/or phase change wrought by the network, as a function of the frequency.
We’ll now look at the delay network of Figure 7.3 in each of the two ways in
turn.

Figure 7.4 shows the network’s behavior in the time domain. We invent some
sort of suitable test function as input (it’s a rectangular pulse eight samples wide
in this example) and graph the input and output as functions of the sample
number n. This particular delay network adds the input to a delayed copy of
itself.

A frequently used test function is an impulse, which is a pulse lasting only
one sample. The utility of this is that, if we know the output of the network for
an impulse, we can find the output for any other digital audio signal—because
any signal x[n] is a sum of impulses, one of height x[0], the next one occurring
one sample later and having height x[1], and so on. Later, when the networks
get more complicated, we will move to using impulses as input signals to show
their time-domain behavior.

On the other hand, we can analyze the same network in the frequency domain
by considering a (complex-valued) test signal,

X[n] = Zn

where Z has unit magnitude and argument ω. We already know that the output
is another complex sinusoid with the same frequency, that is,

HZN

for some complex number H (which we want to find). So we write the output
directly as the sum of the input and its delayed copy:

Zn + Z−dZn = (1 + Z−d)Zn

182 CHAPTER 7. TIME SHIFTS AND DELAYS

input

output

n

d

Figure 7.4: The time domain view ot the delay network of Figure 7.3. The
output is the sum of the input and its time shifted copy.

and find by inspection that:

H = 1 + Z−d

We can understand the frequency-domain behavior of this delay network by
studying how the complex number H varies as a function of the angluar fre-
quency ω. We are especially interested in its argument and magnitude—which
tell us the relative phase and amplitude of the sinusoid that comes out. We will
work this example out in detail to show how the arithmetic of complex numbers
can predict what happens when sinusoids are combined additively.

Figure 7.5 shows the result, in the complex plane, when the quantities 1 and
Z−d are combined additively. To add complex numbers we add their real and
complex parts separately. So the complex number 1 (real part 1, imaginary part
0) is added coordinate-wise to the complex number Z−d (real part cos(−dω),
imaginary part sin(−dω)). This is shown graphically by making a parallelogram,
with corners at the origin and at the two points to be added, and whose fourth
corner is the sum H.

As the figure shows, the result can be understood by symmetrizing it about
the real axis: instead of 1 and Z−d, it’s easier to sum the quantities Zd/2 and
Z−d/2, because they are symmetric about the real (horizontal) axis. (Strictly
speaking, we haven’t properly defined the quantities Zd/2 and Z−d/2; we are
using those expressions to denote unit complex numbers whose arguments are
half those of Zd and Z−d, so that squaring them would give Zd and Z−d.) We
rewrite the gain as:

H = Z−d/2(Zd/2 + Z−d/2)

The first term is a phase shift of −dω/2. The second term is best understood

7.3. DELAY NETWORKS 183

Z

Z

1

Z -d/2

d/2

H

HZ

-d

d/2

real

imaginary

Figure 7.5: Analysis, in the complex plane, of the frequency-domain behavior of
the delay network of Figure 7.3. The complex number Z encodes the frequency
of the input. The delay line output is the input times Z−d. The total (complex)
gain is H. We find the magnitude and argument of H by symmetrizing the sum,
rotating it by d/2 times the angular frequency of the input.

in rectangular form:
Zd/2 + Z−d/2

= (cos(ωd/2) + i sin(ωd/2)) + (cos(ωd/2) − i sin(ωd/2))

= 2 cos(ωd/2)

This real-valued quantity may be either positive or negative; its absolute value
gives the magnitude of the output:

|H| = 2| cos(ωd/2)|

The quantity |H| is called the gain of the delay network at the angular frequency
ω, and is graphed in Figure 7.6. The frequency-dependent gain of a delay
network (that is, the gain as a function of frequency) is called the network’s
frequency response.

Since the network has greater gain at some frequencies than at others, it may
be considered as a filter that can be used to separate certain components of a
sound from others. Because of the shape of this particular gain expression as
a function of ω, this kind of delay network is called a (non-recirculating) comb
filter.

The output of the network is a sum of two sinusoids of equal amplitude,
and whose phases differ by ωd. The resulting frequency response agrees with
common sense: if the angular frequency ω is set so that an integer number of
periods fit into d samples, i.e., if ω is a multiple of 2π/d, the output of the delay
is exactly the same as the original signal, and so the two combine to make an
output with twice the original amplitude. On the other hand, if for example we

184 CHAPTER 7. TIME SHIFTS AND DELAYS

2

d

gain

d

4

2

Figure 7.6: Gain of the delay network of Figure 7.3, shown as a function of
angular frequency ω.

take ω = π/d so that the delay is half the period, then the delay output is out
of phase and cancels the input exactly.

This particular delay network has an interesting application: if we have a
periodic (or nearly periodic) incoming signal, whose fundamental frequency is
ω radians per sample, we can tune the comb filter so that the peaks in the
gain are aligned at even harmonics and the odd ones fall where the gain is
zero. To do this we choose d = π/ω, i.e., set the delay time to exactly one half
period of the incoming signal. In this way we get a new signal whose harmonics
are 2ω, 4ω, 6ω, . . ., and so it now has a new fundamental frequency at twice
the original one. Except for a factor of two, the amplitudes of the remaining
harmonics still follow the spectral envelope of the original sound. So we have
a tool now for raising the pitch of an incoming sound by an octave without
changing its spectral envelope. This octave doubler is the reverse of the octave
divider introduced back in Chapter 5.

The time domain and frequency domains offer complementary ways of look-
ing at the same delay network. When the delays inside the network are smaller
than the ear’s ability to resolve events in time—less than about 20 milliseconds—
the time domain picture becomes less relevant to our understanding of the delay
network, and we turn mostly to the frequency-domain picture. On the other
hand, when delays are greater than about 50 milliseconds, the peaks and val-
leys of plots showing gain versus frequency (such as that of Figure 7.6) crowd so
closely together that the frequency-domain view becomes less important. Both
are nonetheless valid over the entire range of possible delay times.

7.4 Recirculating delay networks

It is sometimes desirable to connect the outputs of one or more delays in a
network back into their own or each others’ inputs. Instead of getting one or
several echos of the original sound as in the example above, we can potentially
get an infinite number of echos, each one feeding back into the network to
engender yet others.

7.4. RECIRCULATING DELAY NETWORKS 185

IN

d

g

OUT

Figure 7.7: Block diagram for a recirculating comb filter. Here d is the delay
time in samples and g is the feedback coefficient.

The simplest example of a recirculating network is the recirculating comb
filter whose block diagram is shown in Figure 7.7. As with the earlier, simple
comb filter, the input signal is sent down a delay line whose length is d samples.
But now the delay line’s output is also inserted back in its input; the delay’s
input is the sum of the original input and the delay output. The output is
multiplied by a number g before feeding it back into its input.

The time domain behavior of the recirculating comb filter is shown in Figure
7.8. Here we consider the effect of sending an impulse into the network. We
get back the original impulse, plus a series of echos, each in turn d samples
after the previous one, and multiplied each time by the gain g. In general, a
delay network’s output given an impulse as input is called the network’s impulse
response.

Note that we have chosen a gain g that is less than one in absolute value.
If we chose a gain greater than one (or less than -1), each echo would have a
larger magnitude than the previous one. Instead of falling exponentially as they
do in the figure, they would grow exponentially. A recirculating network whose
output eventually falls toward zero after its input terminates is called stable;
one whose output grows without bound is called unstable.

We can also analyse the recirculating comb filter in the frequency domain.
The situation is now complicated enough that it is almost prohibitively hard
to analyze using real sinusoids, and so we get the first big payoff for having
introduced complex numbers, which greatly simplify the analysis.

If, as before, we feed the input with the signal,

X[n] = Zn

with |Z| = 1, we can write the output as

Y [n] = (1 + gZ−d + g2Z−2d + · · ·)X[n]

186 CHAPTER 7. TIME SHIFTS AND DELAYS

input

d

output

n

Figure 7.8: Time-domain analysis of the recirculating comb filter, using an
impulse as input.

Here the terms in the sum come from the series of discrete echos. It follows that
the amplitude of the output is:

H = 1 + gZ−d + (gZ−d)
2

+ · · ·

This is a geometric series; we can sum it using the standard technique: first
multiply both sides by gZ−d to give:

gZ−dH = gZ−d + (gZ−d)
2

+ (gZ−d)
3

+ · · ·

and subtract from the original equation to give:

H − gZ−dH = 1,

and, solving for H,

H =
1

1 − gZ−d

A faster (but slightly less intuitive) method to get the same result is to
examine the recirculating network itself to yield an equation for H, as follows.
Since we named the input X[n] and the output Y [n], the signal going into the
delay line is X[n] +Y [n], and passing this through the delay line and multiplier
gives

(X[n] + Y [n])gZ−d

This is just the output signal again, so:

Y [n] = (X[n] + Y [n])gZ−d

7.4. RECIRCULATING DELAY NETWORKS 187

and dividing by X[n] and using H = Y [n]/X[n] gives:

H = (1 + H)gZ−d

This is equivalent to the earlier equation for H.
Now we would like to make a graph of the frequency response (the gain as a

function of frequency) as we did for non-recirculating comb filters in Figure 7.6.
This again requires that we make a preliminary picture in the complex plane.
We would like to estimate the magnitude of H equal to:

|H| =
1

|1 − gZ−d|
where we used the multiplicative property of magnitudes to conclude that the
magnitude of a (complex) reciprocal is the reciprocal of a (real) magnitude.
Figure 7.9 shows the situation graphically. The gain |H| is the reciprocal of
the length of the segment reaching from the point 1 to the point gZ−d. Figure
7.10 shows a graph of the frequency response |H| as a function of the angular
frequency ω = 6 (Z).

Figure 7.9 can be used to analyze how the frequency response |H(ω)| should
behave qualitatively as a function of g. The height and bandwidth of the peaks
both depend on g. The maximum value that |H| can attain is when

Z−d = 1

This occurs at the frequencies ω = 0, 2π/d, 4π/d, . . . as in the simple comb filter
above. At these frequencies the gain reaches

|H| =
1

1 − g

The next important question is the bandwidth of the peaks in the frequency
response. So we would like to find sinusoids W n, with frequency 6 (W), giving
rise to a value of |H| that is, say, 3 decibels below the maximum. To do this,
we return to Figure 7.9, and try to place W so that the distance from the point
1 to the point

1 − W−d

is about
√

2 times the distance from 1 to g (since
√

2:1 is a ratio of approximately
3 decibels).

We do this by arranging for the imaginary part of W−d to be roughly 1− g
or its negative, making a nearly isosocles right triangle between the points 1,
1−g, and W−d. (Here we’re supposing that g is at least 2/3 or so; otherwise this
approximation isn’t very good). The hypoteneuse of a right isococles triangle is
always

√
2 times the leg, and so the gain drops by that factor compared to its

maximum.
We now make another approximation, that the imaginary part of W−d is

approximately the angle in radians it cuts from the real axis:

±(1 − g) ≈ im(W−d) ≈ 6 (W−d)

188 CHAPTER 7. TIME SHIFTS AND DELAYS

−d

−d

1

−d

1−g

real

imaginary

gW

gZ

1−gW

Figure 7.9: Diagram in the complex plane for approximating the output gain
|H| of the recirculating comb filters at three different frequencies: 0, and the
arguments of two unit complex numbers W and Z; W is chosen to give a gain
about 3 dB below the peak.

2

d

gain

d

4

5

Figure 7.10: Frequency response of the recirculating comb filter with g = 0.8.
The peak gain is 1/(1 − g) = 5. Peaks are much narrower than for the simple
comb filter.

7.5. POWER CONSERVATION AND COMPLEX DELAY NETWORKS 189

So the region of each peak reaching within 3 decibels of the maximum value is
about

(1 − g)/d

(in radians) to either side of the peak. The bandwidth narrows (and the filter
peaks become sharper) as g approaches its maximum value of 1.

As with the non-recirculating comb filter of Section 7.3, the teeth of the
comb are closer together for larger valuse of the delay d. On the other hand,
a delay of d = 1 (the shortest possible) gets only one tooth (at zero frequency)
below the Nyquist frequency π (the next tooth, at 2π, corresponds again to a
frequency of zero by foldover). So the recirculating comb filter with d = 1 is
just a low-pass filter. Delay networks with one-sample delays will be the basis
for designing many other kinds of digital filters in Chapter 8.

7.5 Power conservation and complex delay net-
works

The same techniques will work to analyze any delay network, although for more
complicated networks it becomes harder to characterize the results, or to design
the network to have specific, desired properties. Another point of view can
sometimes be usefully brought to the situation, particularly when flat frequency
responses are needed, either in their own right or else to ensure that a complex,
recirculating network remains stable at feedback gains close to one.

The central fact we will use is that if any delay network, with either one or
many inputs and outputs, is constructed so that its output power (averaged over
time) always equals its input power, that network has to have a flat frequency
response. This is almost a tautology; if you put in a sinusoid at any frequency
on one of the inputs, you will get sinusoids of the same frequency at the outputs,
and the sum of the power on all the outputs will equal the power of the input,
so the gain, suitably defined, is exactly one.

In order to work with power-conserving delay networks we will need an
explicit definition of “total average power”. If there is only one signal (call it
x[n]), the average power is given by:

P (x[n]) =
[

|x[0]|2 + |x[1]|2 + · · · + |x[N − 1]|2
]

/N

where N is a large enough number so that any fluctuations in amplitude get
averaged out. This definition works as well for complex-valued signals as for
real-valued ones. The average total power for several digital audio signals is
just the sum of the individual signal’s powers:

P (x1[n], . . . , xr[n]) = P (x1[n]) + · · · + P (xr[n])

where r is the number of signals to be combined. With this definition, since the
individual signals’ power is perserved by delaying them, so is the power of the
sum.

190 CHAPTER 7. TIME SHIFTS AND DELAYS

OUT

d
1

IN

d d d
2 3 4

Figure 7.11: First fundamental building block for unitary delay networks: delay
lines in parallel.

It turns out that a wide range of interesting delay networks has the property
that the total power output equals the total power input; they are called unitary.
To start with, we can put any number of delays in parallel, as shown in Figure
7.11. Whatever the total power of the inputs, the total power of the outputs
has to equal it.

A second family of power-preserving transformations is composed of rota-
tions and reflections of the signals x1[n], ... , xr[n], considering them, at each
fixed time point n, as r numbers, or as a point in an r-dimensional space. The
rotation or reflection must be one that leaves the origin (0, . . . , 0) fixed.

For each sample number n, the total contribution to the average signal power
is proportional to

|x1|2 + · · · + |xr|2

This is just the Pythagorean distance from the origin to the point (x1, . . . , xr).
Since rotations and reflections are distance-preserving transformations, the dis-
tance from the origin before transforming must equal the distance from the
origin afterward. So the total power of a collection of signals must must be
preserved by rotation.

Figure 7.12 shows a rotation matrix operating on two signals. In part (a)
the transformation is shown explicitly. If the input signals are x1[n] and x2[n],
the outputs are:

y1[n] = cx1[n] − sx2[n]

y2[n] = sx1[n] + cx2[n]

where c, s are given by

c = cos(θ)

s = sin(θ)

for an angle of rotation θ. Considered as points on the Cartesian plane, the
point (y1, y2) is just the point (x1, x2) rotated counter-clockwise by the angle θ.

7.5. POWER CONSERVATION AND COMPLEX DELAY NETWORKS 191

IN

c c

IN

OUT

(a) (b)

c

c s

-s
s -s

OUT

Figure 7.12: Second fundamental building block for unitary delay networks:
rotating two digital audio signals. Part (a) shows the transformation explicitly;
(b) shows it as a matrix operation.

The two points are thus at the same distance from the origin:

|y1|2 + |y2|2 = |x1|2 + |x2|2

and so the two output signals have the same total power as the two input signals.
For an alternative description of rotation in two dimensions, consider com-

plex numbers X = x1 + x2i and Y = y1 + y2i. The above transformation
amounts to setting

Y = XZ

where Z is a complex number with unit magnitude and argument θ. Since
|Z| = 1, it follows that |X| = |Y |.

If we perform a rotation on a pair of signals and then invert one (but not
the other) of them, the result is a reflection. This also preserves total signal
power, since we can invert any or all of a collection of signals without changing
the total power. In two dimensions, a reflection appears as a transformation of
the form

y1[n] = cx1[n] + sx2[n]

y2[n] = sx1[n] − cx2[n]

Special and useful rotation and reflection matrices are obtained by setting
θ = ±π/4, so that s = c =

√

1/2. This allows us to simplify the computation
as shown in Figure 7.13 (part a) because each signal need only be multiplied by
the one quantity c = s.

192 CHAPTER 7. TIME SHIFTS AND DELAYS

IN
IN

OUT

(a) (b)

a a

OUT

R
1

R
2

R
3

R
4

Figure 7.13: Details about rotation (and reflection) matrix operations: (a) ro-
tation by the angle θ = π/4, so that a = cos(θ) = sin(θ) =

√

1/2 ≈ 0.7071; (b)
combining two-dimensional rotations to make higher-dimensional ones.

Any rotation or reflection of more than two input signals may be accom-
plished by repeatedly rotating and/or reflecting them in pairs. For example,
in part (b) of Figure 7.13, four signals are combined in pairs, in two succesive
stages, so that in the end every signal input feeds into all the outputs. We could
do the same with eight signals (using three stages) and so on. Furthermore, if
we use the special angle π/4, all the input signals will contribute equally to each
of the outputs.

Any combination of delays and rotation matrices, applied in succession to
a collection of audio signals, will result in a flat frequency response, since each
individual operation does. This already allows us to generate an infinitude of
flat-response delay networks, but so far, none of them are recirculating. A third
operation, shown in Figure 7.14, allows us to make recirculating networks that
still enjoy flat frequency responses.

Part (a) of the figure shows the general layout. The transformation R is
assumed to be any combination of delays and mixing matrices that are power
preserving in the aggregate. The signals x1, . . . xk go into a unitary delay net-
work, and the output signals y1, . . . yk emerge. Some other signals w1, . . . wj

(where j is not necessarily equal to k) appear at the output of the transforma-
tion R and are fed back to its input.

If R is indeed power preserving, the total input power (the power of the
signals x1, . . . xk plus that of the signals w1, . . . wj) must equal the output power
(the power of the signals y1, . . . yk plus w1, . . . wj), and subtracting all the w from

7.6. ARTIFICIAL REVERBERATION 193

R

c

c d

(a) (b)

d 1 d j ...

...

...
...

IN

x 1 x

1
y y

OUT

w w

k

k

1 j

Figure 7.14: Flat frequency response in recirculating networks: (a) in general,
using a rotation matrix R; (b). the “all-pass” configuration.

the equality, we find that the total input and output power are equal.
If we let j = k = 1 so that there is one x, y, and w, and let the transformation

R be a rotation by θ followed by a delay of d samples on the W output, the result
is the well-known all-pass filter. With some juggling, and letting c = cos(θ), we
can show it is equivalent to the network shown in part (b) of the figure. All-pass
filters have many applications, some of which we will visit later in this book.

7.6 Artificial reverberation

Artificial reverberation is widely used to improve the sound of recordings, but
has a wide range of other musical applications [DJ85, pp.289-340]. Reverbera-
tion in real, natural spaces arises from a complicated pattern of sound reflections
off the walls and other objects that define the space. It is a great oversimplifica-
tion to imitate this process by recirculating, discrete delay networks. Nonethe-
less, modeling reverberation using recirculating delay lines can, with much work,
be made to yield good results.

The central idea is to idealize any room (or other reverberant space) as
a parallel collection of delay lines that model the memory of the air inside
the room. At each point on the walls of the room, many straight-line paths
terminate, each corresponding to a possible line of sight ending at that point;
the sound then reflects into many other paths, each one originating at that
point, and leading eventually to some other point on a wall.

Although the wall (and the air we passed through to get to the wall) absorbs
some of the sound, some portion of the incident power is reflected and makes it

194 CHAPTER 7. TIME SHIFTS AND DELAYS

to the next wall. If most of the energy recirculates, the room reverberates for a
long time; if all of it does, the reverberation lasts forever. If at any frequency
the walls reflect more energy overall than they receive, the sound will feed back
unstably; this never happens in real rooms (conservation of energy prevents it),
but it can happen in an artificial reverberator if it is not designed correctly.

To make an artificial reverberator using a delay network, we must fill two
two competing demands simultaneously. First, the delay lines must be long
enough to prevent coloration in the output as a result of from comb filtering.
(Even if we move beyond the simple comb filter of Section 7.4, the frequency
response will tend to have peaks and valleys whose spacing varies inversely with
total delay time.) On the other hand, we should not hear individual echoes; the
echo density should ideally be at least one thousand per second.

In pursuit of these aims, we assemble some number of delay lines and connect
their outputs back to their inputs. The feedback path—the connection from the
outputs back to the inputs of the delays—should have an aggregate gain that
varies gently as a function of frequency, and never exceeds one for any frequency.
A good starting point is to give the feedback path a flat frequency response and
a gain slightly less than one; this is done using rotation matrices.

Ideally this is all we should need to do, but in reality we will not always want
to use the thousands of delay lines it would take to model the paths between
every possible pair of points on the walls. In practice we usually use between
four and sixteen delay lines to model the room. This simplification sometimes
reduces the echo density below what we would wish, so we might use more delay
lines at the input of the recirculating network to increase the density.

Figure 7.15 shows a class of reverberator designs that use this principle. The
incoming sound, shown as two separate signals in this example, is first thickened
by progressively delaying one of the two signals and then intermixing them using
a rotation matrix. At each stage the number of echoes of the original signal is
doubled; typically we would use between 6 and 8 stages to make between 64
and 256 echos, all with a total delay of between 30 and 80 milliseconds. The
figure shows three such stages.

Next comes the recirculating part of the reverberator. After the original
thickening, if any, the input signal is fed into a bank of parallel delay lines,
and their outputs are again mixed using a rotation matrix. The mixed outputs
are attenuated by a gain g ≤ 1, and fed back into the delay lines to make a
recirculating network.

The value g controls the reverberation time. If the average length of the
recirculating delay lines is d, then any incoming sound is attenuated by a factor
of g after a time delay of d. After time t the signal has recirculated t/d times,
losing 20log10(g) decibels each time around, so the total gain, in decibels, is:

20
t

d
log10(g)

The usual measure of reverberation time (RT) is the time at which the gain

7.6. ARTIFICIAL REVERBERATION 195

d 1

d

IN

R

d 2

d 3

7 d d 8 9

1

R

R

2

3

R
9

OUT

g

Figure 7.15: Reverberator design using power-preserving transformations and
recirculating delays.

196 CHAPTER 7. TIME SHIFTS AND DELAYS

drops by sixty decibels:

20
RT

d
log10(g) = −60

RT =
−3d

log10(g)

If g is one, this formula gives ∞, since the logarithm of one is zero.
The framework shown above is the basis for most modern reverberator de-

signs. Many extensions of this underlying design have been proposed. The most
important next step would be to introduce filters in the recirculation path so
that high frequencies can be made to decay more rapidly than low ones; this
is readily accomplished with a very simple low-pass filter, but we will not work
this out here, having not yet developed the needed filter theory.

In general, to use this framework to design a reverberator involves making
many complicated choices of delay times, gains, and filter coefficients. Moun-
tains of literature have been published on this topic; Barry Blesser has published
a good overview [Ble01]. Much more is known about reverberator design and
tuning that has not been published; precise designs are often kept secret for
commercial reasons. In general, the design process involves painstaking and
lengthy tuning by trial, error, and critical listening.

7.6.1 Controlling reverberators

Artificial reverberation is used almost universally in recording or sound rein-
forcement to sweeten the overall sound. However, and more interestingly, re-
verberation may be used as a sound source in its own right. The special case of
infinite reverberation is useful for grabbing live sounds and extending them in
time.

To make this work in practice it is necessary to open the input of the re-
verberator only for a short period of time, during which the input sound is
not varying too rapidly. If an infinite reverberator’s input is left open for too
long, the sound will collect and quickly become an indecipherable mass. To
“infinitely reverberate” a note of a live instrument, it is best to wait until after
the attack portion of the note and then allow perhaps 1/2 second of the note’s
steady state to enter the reverberator. It is possible to build chords from a
monophonic instrument by repeatedly opening the input at different moments
of stable pitch.

Figure 7.16 shows how this can be done in practice. The two most important
controls are the reverberator’s input and feedback gains. To capture a sound,
we set the feedback gain to one (infinite reverberation time) and momentarily
open the input at time t1. To add other sounds to an already held one, we
simply reopen the input gain at the appropriate moments (at time t2 in the
figure, for example.) Finally, we can erase the recirculating sound, thus both
fading the output and emptying the reverberator, by setting the feedback gain
to a value less than one (as at time t3). The further we reduce the feedback
gain, the faster the output will decay.

7.6. ARTIFICIAL REVERBERATION 197

reverb
feedback

IN

OUT

(a)

(b)

time

input
gain1

1
feedback

t t 1 2

t 3

Figure 7.16: Controlling a reverberator to capture sounds selectively: (a) the
network; (b) examples of how to control the input gain and feedback to capture
two sounds at times t1 and t2, and to hold them until a later time t3.

198 CHAPTER 7. TIME SHIFTS AND DELAYS

7.7 Variable and fractional shifts

Like any audio synthesis or processing technique, delay networks become much
more powerful and interesting if their characteristics can be made to change over
time. The gain parameters (such as g in the recirculating comb filter) may be
controlled by envelope generators, varying them while avoiding clicks or other
artifacts. The delay times (such as d before) are not so easy to vary smoothly
for two reasons.

First, we have only defined time shifts for integer values of d, since for
fractional values of d an expression such as x[n − d] is not determined if x[n]
is only defined for integer values of n. To make fractional delays we will have
to introduce some suitable interpolation scheme. And if we wish to vary d
smoothly over time, it will not give good results simply to hop from one integer
to the next.

Second, even once we have achieved perfectly smoothly changing delay times,
the artifacts caused by varying delay time become noticeable even at very small
relative rates of change; while in most cases you may ramp an amplitude control
between any two values over 30 milliseconds without trouble, changing a delay
by only one sample out of every hundred makes a very noticeable shift in pitch—
indeed, one frequently will vary a delay deliberately in order to hear the artifacts,
only incidentally passing from one specific delay time value to another one.

The first matter (fractional delays) can be dealt with using an interpolation
scheme, in exactly the same way as for wavetable lookup (Section 2.5). For
example, suppose we want a delay of d = 1.5 samples. For each n we must
estimate a value for x[n − 1.5]. We could do this using standard four-point
interpoation, putting a cubic polynomial through the four “known” points (0,
x[n]), (1, x[n-1]), (2, x[n-2]), (3, x[n-3]), and then evaluating the polynomial at
the point 1.5. Doing this repeatedly for each value of n gives the delayed signal.

This four-point interpolation scheme can be used for any delay of at least
one sample. Delays of less than one sample can’t be calculated this way because
we need two input points at least as recent as the desired delay. This worked in
the above example, but for a delay time of 0.5 samples, for instance, we would
need the value of x[n + 1], which is in the future.

The accuracy of the estimate could be further improved by using higher-
order interpolation schemes. However, there is a trade-off between quality and
computational efficiency. Furthermore, if we move to higher-order interpolation
schemes, the minimum possible delay time will increase, causing trouble in some
situations.

The second matter to consider is the artifacts—whether wanted or unwanted—
that arise from changing delay lines. In general, a discontinuous change in delay
time will give rise to a discontinuous change in the output signal, since it is in
effect interrupted at one point and made to jump to another. If the input is a
sinusoid, the result is a discontinuous phase change.

If it is desired to change the delay line occasionally between fixed delay times
(for instance, at the beginnings of musical notes), then we can use the techniques
for managing sporadic discontinuities that were introduced in Section 4.3. In

7.7. VARIABLE AND FRACTIONAL SHIFTS 199

input

time

output timeD

Figure 7.17: A variable length delay line, whose output is the input from some
previous time. The output samples can’t be newer than the input samples, nor
older than the length D of the delay line. The slope of the input/output curve
controls the momentary transposition of the output.

effect these techniques all work by muting the output in one way or another. On
the other hand, if it is desired that the delay time change continuously—while
we are listening to the output—then we must take into account the artifacts
that result from the changes.

Figure 7.17 shows the relationship between input and output time in a vari-
able delay line. The delay line is assumed to have a fixed maximum length D.
At each sample of output (corresponding to a point on the horizontal axis), we
output one (possibly interpolated) sample of the delay line’s input. The vertical
axis shows which sample (integer or fractional) to use from the input signal.
Letting n denote the output sample number, the vertical axis shows the quan-
tity n − d[n], where d[n] is the (time-varying) delay in samples. If we denote
the input sample location by:

y[n] = n − d[n]

then the output of the delay line is:

z[n] = x[y[n]]

200 CHAPTER 7. TIME SHIFTS AND DELAYS

where the signal x is evaluated at the point y[n], interpolating appropriately in
case y[n] is not an integer. This is exactly the formula for wavetable lookup
(page 29). We can use all the properties of wavetable lookup of recorded sounds
to predict the behavior of variable delay lines.

There remains one difference between delay lines and wavetables: the ma-
terial in the delay line is constantly being refreshed. Not only can we not read
into the future, but, if the the delay line is D samples in length, we can’t read
further than D samples into the past either:

0 < d[n] < D

or, negating this and adding n to each side,

n > y[n] > n − D.

This last relationship appears as the region between the two diagonal lines in
Figure 7.17; the function y[n] must stay within this strip.

Returning to Section 2.2, the Momentary Transposition Formulas for Waveta-
bles predict that the sound emerging from the delay line will be transposed by
a factor t[n] given by:

t[n] = y[n] − y[n − 1] = 1 − (d[n] − d[n − 1])

If d[n] does not change with n, the transposition factor is 1 and the sound
emerges from the delay line at the same speed as it went in. But if the delay
time is increasing as a function of n, the resulting sound is transposed downward,
and if d[n] decreases, upward.

This is called the Doppler effect, and it occurs in nature as well. The air that
sound travels through can sometimes be thought of as a delay line. Changing the
length of the delay line corresponds to moving the listener toward or away from
a stationary sound source; the Doppler effect from the changing path length
works precisely the same in the delay line as it would be in the physical air.

Returning to Figure 7.17, we can predict that there is no pitch shift at the
beginning, but then when the slope of the path decreases the pitch will drop for
an interval of time before going back to the original pitch (when the slope returns
to one). The delay time can be manipulated to give any desired transposition,
but the greater the transposition, the less long we can maintain it before we run
off the bottom or the top of the diagonal region.

7.8 Fidelity of interpolating delay lines

Since they are in effect doing wavetable lookup, variable delay lines introduce
distortion to the signals they operate on. Moreover, a subtler problem can come
up even when the delay line is not changing in length: the frequency response,
in real situations, is never perfectly flat for a delay line whose length is not an
integer.

7.8. FIDELITY OF INTERPOLATING DELAY LINES 201

If the delay time is changing from sample to sample, the distortion results
of section 2.5 apply. To use them, we suppose that the delay line input can be
broken down into sinusoids and consider separately what happens to each indi-
vidual sinusoid. We can use table 2.5 to predict the RMS level of the combined
distortion products for an interpolated variable delay line.

We’ll assume here that we want to use four-point interpolation. For sinu-
soids with periods longer than 32 samples (that is, for frequencies below 1/16
of the Nyquist frequency) the distortion is 96 dB or better—unlikely ever to
be noticeable. At a 44 kHz. sample rate, these periods would correspond to
frequencies up to about 1400 Hz. At higher frequencies the quality degrades,
and above 1/4 the Nyquist frequency the distortion products, which are only
down about 50 dB, will probably be audible.

The situation for a complex tone depends primarily on the amplitudes and
frequencies of its higher partials. Suppose, for instance, that a tone’s partials
above 5000 Hz. are at least 20 dB less than its strongest partial, and that
above 10000 Hz they are down 60 dB. Then as a rough estimate, the distortion
products from the range 5000-10000 will each be limited to about -68 dB and
those from above 10000 Hz. will be limited to about -75 dB (because the worst
figure in the table is about -15 dB and this must be added to the strength of
the partial involved.)

If the high-frequency content of the input signal does turn out to give un-
acceptable distortion products, in general it is more effective to increase the
sample rate than the number of points of interpolation. For periods greater
than 4 samples, doubling the period (by doubling the sample rate, for example)
decreases distortion by about 24 dB.

The 4-point interpolating delay line’s frequency response is nearly flat up to
half the Nyquist frequency, but thereafter it dives quickly. Suppose (to pick the
worst case) that the delay is set halfway between two integers, say 1.5. Cubic
interpolation gives:

x[1.5] =
−x[0] + 9x[1] + 9x[2] − x[3]

8

Now let x[n] be a (real-valued) unit-amplitude sinusoid with angular frequency
ω, whose phase is zero at 1.5:

x[n] = cos(ω · (n − 1.5))

and compute x[1.5] using the above formula:

x[1.5] =
9 cos(ω/2) − cos(3ω/2)

4

This is the peak value of the sinusoid that comes back out of the delay line,
and since the peak amplitude going in was one, this shows the frequency re-
sponse of the delay line. This is graphed in Figure 7.18. At half the Nyquist
frequency (ω = π/2) the gain is about -1 dB, which is a barely perceptible drop
in amplitude. At the Nyquist frequency itself, however, the gain is zero.

202 CHAPTER 7. TIME SHIFTS AND DELAYS

2

gain

1

Figure 7.18: Gain of a four-point interpolating delay line with a delay halfway
between two integers. The DC gain is one.

As with the results for distortion, the frequency response improves radically
with a doubling of sample rate. If we run our delay at a sample rate of 88200
Hz. instead of the standard 44100, we will get only about 1 dB of rolloff all the
way up to 20000 Hz.

7.9 Pitch shifting

A favorite use of variable delay lines is to alter the pitch of an incoming sound
using the Doppler effect. It may be desirable to alter the pitch variably (ran-
domly or periodically, for example), or else to maintain a fixed musical interval
of transposition over a length of time.

Returning to Figure 7.17, we see that, using a single variable delay line, we
can maintain any desired pitch shift for a limited interval of time, but if we
wish to sustain a fixed transposition we will always eventually land outside the
diagonal strip of admissible delay times. In the simplest scenario, we simply
vary the transposition up and down so as to remain in the strip.

This works, for example, if we wish to apply vibrato to a sound as shown in
Figure 7.19. Here the delay function is

d[n] = d0 + a cos(ωn)

where d0 is the average delay, a is the amplitude of variation about the average
delay, and ω is an angular frequency. The momentary transposition, which
depends on the sample number n, is approximately

t = 1 + aω cos(ωn)

This ranges in value between 1 − aω and 1 + aω.
Suppose, on the other hand, that we wish to maintain a constant trans-

position over a longer interval of time. In this case we can’t maintain the
transposition forever, but it is still possible to maintain it over fixed intervals of

7.9. PITCH SHIFTING 203

input

time

output time

Figure 7.19: Vibrato using a variable delay line. Since the pitch shift alternates
between upward and downward, it is possible to maintain it without drifting
outside the strip of admissible delay.

204 CHAPTER 7. TIME SHIFTS AND DELAYS

input

time

output time

Figure 7.20: Piecewise linear delay functions to maintain a constant transpo-
sition (except at the points of discontinuity). The outputs are enveloped as
suggested by the bars above each point, to smooth the output at the points of
discontinuity in delay time.

7.9. PITCH SHIFTING 205

0 <-- delay time

delread~ delay1

tabplay~ G01-tab

metro 1000

loadbang

write to delay line

+~

delwrite~ delay1 1000

(msec)

read from delay line

(OUT)
|

input signal

Figure 7.21: Using a variable delay line as a pitch shifter. The sawtooth wave
creates a smoothly increasing or decreasing delay time. The output of the delay
line is enveloped to avoid discontinuities. Another copy of the same diagram
should run 180 degrees (π radians) out of phase with this one.

time broken by discontinuous changes, as shown in Figure 7.20. The delay time
is the output of a suitably normalized sawtooth function, and the output of the
variable delay line is enveloped as shown in the figure to avoid discontinuities.

This is accomplished as shown in Figure 7.21. The output of the sawtooth
generator is used in two ways. First it is adjusted to run between the bounds d0

and d0 + s, and this adjusted sawtooth controls the delay time, in samples. The
initial delay d0 should be at least enough to make the variable delay feasible; for
four-point interpolation it must be at least one sample. Larger values of d0 add
a constant, additional delay to the output; this is usually offered as a control in
a pitch shifter since it is essentially free. The quantity s is sometimes called the
window size. It corresponds roughly to the sample length in a looping sampler
(Section 2.2).

The sawtooth output is also used to envelope the output in exatly the same
way as in the enveloped wavetable sampler of Figure 2.7. The envelope is zero
at the points where the sawtooth wraps around, and in between, rises smoothly
to a maximum value of 1 (for unit gain).

If the frequency of the sawtooth wave is f (in cycles per second), then its
value sweeps from 0 to 1 every R/f samples (where R is the sample rate). The
difference between successive values is thus f/R. If we let x[n] denote the output

206 CHAPTER 7. TIME SHIFTS AND DELAYS

input

time

output time

Figure 7.22: The pitch shifter’s delay reading pattern using two delay lines, so
that one is at maximum amplitude exactly when the other is switching.

of the sawtooth oscillator, then

x[n + 1] − x[n] =
f

R

(except at the wraparound points). If we adjust the output range of the
wavetable oscillator to the value s (as is done in the figure) we get a new slope:

s · x[n + 1] − s · x[n] =
sf

R

Adding the constant d0 has no effect on this slope. The Momentary Transposi-
tion is then calculated as:

t = 1 − sf

R

To complete the design of the pitch shifter we must add the other copy halfway
out of phase. This gives rise to a delay reading pattern as shown in Figure 7.22.

The pitch shifter can transpose either upward (using negative sawtooth fre-
quencies, as in the figure) or downward, using positive ones. Pitch shift is
usually controlled by changing f with s fixed. To get a desired transposition
interval t, set

f =
(t − 1)R

s

7.10. EXAMPLES 207

The window size s should be chosen small enough, if possible, so that the two
delayed copies (s/2 samples apart) do not sound as distinct echoes. However,
very small values of s will force f upward; values of f greater than about 5
result in very audible modulation. So if very large transpositions are required,
the value of s may need to be increased. Typical values range from 30 to 100
milliseconds (about R/30 to R/10 samples).

Although the frequency may be changed at will, even discontinuously, s
must be changed more carefully. A possible approach is to mute the output
while changing s discontinuously; alternatively, s may be ramped continuously
but this causes hard-to-control Doppler shifts.

The choice of envelope is usually one half cycle of a sinusoid. If we assume on
average that the two delay outputs have neither positive nor negative correlation,
the signal power from the two delay lines, after enveloping, will add to a constant
(since the sum of squares of the two envelopes is one).

Many variations exist on this pitch shifting algorithm. One widely used
variant is to use a single delay line, with no enveloping at all. In this situation
it is necessary to choose the point at which the delay time jumps, and the
point it jumps to, so that the output stays continuous. For example, one could
wait for the output signal to pass through zero (a “zero crossing”) and jump
discontinuously to another one. Using only one delay line has the advantage
that the signal output sounds more “present”. A disadvantage is that, since the
delay time is a function of input signal value, the output is no longer a linear
function of the input, so non-periodic inputs can give rise to artifacts such as
difference tones.

7.10 Examples

Fixed, noninterpolating delay line

Example G01.delay.pd (Figure 7.23) applies a simple delay line to an input
signal. Two new objects are needed:

delwrite~ : define and write to a delay line. The first creation argument gives
the name of the delay line (and two delay lines may not share the same name).
The second creation argument is the length of the delay line in milliseconds.
The inlet takes an audio signal and writes it continuously into the delay line.

delread~ : read from (or “tap”) a delay line. The first creation argument
gives the name of the delay line (which should agree with the name of the corre-
sponding delwrite~ object; this is how Pd knows which delwrite~ to associate
with the delread~ object). The second (optional) creation argument gives the
delay time in milliseconds. This may not be negative and also may not exceed
the length of the delay line as specified to the delwrite~ object. Incoming num-
bers (messages) may be used to change the delay time dynamically. However,
this will make a discontinuous change in the output, which should therefore be
muted if the delay time changes.

208 CHAPTER 7. TIME SHIFTS AND DELAYS

0 <-- delay time

delread~ delay1

tabplay~ G01-tab

metro 1000

loadbang

write to delay line

+~

delwrite~ delay1 1000

(msec)

read from delay line

|

input signal

(OUT)

Figure 7.23: Example patch G01.delay.pd, showing a noninterpolating delay
with a delay time controlled in milliseconds.

This example simply pairs one delwrite~ and one delread~ object to make
a simple, noninterpolating delay. The input signal is a looped recording. The
delayed and the non-delayed signal are added to make a non-recirculating comb
filter. At delay times below about 10 milliseconds, the filtering effect is most
prominent, and above that, a discrete echo becomes audible. There is no mut-
ing protection on the delay output, so clicks are possible when the delay time
changes.

Recirculating comb filter

Example G02.delay.loop.pd (Figure 7.24) shows how to make a recirculating
delay network. The delay is again accomplished with a delwrite~/delread~
pair. The output of the delread~ object is multiplied by a feedback gain of
0.7 and fed into the delwrite~ object. An input (supplied by the phasor~ and
associated objects) is added into the delwrite~ input; this sum becomes the
output of the network. This is the recirculating comb filter of Section 7.4.

The network of tilde objects does not have any cycles, in the sense of ob-
jects feeding either directly or indirectly (via connections through other ob-
jects) to themselves. The feedback in the network occurs implicitly between the
delwrite~and delread~ objects.

7.10. EXAMPLES 209

0

0

<-- pitch

<-- delay time

write to delay line

read from delay line

add the original and the delayed signal

mtof 1

*~

+~

*~ 0.7 feedback gain

*~

adsr 1 100 1000 0 1000phasor~

delread~ G02-del 160

delwrite~ G02-del 2000(OUT)
|

input
signal

Figure 7.24: Recirculating delay (still noninterpolating).

Variable delay line

The next example, G03.delay.variable.pd (Figure 7.25), is another recirculating
comb filter, this time using a variable-length delay line. One new object is
introduced here:

vd~ : Read from a delay line, with a time-varying delay time. As with the
delread~ object, this reads from a delay line whose name is specified as a
creation argument. Instead of using a second argument and/or control messages
to specify the delay time, for the vd~ object the delay in milliseconds is specified
by an incoming audio signal. The delay line is read using four-point (cubic)
interpolation; the minimum achievable delay is one sample.

Here the objects on the left side, from the top down to the clip~ -0.2 0.2

object, form a waveshaping network; the index is set by the “timbre” control,
and the waveshaping output varies between a near sinusoid and a bright, buzzy
sound. The output is added to the output of the vd~ object. The sum is then
high pass filtered (the hip~ object at lower left), multiplied by a feedback gain,
clipped, and written into the delay line at bottom right. There is a control at
right to set the feedback gain; here, in contrast with the previous example, it is
possible to specify a gain greater than one in order to get unstable feedback. For
this reason the second clip~ object is inserted within the delay loop (just above
the delwrite~ object) so that the signal cannot exceed 1 in absolute value.

The length of the delay is controlled by the signal input to the vd~ object. An
oscillator with variable frequency and gain, in the center of the figure, provides
the delay time. The oscillator is added to one to make it nonnegative before
multiplying it by the “cycle depth” control, which effectively sets the range of

210 CHAPTER 7. TIME SHIFTS AND DELAYS

hip~ 10

0

line~

pack 0 100

0

0

line~

pack 0 100

* 0.01

0

line~

pack 0 100

*~

cos~

0

mtof

* 0.5

clip~ -0.2 0.2

* 0.01

+~

*~

*~

/ 100

hip~ 5

+~ 1

osc~ 0

+~ 1.46

<-- timbre

<-- pitch

<-- cycle frequency (hundredths)

<-- cycle depth (msec)

vd~ G03-del

delwrite~ G03-del 1000

clip~ -1 1

|
(OUT)

osc~

(hundredths)

<-- feedback

Figure 7.25: The flanger: an interpolating, variable delay line.

7.10. EXAMPLES 211

a~

b~ c~

d~

a~ b~

(a)

(b)

Figure 7.26: Order of execution of tilde objects in Pd: (a), an acyclic network.
The objects may be executed in either the order “a-b-c-d” or “a-c-b-d”. In
part (b), there is a cycle, and there is thus no compatible linear ordering of the
objects because each one would need to be run before the other.

delay times. The minimum possible delay time of 1.46 milliseconds is added so
that the true range of delay times is between the minimum and the same plus
twice the “depth”. The reason for this minimum delay time is taken up in the
discussion of the next example.

Comb filters with variable delay times are sometimes called flangers. As the
delay time changes the peaks in the frequency response move up and down in
frequency, so that the timbre of the output changes constantly in a characteristic
way.

Order of execution and lower limits on delay times

When using delays (as well as other state-sharing tilde objects in Pd), the
order in which the writing and and reading operations are done can affect the
outcome of the computation. Although the tilde objects in a patch may have
a complicated topology of audio connections, in reality Pd executes them all in
a sequential order, one after the other, to compute each block of audio output.
This linear order is guaranteed to be compatible with the audio interconnections,
in the sense that no tilde object’s computation is done until all its inputs, for
that same block, have been computed.

Figure 7.26 shows two examples of tilde object topologies and their transla-
tion into a sequence of computation. In part (a) there are four tilde objects, and
because of the connections, the object a~ must produce its output before either
of b~ or c~ can run; and both of those in turn are used in the computation of
d~. So the possible orderings of these four objects are “a-b-c-d” and “a-c-b-d”.
These two orderings will have exactly the same result unless the computation
of b~ and c~ somehow affect each other’s output (as delay operations might, for
example).

Part (b) of the figure shows a cycle of tilde objects. This network cannot be
sorted into a compatible sequential order, since each of a~ and b~ requires the

212 CHAPTER 7. TIME SHIFTS AND DELAYS

other’s output to be computed first. In general, a sequential ordering of the tilde
objects is possible if and only if there are no cycles anywhere in the network of
tilde objects and their audio signal interconnections. Pd reports an error when
such a cycle appears. (Note that the situation for control interconnections
between objects is more complicated and flexible; see the Pd documentation for
details.)

To see the effect of the order of computation on a delwrite~/delread~ pair,
we can write explicitly the input and output signals in the two possible orders,
with the minimum possible delay. If the write operation comes first, at a block
starting at sample number n, the operation can be written as:

x[n], . . . , x[n + B − 1] −→ delwrite~

where B is the block size (as in Section 3.2). Having put those particular samples
into the delay line, a following delread~ is able to read the same values out:

delread~ −→ x[n], . . . , x[n + B − 1]

On the other hand, suppose the delread~ object comes before the delwrite~.
Then the samples x[n], . . . , x[n + B − 1] have not yet been stored in the delay
line, so the most recent samples that may be read belong to the previous block:

delread~ −→ x[n − B], . . . , x[n − 1]

x[n], . . . , x[n + B − 1] −→ delwrite~

Here the minimum delay we can possibly obtain is the block size B. So the
minimum delay is either 0 or B, depending on the order in which the delread~

and delwrite~objects are sorted into a sequence of execution.
Looking back at the patches of Figures 7.24 and 7.25, which both feature

recirculating delays, the delread~ object must be placed earlier in the sequence
than the delwrite~ object. This is true of any design in which a delay’s output
is fed back into its input. The minimum possible delay is B samples. For a
(typical) sample rate of 44100 Hz. and block size of 64 samples, this comes to
1.45 milliseconds. This might not sound at first like a very important restriction.
But if you are trying to tune a recirculating comb filter to a specific pitch, the
highest you can get only comes to about 690 Hz. To get shorter recirculating
delays you must increase the sample rate or decrease the block size.

Example G04.control.blocksize.pd (Figure 7.27) shows how the block size
can be controlled in Pd using a new object:

block~ , switch~ : Set the local block size of the patch window the object

sits in. Block sizes must be powers of two. The switch~ object, in addition,
can be used to turn audio computation within the window on and off, using
control messages. Additional creation arguments can set the local sample rate
and specify overlapping computations (demonstrated in Chapter 9).

In part (a) of the figure (the main patch), a rectangular pulse is sent to the
pd delay-writer subpatch, whose output is then returned to the main patch.

7.10. EXAMPLES 213

pd delay-writer

expr 1000/$f1

mtof
1 0

metro 500

random 60

loadbang

+ 30

vline~

del 1

|
(OUT)

(a) (b)

inlet~

outlet~ block~ 1

*~ 0.99+~

inlet

delread~ G04-del

delwrite~ G04-del 1000

incoming

pulses
delay

time

set block size

Figure 7.27: A patch using block size control to lower the loop delay below the
normal 64 samples: (a). the main patch; (b). the “delay-writer” subpatch with
a block~ object and a recirculating delay network.

Part (b) shows the contents of the subpatch, which sends the pulses into a
recirculating delay. The block~ object specifies that, in this subpatch, signal
computation uses a block size (B) of only one. So the minimum achievable delay
is one sample instead of the default 64.

Putting a pulse (or other excitation signal) into a recirculating comb filter
to make a pitch is sometimes called Karplus-Strong synthesis, having been de-
scribed in a paper by them [KS83], although the idea seems to be older. It made
its way for example into Paul Lansky’s 1979 piece, Six Fantasies on a poem by
Thomas Campion.

Order of execution in non-recirculating delay lines

In nonrecirculating delay networks, it should be possible to place the operation
of writing into the delay line earlier in the sequence than that of reading it. There
should thus be no lower limit on the length of the delay line (except whatever
is imposed by the interpolation scheme; see section 7.7). In languages such as
Csound, the sequence of unit generator computation is (mostly) explicit, so this
is easy to specify. In the graphical patching environments, however, the order is
implicit and another approach must be taken to ensuring that, for example, a
delwrite~ object is computed before the corresponding delread~ object. One
way of accomplishing this is shown in example G05.execution.order.pd (Figure
7.28).

In part (a) of the figure, the connections in the patch do not determine which
order the two delay operations appear in the sorted sequence of tilde object
computation; the delwrite~ object could be computed either before or after

214 CHAPTER 7. TIME SHIFTS AND DELAYS

45

+~

delay in

pd delay−writer

pd delay−reader

/ 44.1

(BAD)

pack 0 30
pd pulse

delwrite~ G05−d1 1000

vd~ G05−d1

line~

pd pulse

(GOOD)

 samples(b)(a)

Figure 7.28: Using subpatches to ensure that delay lines are written before
they are read in non-recirculating networks: (a) the delwrite~ and vd~ objects
might be executed in either the “right” or the “wrong” order; (b) the delwrite~
object is inside the pd delay-writer subpatch and the vd~ object is inside
the pd delay-reader one. Because of the audio connection between the two
subpatches, the order of execution of the read/write pair is forced to be the
correct one.

the vd~ object. If we wish to make sure the writing operation happens before
the reading operation, we can proceed as in part (b) of the figure, and put the
two operations in subpatches, connecting the two via audio signals so that the
first subpatch must be computed before the second one. (Audio computation in
subpatches is done atomically, in the sense that the entire subpatch contents are
considered as the audio computation for the subpatch as a whole. So everything
in the one subpatch happens before anything in the second one.)

In this example, the “right” and the “wrong” way to make the comb filter
have audibly different results. For delays less than 64 samples, the right hand
side of the patch (using subpatches) gives the correct result, but the left hand
side can’t produce delays below the 64 sample block size.

Non-recirculating comb filter as octave doubler

In example G06.octave.doubler.pd (Figure 7.29) we revisit the idea of pitch-
based octave shifting introduced earlier in E03.octave.divider.pd. There, know-
ing the periodicity of an incoming sound allowed us to tune a ring modulator to
introduce subharmonics. Here we realize the octave doubler described in Section
7.3. Using a variable, non-recirculating comb filter we filter out odd harmon-
ics, leaving only the even ones, which sound an octave higher. As before, the
spectral envelope of the sound is roughly preserved by the operation, so we can
avoid the “chipmunk” effect we would have got by using speed change to do the

7.10. EXAMPLES 215

fiddle~ 2048

unpack

moses 1

mtof

pd looper

samplerate~t f b

delwrite~ G06-del 100

delread~ G06-del

vd~ G06-del

+~

+

expr 500/$f1

expr 2048000/$f1

line~

pack 0 20

fundamental frequency

1/2 period, in msec

estimate fiddle~ delay

|

as one window (in msec)

(OUT)

Figure 7.29: An “octave doubler” uses pitch information (obtained using a
fiddle~ object) to tune a comb filter to remove the odd harmonics in an in-
coming sound.

transposition.
The comb filtering is done by combining two delayed copies of the incoming

signal (from the pd looper subpatch at top). The fixed one (delread~) is set
to a delay of 1/2 the window size of the pitch following algorithm. Whereas
in the earlier example this was hidden in another subpatch, we can now show
this explicitly. The delay in milliseconds is estimated as equal to the 2048-
sample analysis window used by the fiddle~ object; in milliseconds this comes
to 1000 · 2048/R where R is the sample rate.

The variable delay is the same, plus 1/2 of the measured period of the
incoming sound, or 1000/(2f) milliseconds where f is the frequency in cycles
per second. The sum of this and the fixed delay time is then smoothed using a
line~ object to make the input signal for the variable delay line.

Since the difference between the two delays is 1/(2f), the resonant frequen-
cies of the resulting comb filter are 2f, 4f, 6f · · ·; the frequency response (section
7.3) is zero at the frequencies f, 3f, . . ., so the resulting sound contains only the
partials at multiples of 2f—an octave above the original. Seen another way, the
incoming sound is output twice, a half-cycle apart; odd harmonics are thereby
shifted 180 degrees (π radians) and cancel; even harmonics are in phase with
their delayed copies and remain in the sum.

216 CHAPTER 7. TIME SHIFTS AND DELAYS

+~

delwrite~ G07-del 30

line~*~

line~*~

line~*~

line~*~

+ 1

mod 4

f

random 1000

t f b

0

route 0 1 2 3

delread~ G07-del 30

phasor~ 80

delread~ G07-del 17

delread~ G07-del 11

* 4

expr 2 * $f1/1000 - 0.7

0

pack 0 0 200

frequency on/off
time constant
(msec)

|
(OUT)

metro

Figure 7.30: A “shaker”, a four-tap comb filter with randomly varying gains on
the taps.

Both this and the octave divider may be altered to make shifts of 3 or 4 to
one in frequency, and they may also be combined to make compound shifts such
as a music fifth (a ratio of 3:2) by shifting down an octave and then back up a
factor of three. (You should do the down-shifting before the up-shifting for best
results.)

Time-varying complex comb filter: shakers

Example G07.shaker.pd (Figure 7.30) shows a different way of extending the
idea of a comb filter. Here we combine the input signal at four different time
shifts (instead of two, as in the original non-recirculating comb filter), each at
a different positive and/or negative gain. To do this, we insert the input signal
into a delay line and tap it at three different points; the fourth “tap” is the
original, undelayed signal.

As a way of thinking about the frequency response of a four-tap comb filter,
we consider first what happens when two of the four gains are close to zero.
Then we end up with a simple non-recirculating comb filter, with the slight
complication that the gains of the two delayed copies may be different. If they
are both of the same sign, we get the same peaks and valleys as predicted in

7.10. EXAMPLES 217

Section 7.3, only with the valleys between peaks possibly being more shallow.
If they are opposite in sign, the valleys become peaks and the peaks become
valleys.

Depending on which two taps we supposed were nonzero, the peaks and
valleys are spaced by different amounts; the delay times are chosen so that 6
different delay times can arise in this way, ranging between 6 and 30 millisec-
onds. In the general case in which all the gains are non-zero, we can imagine
the frequency response function varying continuously between these extremes,
giving a succession of complicated patterns. This has the effect of raising and
lowering the amplitudes of the partials of the incoming signal, all independently
of the others, in a complicated pattern, to give a steadily time-varying timbre.

The right-hand side of the patch takes care of changing the gains of the
input signal and its three time-shifted copies. Each time the metro object fires,
a counter is incremented (the f, + 1, and mod 4 objects). This controls which
of the amplitudes will be changed. The amplitude itself is computed by making
a random number and normalizing it to lie between -0.7 and 1.3 in value. The
random value and the index are packed (along with a third value, a time interval)
and this triple goes to the route object. The first element of the triple (the
counter) selects which output to send the other two values to; as a result, one
of the four possible line~ objects gets a message to ramp to a new value.

If the time variation is done quickly enough, there is also a modulation
effect on the original signal; in this situation the straight line segments used in
this example should be replaced by modulating signals with more controllable
frequency content, for instance using filters (the subject of Chapter 8).

Reverberator

Example G08.reverb.pd (Figure 7.31) shows a simple artificial reverberator, es-
sentially a realization of the design shown in Figure 7.15. Four delay lines are
fed by the input and by their own recirculated output. The delay outputs are
intermixed using rotation matrices, built up from elementary rotations of π/4
as in Figure 7.13 (part a).

The normalizing multiplication (by
√

1/2 at each stage) is absorbed into
the feedback gain, which therefore cannot exceed 1/2. At a feedback gain of
exactly 1/2, all the energy leaving the delay lines is reinserted into them, so the
reverberation lasts perpetually.

Figure 7.32 shows the interior of the reverb-echo abstraction used in the
reverberator. The two inputs are mixed (using the same rotation matrix and
again leaving the renormalization for later). One channel is then delayed. The
delay times are selected to grow roughly exponentially; this ensures a smooth
and spread-out pattern of echos.

Many extensions of this idea are possible of which we’ll only name a few. It
is natural, first, to put low-pass filters at the end of the delay lines, to mimic the
typically faster decay of high frequencies than low ones. It is also common to
use more than four recirculating delays; one reverberator in the Pd distribution
uses sixteen. Finally, it is common to allow separate control of the amplitudes of

218 CHAPTER 7. TIME SHIFTS AND DELAYS

inlet~

reverb-echo echo-del1 5.43216

+~ +~

outlet~ outlet~

+~ +~ -~ -~

+~ +~ -~ -~

inlet/ 200

min 100

max 0

delwrite~ loop-del1 60

delwrite~ loop-del2 71.9345

delwrite~ loop-del4 95.945

delread~ loop-del1 60

delread~ loop-del2 71.9345

delread~ loop-del4 95.945

delread~ loop-del3 86.7545

delwrite~ loop-del3 86.7545

reverb-echo echo-del2 8.45346

reverb-echo echo-del3 13.4367

reverb-echo echo-del4 21.5463

reverb-echo echo-del5 34.3876

reverb-echo echo-del6 55.5437

time.

*~ *~ *~ *~

Get the outputs of the recirculating

delays. Add the inputs to two of them.

Do a power-conserving
mix of them in pairs.

Put the signals back into

the recirculating delays.

feedback gain on a scale
of 0-100 controls reverb

then (1, 3) and (2, 4)

First combine (1, 2) and
(3, 4)...

Tap outputs here.

"early echo" generators,

which also increase echo

density.

Figure 7.31: An artificial reverberator.

7.10. EXAMPLES 219

inlet~ inlet~

outlet~ outlet~

+~ −~

delwrite~ $1 $2

delread~ $1 $2

Figure 7.32: The echo generator used in the reverberator.

the early echos (heard directly) and that of the recirculating signal; parameters
such as these are thought to control sonic qualities described as “presence”,
“warmth”, “clarity”, and so on.

Pitch shifter

Example G09.pitchshift.pd (Figure 7.33) shows a realization of the pitch shifter
described in Section 7.9. A delay line (defined and written elsewhere in the
patch) is read using two vd~ objects. The delay times vary between a minimum
delay (provided as the “delay” control) and the minimum plus a window size
(the “window” control.)

The desired pitch shift in half-tones (h) is first converted into a transposition
factor

t = 2h/12 = elog(2)/12·h ≈ e0.05776h

(called “speed change” in the patch). The computation labeled “tape head
rotation speed” is the same as the formula for f given on page 207. Here the
positive interval (seven half steps) gives rise to a transposition factor greater
than one, and therefore to a negative value for f .

Once f is calculated, the production of the two phased sawtooth signals and
the corresponding envelopes parallels exactly that of the overlapping sample
looper (example B10.sampler.overlap.pd, page 56). The minimum delay is added
to each of the two sawtooth signals to make delay inputs for the vd~ objects,
whose outputs are multiplied by the corresponding envelopes and summed.

Exercises

1. A complex number has magnitude one and argument π/4. What are its
real and imaginary parts?

2. A complex number has magnitude one and real part 1/2. What is its
imaginary part? (There are two possible values.)

220 CHAPTER 7. TIME SHIFTS AND DELAYS

7

*~

line~

80

pack 0 200

r window

r transpose

exp

1.4982

/

* 0.001

line~

pack 0 200

0

r delay

+~

cos~

*~

+~

wrap~

*~

+~

cos~

*~

t b f

-6.228 +~ 0.5

-~ 0.5

*~ 0.5

-~ 0.5

*~ 0.5

- 1

* 0.05776

* -1

<-- transposition
(halftones)

speed
change

tape head

phasor~ max 1.5

delay

(msec)

max 1

rotation freq

|
(OUT)

<--window
(msec)

vd~ G09-del
vd~ G09-del

Figure 7.33: A pitch shifter using two variable taps into a delay line.

7.10. EXAMPLES 221

3. What delay time would you give a comb filter so that its first frequency re-
sponse peak is at 440 Hz.? If the sample rate is 44100 Hz., what frequency
would correspond to the nearest integer delay?

4. Suppose you made a variation on the non-recirculating comb filter so that
the delayed signal was subtracted from the original instead of adding.
What would the new frequency response be?

5. If you want to make a 6-Hz. vibrato with a sinusoidally varying delay
line, and if you want the vibrato to change the frequency by 5%, how big
a delay variation would you need? How would this change if the same
depth of vibrato was desired at 12 Hz.?

6. A complex sinusoid X[n] has frequency 11025 Hz, amplitude 50 and ini-
tial phase 135 degrees. Another one, Y [n], has the same frequency, but
amplitude 20 and initial phase 45 degrees. What are the amplitude and
initial phase of the sum of X and Y ?

7. What are the frequency, initial phase, and amplitude of the signal obtained
when X[n] (above) is delayed 4 samples?

8. Show that the frequency response of a recirculating comb filter with delay
time d and feedback gain g, as a function of angular frequency ω, is equal
to:

[(1 − g cos(2πωd))
2

+ (g sin(2πωd))
2
]
−1/2

222 CHAPTER 7. TIME SHIFTS AND DELAYS

Chapter 8

Filters

In the previous chapter we saw that a delay network can have a non-uniform
frequency response—a gain that varies as a function of frequency. Delay net-
works also typically change the phase of incoming signals variably depending
on frequency. When the delay times used are very short, the most salient effect
of a delay network is its frequency and phase response. A delay network that is
designed specifically for these is called a filter.

In block diagrams, filters are shown as in Figure 8.1 (part a). The curve
shown within the block gives a qualitative representation of the filter’s frequency
response. The frequency response may vary with time, and depending on the
design of the filter, one or more controls (or additional audio inputs) might be
used to change it.

Suppose, following the procedure of Section 7.3, we put a unit-amplitude,
complex-valued sinusoid with angular frequency ω into a filter. We expect to
get out a sinusoid of the same frequency and some amplitude, which depends on
ω. This gives us a complex-valued function H(ω), which is called the transfer
function of the filter.

The frequency response is the gain as a function of the frequency ω. It is is
equal to the absolute value of the transfer function. A filter’s frequency response
is customarily graphed as in Figure 8.1 (part b). An incoming unit-amplitude
sinusoid of frequency ω comes out of the filter with amplitude |H(ω)|.

It is sometimes also useful to know the phase response of the filter, equal
to 6 (H(ω)). For a fixed frequency ω, the filter’s output phase will be 6 (H(ω))
radians ahead of its input phase.

The design and use of filters is a huge subject, because the wide range of uses
a filter might be put to encourages a wide variety of filter design processes. In
some applications a filter must exactly follow a prescribed frequency response,
in others it is important to minimize computation time, in others the phase
response is important, and in still others the filter must behave well when its
parameters change quickly with time.

223

224 CHAPTER 8. FILTERS

(a) (b)

gain

Figure 8.1: Representations of a filter. (a) in a block diagram; (b) a graph of
its frequency response.

8.1 Taxonomy of filters

Over the history of electronic music the technology for building filters has
changed constantly, but certain kinds of filters reappear throughout. In this
section we will give some nomenclature for describing filters of several generic,
recurring types. Later we’ll develop some basic strategies for making filters
with desired characteristics, and finally we’ll discuss some common applications
of filters in computer music.

8.1.1 Low-pass and high-pass filters

By far the most frequent purpose for using a filter is extracting either the low-
frequency or the high-frequency portion of an audio signal, attenuating the rest.
This is accomplished using a low-pass or high-pass filter.

Ideally, a low-pass or high-pass filter would have a frequency response of 1
up to (or down to) a specified cutoff frequency and zero past it; but such filters
cannot be realized in practice. Instead, we try to find realizable approximations
to this ideal response. The more design effort and computation time we put
into it, the closer we can get.

Figure 8.2 shows the frequency response of a low-pass filter. The frequency
spectrum is divided into three bands, labeled on the horizontal axis. The pass-
band is the region (frequency band) where the filter should pass its input through
to its output with unit gain. For a low-pass filter (as shown), the passband
reaches from a frequency of zero up to a certain frequency limit. For a high-
pass filter, the passband would appear on the right-hand side of the graph and
would extend from the frequency limit up to the highest frequency possible. Any
realizable filter’s passband will be only approximately flat; the deviation from
flatness is called the ripple, and is often specified by giving the ratio between

8.1. TAXONOMY OF FILTERS 225

ripple

passband stopband

transition
band

stopband

attenuation

Figure 8.2: Terminology for describing the frequency response of low-pass and
high-pass filters. The horizontal axis is frequency and the vertical axis is gain.
A low-pass filter is shown; a high-pass filter has the same features switched from
right to left.

226 CHAPTER 8. FILTERS

ripple

passband
stopband

transition

stopband

attenuation

stopband

bands

Figure 8.3: Terminology for describing the frequency response of band-pass and
stop-band filters. The horizontal axis is frequency and the vertical axis is gain.
A band-pass filter is shown; a stop-band filter would have a contiguous stopband
surrounded by two passbands.

the highest and lowest gain in the passband, expressed in decibels. The ideal
low-pass or high-pass filter would have a ripple of 0 dB.

The stopband of a low-pass or high-pass filter is the region of the spectrum
(the frequency range) over which the filter is intended not to transmit its input.
The stopband attenuation is the difference, in decibels, between the lowest gain
in the passband and the highest gain in the stopband. Ideally this would be
infinite; the higher the better.

Finally, a realizable filter, whose frequency response is always a continuous
function of frequency, must have a frequency band over which the gain drops
from the passband gain to the stopband gain; this is called the transition band.
The thinner this band can be made, the more nearly ideal the filter.

8.1.2 Band-pass and stop-band filters

A band-pass filter admits frequencies within a given band, rejecting frequencies
below it and above it. Figure 8.3 shows the frequency response of a band-pass
filter, with the key parameters labelled. A stop-band filter does the reverse,
rejecting frequencies within the band and letting through frequencies outside it.

8.1. TAXONOMY OF FILTERS 227

bandwidth

center frequency

Figure 8.4: A simplified view of a band-pass filter, showing bandwidth and
center frequency.

In practice, a simpler language is often used for describing bandpass filters,
as shown in Figure 8.4. Here there are only two parameters: a center frequency
and a bandwidth. The passband is considered to be the region where the filter has
at least half the power gain as at the peak (i.e., the gain is within 3 decibels of
its maximum). The bandwidth is the width, in frequency units, of the passband.
The center frequency is the point of maximum gain, which is approximately the
midpoint of the passband.

8.1.3 Equalizing filters

In some applications, such as equalization, the goal isn’t to pass signals of certain
frequencies while stopping others altogether, but to make controllable adjust-
ments, boosting or attenuating a signal, over a frequency range, by a desired
gain. Two filter types are useful for this. First, a shelving filter (Figure 8.5)
is used for selectively boosting or reducing either the low or high end of the
frequency range. Below a selectable crossover frequency, the filter tends toward
a low-frequency gain, and above it it tends toward a different, high-frequency
one. The crossover frequency, low-frequency gain, and high-frequency gain can
all be adjusted independently.

Second, a peaking filter (Figure 8.6) is capable of boosting or attenuating
signals within a range of frequencies. The center frequency and bandwidth
(which together control the range of frequencies affected), and the in-band and
out-of-band gains are separately adjustible.

Parametric equalizers often employ two shelving filters (one each to adjust
the low and high ends of the spectrum) and two or three peaking filters to adjust
bands in between.

228 CHAPTER 8. FILTERS

high

frequency

gain

low frequency gain

crossover frequency

Figure 8.5: A shelving filter, showing low and high frequency gain, and crossover
frequency.

gain

center frequency

in-band

out-of-band gain

bandwidth

Figure 8.6: A peaking filter, with controllable center frequency, bandwidth, and
in-band and out-of-band gains.

8.2. ELEMENTARY FILTERS 229

IN

OUT

d=1

Q

Figure 8.7: A delay network with a single-sample delay and a complex gain Q.
This is the non-recirculating elementary filter, first form. Compare the non-
recirculating comb filter shown in Figure 7.3, which corresponds to choosing
Q = −1 here.

8.2 Elementary filters

We saw in Chapter 7 how to predict the frequency and phase response of delay
networks. The art of filter design lies in finding a delay network whose transfer
function (which controls the frequency and phase response) has a desired shape.
We will develop an approach to building such delay networks out of the two types
of comb filters developed in Chapter 7: recirculating and non-recirculating. Here
we will be interested in the special case where the delay is only one sample in
length. In this situation, the frequency responses shown in Figures 7.6 and 7.10
no longer look like combs; the second peak recedes all the way to the sample
rate, 2π radians, when d = 1. Since only frequencies between 0 and the Nyquist
frequency (π radians) are audible, in effect there is only one peak when d = 1.

In the comb filters shown in Chapter 7, the peaks are situated at DC (zero
frequency), but we will often wish to place them at other, nonzero frequencies.
This is done using delay networks—comb filters—with complex-valued gains.

8.2.1 Elementary non-recirculating filter

The non-recirculating comb filter may be generalized to yield the design shown
in Figure 8.7. This is the elementary non-recirculating filter, of the first form.

To find its frequency response, as in Chapter 7 we feed the delay network a
complex sinusoid 1, Z, Z2, . . . whose frequency is ω = arg(Z). The nth sample
of the input is Zn and that of the output is

(1 − QZ−1)Zn

230 CHAPTER 8. FILTERS

1 real

imaginary

1-QZ
-1

QZ
-1

Z-Q
Q

Z

r

Figure 8.8: Diagram for calculating the frequency response of the non-
recirculating elementary filter (Figure 8.7). The frequency response is given
by the length of the segment connecting Z to Q in the complex plane.

so the transfer function is

H(Z) = 1 − QZ−1

This can be analyzed graphically as shown in Figure 8.8. The variables q and
α are the magnitude and argument of the complex number Q:

Q = q · (cos(α) + i sin(α))

The gain of the filter is the distance from the point Q to the point Z in the
complex plane. Analytically we can see this because

|1 − QZ−1| = |Z||1 − QZ−1| = |Q − Z|

Graphically, the number QZ−1 is just the number Q rotated backwards (clock-
wise) by the angular frequency ω of the incoming sinusoid. The value |1−QZ−1|
is the distance from QZ−1 to 1 in the complex plane, which is equal to the dis-
tance from Q to Z.

As the frequency of the input sweeps from 0 to 2π, the point Z travels
couterclockwise around the unit circle. At the point where ω = α, the distance

8.2. ELEMENTARY FILTERS 231

0

0.5

frequency0

gain

2

|Q|=1

Figure 8.9: Frequency response of the elementary non-recirculating filter Figure
8.7. Three values of Q are used, all with the same argument (-2 radians), but
with varying absolute value.

is at a minimum, equal to q − 1. The maximum occurs which Z is at the
opposite point of the circle. Figure 8.9 shows the transfer function for three
different values of q.

8.2.2 Non-recirculating filter, second form

Sometimes we will need a variant of the filter above, shown in Figure 8.10, called
the elementary non-recirculating filter, second form. Instead of multiplying the
delay output by Q we multiply the direct signal by its complex conjugate Q. (If

A = a + bi = r · (cos(α) + i sin(α))

is any complex number, its complex conjugate is defined as:

A = a − bi = r · (cos(α) − i sin(α))

Graphically this flips the entire complex plane across the real axis.) The transfer
function of the new filter is

H(Z) = Q − Z−1

This gives rise to the same frequency response as before since

|Q − Z−1| = |Q − Z−1| = |Q − Z|

Here we use the fact that Z = Z−1, for any unit complex number Z, as can be
verified by writing out ZZ in either polar or rectangular form.

Although the two forms of the elementary non-recirculating filter have the
same frequency response, their phase responses are different; this will occasion-
ally lead us to prefer the second form.

232 CHAPTER 8. FILTERS

IN

OUT

Q d=1

Figure 8.10: The elementary non-recirculating filter, second form.

8.2.3 Elementary recirculating filter

The elementary recirculating filter is the recirculating comb filter of Figure 7.7
with a complex-valued feedback gain P as shown in Figure 8.11 (part a). By
the same analysis as before, feeding this network a sinusoid whose nth sample
is Zn gives an output of:

1

1 − PZ−1
Zn

so the transfer function is

H(Z) =
1

1 − PZ−1

The recirculating filter is stable when |P | < 1; when, instead, |P | > 1 the output
grows exponentially as the delayed sample recirculates.

The transfer function is thus just the inverse of that of the non-recirculating
filter (first form). If you put the two in series with P = Q, the output theo-
retically equals the input. (This analysis only demonstrates that for sinusoidal
inputs; that it follows for other signals as well won’t be evident until we have
the background developed in Chapter 9.)

8.2.4 Compound filters

We can use the recirculating and non-recirculating filters developed here to
create a compound filter by putting several elementary ones in series. If the
parameters of the non-recirculating ones (of the first type) are Q1, . . . , Qj and
those of the recirculating ones are P1, . . . , Pk, then putting them all in series, in
any order, will give the transfer function:

H(Z) =
(1 − Q1Z

−1) · · · (1 − QjZ
−1)

(1 − P1Z−1) · · · (1 − PkZ−1)

The frequency response of the resulting compound filter is the product of those
of the elementary ones. (One could also combine elementary filters by adding

8.2. ELEMENTARY FILTERS 233

frequency0 2

(a) (b)

0.5

0

IN

OUT

P

|P|=0.75

d=1

Figure 8.11: The elementary recirculating filter: (a) block diagram; (b) fre-
quency response.

their outputs, or making more complicated networks of them; but for most
purposes the series configuration is the easiest one to deal with.)

8.2.5 Real outputs from complex filters

In most applications, we start with a real-valued signal to filter and we need a
real-valued output, but in general, a compound filter with a transfer function as
above will give a complex-valued output. However, we can construct filters with
non-real-valued coefficients which nonetheless give real-valued outputs, so that
the analysis that we carry out using complex numbers can be used to predict,
explain, and control real-valued output signals. We do this by pairing each
elementary filter (with coefficient A, say) with another having as its coefficient
the complex conjugate A.

For example, putting two non-recirculating filters, with coefficients Q and
Q, in series gives a transfer function equal to:

H(Z) = (1 − QZ−1) · (1 − QZ−1)

which has the property that:

H(Z) = H(Z)

Now if we put any real-valued sinusoid:

Xn = 2 re(AZn) = AZn + AZ
n

we get out:
A · H(Z) · Zn + A · H(Z) · Zn

234 CHAPTER 8. FILTERS

which, by inspection, is another real sinusoid. Here we’re using two properties
of complex conjugates. First, you can add and multiply them at will:

A + B = A + B

AB = A · B

and second, anything plus its complex conjugate is real, and is in fact twice its
real part:

A + A = 2 re(A)

This result for two conjugate filters extends to any compound filter; in general,
we always get a real-valued output from a real-valued input if we arrange that
each coefficient Qi and Pi in the compound filter is either real-valued, or else
appears in a pair with its complex conjugate.

8.2.6 Two recirculating filters for the price of one

When pairing recirculating elementary filters, it is possible to avoid computing
one of each pair, as long as the input is real-valued (and so, the output is as
well.) Supposing the input is a real sinusoid of the form:

AZn + AZ−n

and we apply a single recirculating filter with coefficient P . Letting a[n] denote
the real part of the output, we have:

a[n] = 2re

[
1

1 − PZ−1
AZn +

1

1 − PZ
AZ−n

]

= 2re

[
1

1 − PZ−1
AZn +

1

1 − PZ−1
AZn

]

= 2re

[
2 − 2 re(P)Z−1

(1 − PZ−1)(1 − PZ−1)
AZn

]

= re

[
2 − 2 re(P)Z−1

(1 − PZ−1)(1 − PZ−1)
AZn +

2 − 2 re(P)Z−1

(1 − PZ−1)(1 − PZ−1)
AZ−n

]

(In the second step we used the fact that you can conjugate all or part of an
expression, without changing the result, if you’re just going to take the real
part anyway. The fourth step did the same thing backward.) Comparing the
input to the output, we see that the effect of passing a real signal through a
complex one-pole filter, then taking the real part, is equivalent to passing the
signal through a two-pole, one-zero filter with transfer function equal to:

Hre(Z) =
1 − re(P)Z−1

(1 − PZ−1)(1 − PZ−1)

8.3. DESIGNING FILTERS 235

A similar calculation shows that taking the imaginary part (considered as a real
signal) is equivalent to filtering the input with the transfer function:

Him(Z) =
im(P)Z−1

(1 − PZ−1)(1 − PZ−1)

So taking either the real or imaginary part of a one-pole filter output gives filters
with two poles placed at conjugates. We can combine the two in a particular
way to give the simplest possible numerator of one:

Hre(Z) +
im(P)

re(P)
Him(Z) =

1

(1 − PZ−1)(1 − PZ−1)

This is the transfer function for two conjugate recirculating filters in series, and
so we have shown that we can just run the signal through one of the stages and
combine the real and imaginary part to get the same result. This technique
(called partial fractions) may be repeated for any number of stages in series, as
long as we compute the appropriate combination of real and imaginary parts of
the output of each stage to form the (real) input of the next stage. No similar
shortcut seems to exist for non-recirculating filters; for them it is necessary to
compute each member of each complex-conjugate pair explicitly.

8.3 Designing filters

The frequency response of a series of elementary recirculating and non-recirculating
filters can be estimated graphically by plotting all the coefficients Q1, . . . , Qj

and P1, . . . , Pk on the complex plane and reasoning as in Figure 8.8. The overall
frequency response is the product of all the distances from the point Z to each
of the Qi, divided by the product of the distances to each of the Pi.

One customarily marks each of the Qi with an “o” (calling it a “zero”) and
each of the Pi with an “x” (a “pole”); their names are borrowed from the field
of complex analysis. A plot showing the poles and zeroes associated with a filter
is unimaginatively called a pole-zero plot.

When Z is close to a zero the frequency response tends to dip, and when it
is close to a pole, the frequency response tends to rise. The effect of a pole or a
zero is more pronounced, and also more local, if it is close to the unit circle that
Z is constrained to lie on. Poles must lie within the unit circle for a stable filter.
Zeros may lie on or outside it, but any zero Q outside the unit circle may be
replaced by one within it, at the point 1/Q, to give a constant multiple of the
same frequency response. Except in special cases we will keep the zeros inside
the circle as well as the poles.

In the rest of this section we will show how to construct several of the filter
types most widely used in electronic music. The theory of digital filter design
is vast, and we will only give an introduction here. A deeper treatment is
available online from Julius Smith at ccrma.stanford.edu. See also [Ste96] for a
fuller treatment of filtering theory in the context and language of Digital Signal
Processing.

236 CHAPTER 8. FILTERS

p

point
half-power

0 2

(a)
(b)

Figure 8.12: One-pole lowpass filter: (a) pole-zero diagram; (b) frequency re-
sponse.

8.3.1 One-pole low-pass filter

The one-pole low-pass filter has a single pole located at a positive real number
p, as pictured in Figure 8.12. This is just a recirculating comb filter with delay
length d = 1, and the analysis of Section 7.4 applies. The maximum gain occurs
at a frequency of zero, corresponding to the point on the circle closest to the
point p. The gain there is 1/(1 − p). If we move a distance of 1− p units up or
down from the real (horizontal) axis, the distance increases by a factor of about√

2, and so we expect the half-power point to occur at an angular frequency of
about 1 − p.

This calculation is often made in reverse: if we wish the half-power point to
lie at a given angular frequency ω, we set p = 1 − ω. This approximation only
works well if the value of ω is well under π/2, as it often is in practice.

It is customary to normalize the one-pole lowpass filter, multiplying it by
the constant factor 1− p in order to give a gain of 1 at zero frequency; nonzero
freqencies will then get a gain less than one.

The frequency response is graphed in Figure 8.12 (part b). The audible
frequencies only reach to the middle of the graph; the right-hand side of the
frequency response curve all lies above the Nyquist frequency π.

The one-pole lowpass filter is often used to seek trends in noisy signals. For
instance, if you use a physical controller and only care about changes on the
order of 1/10 second or so, you can smooth the control by using a low-pass filter
whose half-power point is 20 or 30 cycles per second.

8.3. DESIGNING FILTERS 237

r

0

(a)
(b)

Figure 8.13: One-pole, one-zero high-pass filter: (a) pole-zero diagram; (b)
frequency response (from zero to Nyquist frequency).

8.3.2 One-pole, one-zero high-pass filter

Sometimes an audio signal carries an unwanted constant offset, or in other
words, a zero-frequency component. For example, the waveshaping spectra of
Section 5.3 almost always contain a constant component. This is inaudible,
but, since it specifes electrical power that is sent to your speakers, its presence
reduces the level of loudness you can reach without distortion. Another name
for a constant signal component is “DC”, meaning “direct current”.

An easy and practical way to remove the zero-frequency component from an
audio signal is to use a one-pole lowpass filter to extract it, and then subtract
the result from the signal. The resulting transfer function is one minus the
transfer function of the lowpass, giving:

H(Z) = 1 − 1 − p

1 − pZ−1
= p

1 − Z−1

1 − pZ−1

The factor of 1 − p in the numerator of the low-pass transfer function is the
normalization factor needed so that the gain is one at zero frequency.

By examining the right-hand side of the equation (comparing it to the general
formula for compound filters), we see that there is still a pole at the real number
p, and there is now also a zero at the point 1. The pole-zero plot is as shown in
Figure 8.13 (part a), and the frequency response in part (b). (Henceforth, we
will only plot frequency responses to the Nyquist frequency π; in the previous
example we plotted it all the way up to the sample rate, 2π.)

238 CHAPTER 8. FILTERS

(a)

real

imaginary

p q

0

(b)

1

1-d

d

Figure 8.14: One-pole, one-zero shelving filter: (a) pole-zero diagram; (b) fre-
quency response.

8.3.3 Shelving filter

Generalizing the one-zero, one-pole filter above, supose we place the zero at a
point q, a real number close to, but less than, one. The pole, at the point p, is
similarly situated, and might be either greater than or less than q, i.e., to the
right or left, respectively, but with both q and p within the unit circle. This
situation is diagrammed in Figure 8.14.

At points of the circle far from p and q, the effects of the pole and the zero
are nearly inverse (the distances to them are nearly equal), so the filter passes
those frequencies nearly unaltered. In the neighborhood of p and q, on the other
hand, the filter will have a gain greater or less than one depending on which of
p or q is closer to the circle. This configuration therefore acts as a low-frequency
shelving filter. (To make a high-frequency shelving filter we do the same thing,
only placing p and q close to -1 instead of 1.)

To find the parameters of a desired shelving filter, start with a desired tran-
sition frequency ω (in angular units) and a desired low-frequency gain g. First
we choose an average distance d, as pictured in the figure, from the pole and
the zero to the edge of the circle. For small values of d, the region of influence
is about d radians, so simply set d = ω to get the desired transition frequency.

Then put the pole at p = 1 − d
√

g and the zero at q = 1 − d/
√

g. The gain

8.3. DESIGNING FILTERS 239

P

0

(a)
(b)

1

P
2

Figure 8.15: Two-pole band-pass filter: (a) pole-zero diagram; (b) frequency
response.

at zero frequency is then
1 − q

1 − p
= g

as desired. For example, in the figure, d is 0.25 radians and g is 2.

8.3.4 Band-pass filter

Starting with the three filter types shown above, which all have real-valued poles
and zeros, we now transform them to operate on bands located off the real axis.
The low-pass, high-pass, and shelving filters will then become band-pass, band-
stop, and peaking filters. First we develop the band-pass filter. Suppose we
want a center frequency at ω radians and a bandwidth of β. We take the low-
pass filter with cutoff frequency β; its pole is located, for small values of β,
roughly at p = 1− β. Now rotate this value by ω radians in the complex plane,
i.e., multiply by the complex number cosω + i sin ω. The new pole is at:

P1 = (1 − β)(cos ω + i sin ω)

To get a real-valued output, this must be paired with another pole:

P2 = P1 = (1 − β)(cos ω − i sin ω)

The resulting pole-zero plot is as shown in Figure 8.15.

The peak is approximately (not exactly) at the desired center frequency ω,
and the frequency response drops by 3 decibels approximately β radians above
and below it. It is often desirable to normalize the filter to have a peak gain

240 CHAPTER 8. FILTERS

0

(a)
(b)

Figure 8.16: A peaking filter: (a) pole-zero diagram; (b) frequency response.
Here the filter is set to attenuate by 6 decibels at the center frequency.

near unity; this is done by multiplying the input or output by the product of
the distances of the two poles to the peak on the circle, or (very approximately):

β ∗ (β + 2ω)

For some applications it is desirable to add a zero at the points 1 and −1, so
that the gain drops to zero at angular frequencies 0 and π.

8.3.5 Peaking and band-stop filter

In the same way, a peaking filter is obtained from a shelving filter by rotating
the pole and the zero, and by providing a conjugate pole and zero, as shown in
Figure 8.16. If the desired center frequency is ω, and the radii of the pole and
zero (as for the shelving filter) are p and q, then we place the the upper pole
and zero at

P1 = p · (cos ω + i sin ω)

Q1 = q · (cos ω + i sin ω)

As a special case, placing the zero on the unit circle gives a band-stop filter;
in this case the gain at the center frequency is zero. This is analogous to the
one-pole, one-zero high-pass filter above.

8.3.6 Butterworth filters

A filter with one real pole and one real zero can be configured as a shelving
filter, as a high-pass filter (putting the zero at the point 1) or as a low-pass
filter (putting the zero at −1). The frequency responses of these filters are quite

8.3. DESIGNING FILTERS 241

blunt; in other words, the transition regions are wide. It is often desirable to get
a sharper filter, either shelving, low- or high-pass, whose two bands are flatter
and separated by a narrower transition region.

A procedure borrowed from the analog filtering world transforms real, one-
pole, one-zero filters to corresponding Butterworth filters, which have narrower
transition regions. This procedure is described clearly and elegantly in the last
chapter of [Ste96]. The derivation uses more mathematics background than we
are using here, and we will simply present the result without deriving it.

To make a Butterworth filter out of a high-pass, low-pass, or shelving filter,
suppose that either the pole or the zero is given by the expression

1 − r2

(1 + r)
2

where r is a parameter ranging from 1 to ∞. If r = 0 this is the point 1, and if
r = ∞ it’s −1.

Then, for reasons which will remain mysterious, we replace the point (whether
pole or zero) by n points given by:

(1 − r2) − (2r sin(α))i

1 + r2 + 2r cos(α))

where α ranges over the values:

π

2
(
1

n
− 1),

π

2
(
3

n
− 1), . . . ,

π

2
(
2n − 1

n
− 1)

In other words, α takes on n equally spaced angles between −π/2 and π/2. The
points are arranged in the complex plane as shown in Figure 8.17. They lie on a
circle through the original real-valued point, which cuts the unit circle at right
angles.

A good estimate for the cutoff or transition frequency defined by these cir-
cular collections of poles or zeros is simply the spot where the circle intersects
the unit circle, corresponding to α = π/2. This gives the point

(1 − r2) − 2ri

1 + r2

which, after some algebra, gives an angular frequency equal to

β = 2arctan(r)

Figure 8.18 (part a) shows a pole-zero diagram and frequency response for
a Butterworth low-pass filter with three poles and three zeros. Part (b) shows
the frequency response of the low-pass filter and three other filters obtained by
choosing different values of β (and hence r) for the zeros, while leaving the poles
stationary. As the zeros progress from β = π to β = 0, the filter, which starts
as a low-pass filter, becomes a shelving filter and then a high-pass one.

242 CHAPTER 8. FILTERS

r=0.5

= 3 /8

/8 =

/8 = -

/8 = -3

r=1

r=2

Figure 8.17: Replacing a real-valued pole or zero (shown as a solid dot) with an
array of four of them (circles) as for a Butterworth filter. In this example we
get four new poles or zeros as shown, lying along the circle where r = 0.5.

0

(a)
(b)

3

shelf 1

low-pass

shelf 2

hi-pass

Figure 8.18: Butterworth low-pass filter with three poles and three zeros: (a)
pole-zero plot. The poles are chosen for a cutoff frequency β = π/4; (b) fre-
quency responses for four filters with the same pole configuration, with different
placements of zeros (but leaving the poles fixed). The low-pass filter results from
setting β = π for the zeros; the two shelving filters correspond to β = 3π/10
and β = 2π/10, and finally the high-pass filter is obtained setting β = 0. The
high-pass filter is normalized for unit gain at the Nyquist frequency, and the
others for unit gain at DC.

8.3. DESIGNING FILTERS 243

8.3.7 Stretching the unit circle with rational functions

In Section 8.3.4 we saw a simple way to turn a low-pass filter into a band-pass
one. It is tempting to apply the same method to turn our Butterworth low-
pass filter into a higher-quality band-pass filter; but if we wish to preserve the
high quality of the Butterworth filter we must be more careful than before in
the design of the transformation used. In this section we will prepare the way
to making the Butterworth band-pass filter by introducing a class of rational
transformations of the complex plane which preserve the unit circle.

This discussion is adapted from [PB87], pp. 201-206 (I’m grateful to Julius
Smith for this pointer). There the tansformation is carried out in continuous
time, but here we have adapted the method to operate in discrete time, in order
to make the discussion self-contained.

The idea is to start with any filter with a transfer function as before:

H(Z) =
(1 − Q1Z

−1) · · · (1 − QjZ
−1)

(1 − P1Z−1) · · · (1 − PkZ−1)

whose frequency response (the gain at a frequency ω) is given by:

|H(cos(ω) + i sin(ω))|

Now suppose we can find a rational function, R(Z), which distorts the unit
circle in some desirable way. For R to be a rational function means that it
can be written as a quotient of two polynomials (so, for example, the transfer
function H is a rational function). That R sends points on the unit circle to
other points on the unit circle is just the condition that |R(Z)| = 1 whenever
Z = 1. It can easily be checked that any function of the form

R(Z) = U · AnZn + An−1Z
n−1 + · · · + A0

A0Zn + A1Zn−1 + · · · + An

(where |U | = 1) has this property. The same reasoning as in Section 8.2.2
confirms that |R(Z)| = 1 whenever Z = 1.

Once we have a suitable rational function R, we can simply compose it with
the original transfer function H to fabricate a new rational function,

J(Z) = H(R(Z))

The gain of the new filter J at the frequency ω is then equal to

|J(cos(ω) + i sin(ω))| = |H(cos(φ) + i sin(φ))|

where φ is chosen so that:

cos(φ) + i sin(φ) = R(cos(ω) + i sin(ω))

For example, suppose we start with a one-zero, one-pole low-pass filter:

H(Z) =
−1 − Z−1

g − Z−1

244 CHAPTER 8. FILTERS

(a) (b)

Figure 8.19: One-pole, one-zero low-pass filter: (a) pole-zero plot; (b) plot for
the resulting filter after the transformation R(Z) = Z2. The result is a band-
pass filter with center frequency π/2.

and apply the function

R(Z) = −Z2 = −1 · Z2 + 0 · Z + 0

0 · Z2 + 0 · Z + 1

Geometrically, this choice of R stretches the unit circle uniformly to twice its
circumference and wraps it around itself twice. The points 1 and −1 are both
sent to the point −1, and the points i and −i are sent to the point 1. The
resulting transfer function is

J(Z) =
−1 − Z−2

g − Z−2
= − (1 − iZ−1)(−1 − iZ−1)

(
√

g − Z−1)(−√
g − Z−1)

The pole-zero plots of H and J are shown in Figure 8.19. From a low-pass filter
we ended up with a band-pass filter. The points i and −i which R sends to 1
(where the original filter’s gain is highest) become points of highest gain for the
new filter.

8.3.8 Butterworth band-pass filter

We can apply the transformation R(Z) = −Z2 to convert the Butterworth
filter into a high-quality band-pass filter with center frequency π/2. A further
transformation can then be applied to shift the center frequency to any desired
value ω between 0 and π. The transformation will be of the form,

S(Z) =
aZ + b

bZ + a

8.3. DESIGNING FILTERS 245

where a and b are real numbers and not both are zero. This is a particular case
of the general form given above for unit-circle-preserving rational functions. We
have S(1) = 1 and S(−1) = −1, and the top and bottom halves of the unit
circle are transformed symmetrically (if Z goes to W then Z goes to W). The
qualitative effect of the transformation S is to squash points of the unit circle
toward 1 or −1.

In particular, given a desired center frequency ω, we wish to choose S so
that:

S(cos(ω) + i sin(ω)) = i

If we leave R = −Z2 as before, and let H be the transfer function for a low-pass
Butterworth filter, then the combined filter with transfer function H(R(S(Z)))
will be a band-pass filter with center frequency ω. Solving for a and b gives:

a = cos(
π

4
− ω

2
), b = sin(

π

4
− ω

2
)

The new transfer function, H(R(S(Z))), will have 2n poles and 2n zeros (if n
is the degree of the Butterworth filter H).

Knowing the transfer function is good, but even better is knowing the lo-
cations of all the poles and zeros of the new filter, which we need to be able
to compute it using elementary filters. If Z is a pole of the transfer function
J(Z) = H(R(S(Z))), that is, if J(Z) = ∞, then R(S(Z)) must be a pole of
H. The same goes for zeros. To find a pole or zero of J we set R(S(Z)) = W ,
where W is a pole or zero of H, and solve for Z. This gives:

−
[
aZ + b

bZ + a

]2

= W

aZ + b

bZ + a
= ±

√
−W

Z =
±a

√
−W − b

∓b
√
−W + a

(Here a and b are as given above and we have used the fact that a2 + b2 = 1).
A sample pole-zero plot and frequency response of J are shown in Figure 8.20.

8.3.9 Time-varying coefficients

In some recursive filter designs, changing the coefficients of the filter can inject
energy into the system. A physical analogue is a child on a swing set. The child
oscillates back and forth at the resonant frequency of the system, and pushing or
pulling the child injects or extracts energy smoothly. However, if you decide to
shorten the chain or move the swing set itself, you may inject an unpredictable
amount of energy into the system. The same thing can happen when you change
the coefficients in a resonant recirculating filter.

The simple one-zero and one-pole filters used here don’t have this difficulty;
if the feedback or feed-forward gain is changed smoothly (in the sense of an

246 CHAPTER 8. FILTERS

0

(a) (b)

3 3

Figure 8.20: Butterworth band-pass filter: (a) pole-zero diagram; (b) frequency
response. The center frequency is π/4. The bandwidth depends both on center
frequency and on the bandwidth of the original Butterworth low-pass filter used.

amplitude envelope) the output will behave smoothly as well. But one subtlety
arises when trying to normalize a recursive filter’s output when the feedback
gain is close to one. For example, suppose we have a one-pole low-pass filter
with gain 0.99 (for a cutoff frequency of 0.01 radians, or 70 Hz. at the usual
sample rate). To normalize this for unit DC gain we multiply by 0.01. Suppose
now we wish to double the cutoff frequency by changing the gain slightly to
0.98. This is fine except that the normalizing factor suddenly doubles. If we
multiply the filter’s output by the normalizing factor, the output will suddenly,
although perhaps only momentarily, jump by a factor of two.

The trick is to normalize at the input of the filter, not the output. Figure 8.21
(part a) shows a complex recirculating filter, with feedback gain P , normalized
at the input by 1 − |P | so that the peak gain is one. Part (b) shows the wrong
way to do it, multiplying at the output.

Things get more complicated when several elementary recirculating filters
are put in series, since the correct normalizing factor is in general a function of
all the coefficients. One possible approach, if such a filter is required to change
rapidly, is to normalize each input separately as if it were acting alone, then
multiplying the output, finally, by whaever further correction is needed.

8.3.10 Impulse responses of recirculating filters

In Section 7.4 we analyzed the impulse response of a recirculating comb filter, of
which the one-pole low-pass filter is a special case. Figure 8.22 shows the result
for two low-pass filters and one complex one-pole resonant filter. All are ele-
mentary recirculating filters as introduced in Section 8.2.3. Each is normalized

8.3. DESIGNING FILTERS 247

IN

OUT

OUT

(a - right) (b - wrong)

1-|P|

P

d=1

1-|P|

IN

P

d=1

Figure 8.21: Normalizing a recirculating elementary filter: (a) correctly, by
multiplying in the normalization factor at the input; (b) incorrectly, multiplying
at the output.

to have unit maximum gain.

In the case of a low-pass filter, the impulse response gets longer (and lower)
as the pole gets closer to one. Suppose the pole is at a point 1 − 1/n (so that
the cutoff frequency is 1/n radians). The normalizing factor is also 1/n. After
n points, the output diminishes by a factor of

(

1 − 1

n

)n

≈ 1

e

where e is Euler’s constant, about 2.718. The filter can be said to have a settling
time of n samples. In the figure, n = 5 for part (a) and n = 10 for part (b).
In general, the settling time (in samples) is approximately one over the cutoff
frequency (in angular units).

The situation gets more interesting when we look at a resonant one-pole
filter, that is, one whose pole lies off the real axis. In part (c) of the figure, the
pole P has absolute value 0.9 (as in part b), but its argument is set to 2π/10
radians. We get the same settling time as in part (b), but the output rings at
the resonant frequency (and so at a period of 10 samples in this example).

A natural question to ask is, how many periods of ringing do we get before
the filter decays to strength 1/e? If the pole of a resonant filter has modulus
1 − 1/n as above, we have seen in Section 8.2.3 that the bandwidth (call it b)
is about 1/n, and we see here that the settling time is about n. The resonant
frequency (call it ω) is the argument of the pole, and the period in samples of
the ringing is 2π/ω. The number of periods that make up the settling time is

248 CHAPTER 8. FILTERS

1/5

1/(5e)

1/10

1/(10e)

n

(a)

(b)

(c)

1/10

1/(10e)

5

10

10

Figure 8.22: The impulse response of three elementary recirculating (one-pole)
filters, normalized for peak gain 1: (a) low-pass with P = 0.8; (b) low-pass with
P = 0.9; (c) band-pass, with |P | = 0.9 and a center frequency of 2π/10.

8.4. APPLICATIONS 249

thus:
n

2π/ω
=

1

2π

ω

b
=

q

2π

where q is the quality of the filter, defined as the center frequency divided by
bandwidth. Resonant filters are often specified in terms of the center frequency
and “q” in place of bandwidth.

8.3.11 All-pass filters

Sometimes a filter is applied to get a desired phase change, rather than to alter
the amplitudes of the frequency components of a sound. In this situation we
would need a way to design a filter with a constant, unit frequency response
but which changes the phase of an incoming sinusoid in a way that depends
on its frequency. We have already seen in Chapter 7 that a delay of length d
introduces a phase change of −dω, at the angular frequency ω. Another class of
filters, called all-pass filters, can make phase changes which are more interesting
functions of ω.

To design an all-pass filter, we start with two facts: first, an elementary
recirculating filter and an elementary non-recirculating one cancel each other
out perfectly if they have the same gain coefficient. In other words, if a signal
has been put through a one-zero filter, either real or complex, the effect can be
reversed by sequentially applying a one-pole filter, and vice versa.

The second fact is that the elementary non-recirculating filter of the second
form has the same frequency response as that of the first form; they differ only
in phase response. So if we combine an elementary recirculating filter with an
elementary non-recirculating one of the second form, the frequency responses
cancel out (to a flat gain independent of frequency) but the phase response is
not constant.

To find the transfer function, we choose the same complex number P < 1 as
coefficient for both elementary filters and multiply their transfer functions:

H(Z) =
1 − PZ−1

P − Z−1

The coefficient P controls both the location of the one pole (at P itself) and the
zero (at 1/P). Figure 8.23 shows the phase response of the all-pass filter for four
real-valued choices p of the coefficient. At frequencies of 0, π, and 2π, the phase
response is just that of a one-sample delay; but for frequencies in between, the
phase response is bent upward or downward depending on the coefficient.

Complex coefficients give similar phase response curves, but the frequencies
at which they cross the diagonal line in the figure are shifted according to the
argument of the coefficient P .

8.4 Applications

Filters have a broad range of applications both in audio engineering and in elec-
tronic music. The former include, for instance, equalizers, speaker crossovers,

250 CHAPTER 8. FILTERS

0 2

0

2

p=0.8

-0.8
0

0.4

Figure 8.23: Phase response of all-pass filters with different pole locations p.
When the pole is located at zero, the filter reduces to a one-sample delay.

sample rate converters, and DC removal (which we have already used in earlier
chapters). Here, though, we’ll be concerned with the latter.

8.4.1 Subtractive synthesis

Subtractive synthesis refers to using filters to shape the spectral envelope of a
sound, forming another sound, usually preserving qualities of the original sound
such as pitch, roughness, noisiness, or graniness. The spectral envelope of the
resulting sound is the product of the spectral envelope of the original sound with
the frequency response of the filter. Figure 8.24 shows a possible configuration
of source, filter, and result.

The filter may be constant or time-varying. Already in wide use by the
mid 1950s, subtractive synthesis boomed with the introduction of the voltage-
controlled filter (VCF), which became widely available in the mid 1960s with
the appearance of modular synthesizers. The VCF has two inputs: one for the
sound to filter, and one to vary the center or cutoff frequency of the filter.

A popular use of a VCF is to control the center frequency of a resonant filter
from the same ADSR generator that controls the amplitude; a possible block
diagram is shown in Figure 8.25. In this configuration, the louder portion of a
note (loudness roughly controlled by the multiplier at the bottom) may also be
made to sound brighter, using the filter, than the quieter parts; this can mimic
the spectral evolution of strings or brass instruments over the life of a note.

8.4. APPLICATIONS 251

amplitude

frequency

(a)

(b)

(c)

Figure 8.24: Subtractive synthesis: (a) spectrum of input sound; (b) filter fre-
quency response; (c) spectrum of output sound.

252 CHAPTER 8. FILTERS

OUT

frequency

center
frequency

Figure 8.25: ADSR-controlled subtractive synthesis.

8.4.2 Envelope following

It is frequently desirable to use the time-varying power of an incoming signal
to trigger or control a musical process. To do this, we will need a procedure
for measuring the power of an audio signal. Since most audio signals pass
through zero many times per second, it won’t suffice to take the absolute value
of the signal as a measure of its power; instead, we must calculate the average
power over an interval of time long enough that its variations won’t show up in
the power estimate, but short enough that changes in signal level are quickly
reflected in the power estimate. A computation that provides a time-varying
power estimate of a signal is called an envelope follower.

The output of a low-pass filter can be viewed as a moving average of its
input. For example, suppose we apply a normalized one-pole low-pass filter (as
in Figure 8.21) to an incoming signal x[n]. The output (call it y[n]) is the sum
of the delay output times p (real-valued for a low-pass filter), with 1 − p times
the input:

y[n] = p · y[n − 1] + (1 − p) · x[n]

so each input is averaged, with weight 1−p, into the previous output to produce
a new output. So we can make a moving average of the square of an audio signal
using the diagram of Figure 8.26. The output is a time-varying average of the
instantaneous power x[n]2, and the design of the low-pass filter controls, among
other things, the settling time of the moving average.

8.4. APPLICATIONS 253

OUT

IN

Figure 8.26: Envelope follower. The output is the average power of the input
signal.

For more insight into the design of a suitable low-pass filter for an envelope
follower, we analyze it from the point of view of signal spectra. If, for instance,
we put in a real-valued sinusoid:

x[n] = a · cos(αn)

the result of squaring is:

x[n]
2

=
a2

2
(cos(2αn) + 1)

and so if the low-pass filter effectively stops the component of frequency 2α
we will get out approximately the constant a2/2, which is indeed the average
power.

The situation for a signal with several components is similar. Suppose the
input signal is now,

x[n] = a · cos(αn) + b · cos(βn)

whose spectrum is plotted in Figure 8.27 (part a). (Here we have omitted
the two phase terms but they will have no effect on the outcome.) Squaring
the signal produces the spectrum shown in part (b). (See Section 5.2.) We
can get the desired fixed value of (a2 + b2)/2 simply by filtering out all the
other components; ideally the result will be a constant (DC) signal. The lowest
frequency we need to filter out is the minimum difference between two partials
in the original signal.

Envelope followers may also be used on noisy signals, which may be thought
of as signals with dense spectra. In this situation there will be difference frequen-
cies arbitrarily close to zero frequency, and filtering them out entirely will be

254 CHAPTER 8. FILTERS

frequency

amplitude

a/2

0

b/2

a +b
2 2

2

- 2 2 +

(a)

(b)

Figure 8.27: Envelope following from the spectral point of view: (a) an incoming
signal with two components; (b) the result of squaring it.

impossible; we will always get fluctuations in the output, but they will decrease
proportionally as the filter’s pass band is narrowed.

Although a narrower bass band will always give a cleaner output, whether
for discrete or continuous spectra, the filter’s settling time will lengthen propor-
tionally as the bass band is narrowed. There is thus a tradeoff between getting
a quick response and a smooth result.

8.4.3 Single Sideband Modulation

As we saw in Chapter 5, multiplying two real sinusoids together results in a sig-
nal with two new components at the sum and difference of the original frequen-
cies. If we carry out the same operation with complex sinusoids, we get only one
new resultant frequency; this is one result of the greater mathematical simplicity
of complex sinusoids as compared to real ones. If we multiply a complex sinu-
soid 1, Z, Z2, . . . with another one, 1,W,W 2, . . . the result is 1,WZ, (WZ)

2
, . . .,

which is another complex sinusoid whose frequency, 6 (ZW), is the sum of the
two original frequencies.

In general, since complex sinusoids have simpler properties than real ones,
it is often useful to be able to convert from real sinusoids to complex ones. In
other words, from the real sinusoid:

x[n] = a · cos(ωn)

8.5. EXAMPLES 255

(with a spectral peak of amplitude a and frequency ω) we would like a way of
computing the complex sinusoid:

X[n] = a (cos(ωn) + i sin(ωn))

so that
x[n] = Re(X[n]).

We would like a linear process for doing this, so that superpositions of sinusoids
get treated as if their components were dealt with separately.

Of course we could equally well have chosen the complex sinusoid with fre-
quency −ω:

X ′[n] = a (cos(ωn) − i sin(ωn))

and in fact x[n] is just half the sum of the two. In essence we need a filter that
will pass through positive frequencies (actually frequencies between 0 and π,
corresponding to values of Z on the top half of the complex unit circle) from
negative values (from −π to 0, or equivalently, from π to 2π—the bottom half
of the unit circle).

One can design such a filter by designing a low-pass filter with cutoff fre-
quency π/2, and then performing a rotation by π/2 radians using the technique
of Section 8.3.4. However, it turns out to be easier to do it using two specially
designed networks of all-pass filters with real coefficients.

Calling the transfer functions of the two filters H1 and H2, we design the
filters so that

6 (H1(Z)) − 6 (H2(Z)) ≈
{

π/2 0 < 6 (Z) < π
−π/2 −π < 6 (Z) < 0

or in other words,
H1(Z) ≈ iH2(Z), 0 < 6 (Z) < π

H1(Z) ≈ −iH2(Z), −π < 6 (Z) < 0

Then for any incoming real-valued signal x[n] we simply form a complex number
a[n] + ib[n] where a[n] is the output of the first filter and b[n] is the output of
the second. Any complex sinusoidal component of x[n] (call it Zn) will be
transformed to

H1Z + iH2(Z) ≈
{

2H1Z 0 < 6 (Z) < π
0 otherwise

Having started with a real-valued signal, whose energy is split equally into
positive and negative frequencies, we end up with a complex-valued one with
only positive frequencies.

8.5 Examples

In this section we will first introduce some easy-to-use prefabricated filters avail-
able in Pd to develop examples showing the three applications from the previous
section. Then we will show some more sophisticated applications that require
explicitly designed filters.

256 CHAPTER 8. FILTERS

lop~

noise~

0

low-pass filter

<-- cutoff

white noise,
test signal

(IN)
|

|
(OUT)

+~ 1

hip~ 5 high-pass filter

0

add "DC"

osc~ 220
sinusoidal
test signal

|

|

(a) (b)

(OUT)

(IN)

Figure 8.28: Using prefabricated filters in Pd: (a) a low-pass filter, with white
noise as a test input; (b) using a high-pass filter to remove a signal component
of frequency 0.

Prefabricated low-, high-, and band-pass filters

Patches H01.low-pass.pd, H02.high-pass.pd, and H03.band-pass.pd (Figure 8.28)
show Pd’s built-in filters, which implement filter designs described in Sections
8.3.1, 8.3.2 and 8.3.4. Two of the patches also use a noise generator we have
not introduced before. We will need four new Pd objects:

lop~ : one-pole low-pass filter. The left inlet takes a signal to be filtered, and

the right inlet takes control messages to set the cutoff frequency of the filter.
The filter is normalized so that the gain is one at frequency 0.

hip~ : one-pole, one-zero high-pass filter, with the same inputs and outputs

as lop~, normalized to have a gain of one at the Nyquist frequency.

bp~ : resonant filter. The middle inlet takes control messages to set the center

qrequency, and the right inlet to set “q”.

noise~ : white noise generator. Each sample is an independent pseudo-
random number, uniformly distributed from -1 to 1.

The first three example patches demonstrate these three filters (see Figure
8.28). The lop~ and bp~ objects are demonstrated with noise as input; hip~ as
shown is used to remove the DC (zero frequency) component of a signal.

Prefabricated time-varying band-pass filter

Time-varying band-pass filtering, as often used in classical subtractive synthesis
(Section 8.4.1), can be done using the vcf~ object, introduced here:

vcf~ : a “voltage controlled” band-pass filter, similar to bp~, but with a signal

8.5. EXAMPLES 257

0

phasor~

+~

0

0

0

0

vcf~

tabread4~ mtof

sawtooth
oscillator

LFO for sweep

add base to sweep

convert to Hz.

mtof

phasor~

*~

pitch

sweep speed

sweep depth

base center frequency

Q (selectivity)

(OUT)
|

Figure 8.29: The vcf~ band-pass filter, with its center frequency controlled by
an audio signal (as compared to bp~ which takes only control messages to set
its center frequency.

inlet to control center frequency. Both bp~ and vcf~ are one-pole resonant filters
as developed in Section 8.3.4; bp~ outputs only the real part of the resulting
signal, while vcf~ outputs the real and imaginary parts separately.

Example H04.filter.sweep.pd (Figure 8.29) demonstrates using the vcf~ ob-
ject for a simple and characteristic subtractive synthesis task. A phasor~ object
(at top) creates a sawtooth wave to filter. (This is not especially good practice
as we are not controlling the possibility of foldover; a better sawtooth generator
for this purpose will be developed in Chapter 10.) The second phasor~ object
(labeled “LFO for sweep”) controls the time-varying center frequency. After
adjusting to set the depth and a base center frequency (given in MIDI units),
the result is converted into Hertz (using the tabread4~ object) and passed to
vcf~ to set its center frequency. Another example of using a vcf~ object for
subtractive synthesis is demonstrated in example H05.filter.floyd.pd.

Envelope followers

Example H06.envelope.follower.pd shows a simple and self-explanatory realiza-
tion of the envelope follower described in Section 8.4.2. An interesting ap-
plication of envelope following is shown in Example H07.measure.spectrum.pd
(Figure 8.30, part a). A famous bell sample is looped as a test sound. Rather

258 CHAPTER 8. FILTERS

0

bp~

bp~

0

0

env~ 4096

+~ 1

r $0-loopf

phasor~

tabread4~ $0-array

r $0-totsamps*~

Q

(OUT)
|

measured strength

signal to analyze

test frequency

phasor~ 100

phasor~

0

cos~ cos~

+~ 0.25

snapshot~

*~ *~

lop~ lop~

0

snapshot~

0 0

r $0-tick

modulate

to DC

low-pass filter

test frequency

signal to analyze

responsiveness

real part imaginary part

(a) (b)

Figure 8.30: Analyzing the spectrum of a sound: (a) band-pass filtering a sam-
pled bell sound and envelope-following the result; (b) frequency-shifting a partial
to DC and reading off its real and imaginary part.

than get the overall mean square power of the bell, we would like to estimate
the frequency and power of each of its partials. To do this we sweep a band-pass
filter up and down in frequency, listening to the result and/or watching the fil-
ter’s output power using an envelope follower. (We use two band-pass filters in
series for better isolation of the partials; this is not especially good filter design
practice but it will do in this context.) When the filter is tuned to a partial the
envelope follower reports its strength.

Example H08.heterodyning.pd (part (b) of the figure) shows an alternative
way of finding partial strengths of an incoming sound; it has the advantage of
reporting the phase as well as the strength. First we modulate the desired partial
down to zero frequency. We use a complex-valued sinusoid as a modulator
so that we get only one sideband for each component of the input. The test
frequency is the only frequency that is modulated to DC; others go elsewhere.
We then low-pass the resulting complex signal. (We can use a real-valued low-
pass filter separately on the real and imaginary parts.) This essentially removes

8.5. EXAMPLES 259

cos~ cos~

*~ *~

-~

0

sample loop for

test signal

pair of allpass
filters to make

90 degree phase
shifted versions

cosine and sine waves

pd bell-loop

phasor~

<-- complex multipier
(calculates real part)

to form the real and
imaginary part of a
complex sinusoidhilbert~

|
(OUT)

shift frequency

-~ 0.25

Figure 8.31: Using an all-pass filter network to make a frequency shifter.

all the partials except for the DC one, which we then harvest. This technique
is the basis of Fourier analysis, the subject of Chapter 9.

Single sideband modulation

As described in Section 8.4.3, a pair of all-pass filters can be constructed to
give roughly π/2 phase difference for positive frequencies and −π/2 for negative
ones. The design of these pairs is beyond the scope of this discussion (see, for
instance, [Reg93]) but Pd does provide an abstraction, hilbert~, to do this.
Example H09.ssb.modulation.pd, shown in Figure 8.31, demonstrates how to
use the hilbert~ abstraction to do signal sideband modulation. The Hilbert
transform dates to the analog era [Str95, pp.129-132].

The two outputs of hilbert~, considered as the real and imaginary parts of
a complex-valued signal, are multiplied by a complex sinusoid (at right in the
figure), and the real part is output. The components of the resulting signal are
those of the input shifted by a (positive or negative) frequency specified in the
number box.

Using elementary filters directly: shelving and peaking

No finite set of prefabricated filters could fill every possible need, and so Pd
provides the elementary filters of Sections 8.2.1-8.2.3 in raw form, so that the
user can supply the filter coefficients explicitly. In this section we will describe
patches that realize the shelving and peaking filters of Sections 8.3.3 and 8.3.5
directly from elementary filters. First we introduce the six Pd objects that
realize elementary filters:

260 CHAPTER 8. FILTERS

0

rpole~

/ 100

0

/ 100

rzero~

pole

0

/ 100

0

/ 100

0

sincos

* 3.14159

/ 180

*

t b f t b f

cpole~

czero~

pole and zero
radii (%)

*
* *

zero (%)

angle (degrees)

| |

|
(IN)|

(IN)

(a) (b)
(OUT) (OUT)

Figure 8.32: Building filters from elementary, raw ones: a. shelving; b. peaking.

rzero~ , rzero rev~ , rpole~ : elementary filters with real-valued coeffi-

cients operating on real-valued signals. The three implement non-recirculating
filters of the first and second types, and the recirculating filter. They all have
one inlet, at right, to supply the coefficient that sets the location of the zero or
pole. The inlet for the coefficient (as well as the left inlet for the signal to filter)
take audio signals. No stability check is performed.

czero~ , czero rev~ , cpole~ : elementary filters with complex-valued

coefficients, operating on complex-valued signals, corresponding to the real-
valued ones above. Instead of two inlets and one outlet, each of these filters has
four inlets (real and imaginary part of the signal to filter, and real and imaginary
part of the coefficient) and two outlets for the complex-valued output.

The example patches use a pair of abstractions to graph the frequency and
phase responses of filters as explained in Example H10.measurement.pd. Exam-
ple H11.shelving.pd (Figure 8.32, part a) shows how to make a shelving filter.
One elementary non-recirculating filter (rzero~) and one elementary recircu-
lating one (rpole~) are put in series. As the analysis of Section 8.3.9 might
suggest, the rzero~ object is placed first.

Example H12.peaking.pd (part (b) of the figure) implements a peaking filter.
Here the pole and the zero are rotated by an angle ω to control the center
frequency of the filter. The bandwidth and center frequency gain are equal to
the shelf frequency and the DC gain of the corresponding shelving filter.

Example H13.butterworth.pd demonstrates a three-pole, three-zero Butter-
worth shelving filter. The filter itself is an abstraction, butterworth3~, for easy
reuse.

8.5. EXAMPLES 261

0

rpole~

/ 100

rzero_rev~

pole (%)

pd chord

rpole~

rzero_rev~

rpole~

rzero_rev~

rpole~

rzero_rev~

rpole~

rzero_rev~

+~

phasor~ 0.3

expr~ abs($v1-0.5)

expr~ 0.97 - 0.6*$v1*$v1

(a) (b)

Figure 8.33: All-pass filters. (a). making an all-pass filter from elementary
filters; b. using four all-pass filters to build a phaser.

Making and using all-pass filters

Example H14.all.pass.pd (Figure 8.33, part a) shows how to make an all-pass
filter out of a non-recirculating filter, second form (rzero rev~) and a recir-
culating filter (rpole~). The coefficient, ranging from -1 to 1, is controlled in
hundredths.

Example H15.phaser.pd (part b of the figure) shows how to use four all-pass
filters to make a classic phaser. The phaser works by summing the input signal
with a phase-altered version of it, making interference effects. The amount of
phase change is varied in time by varying the (shared) coefficient of the all-pass
filters. The overall effect is somewhat similar to a flanger (time-varying comb
filter) but the phaser does not impose a pitch as the comb filter does.

Exercises

1. A recirculating elementary filter has a pole at i/2. At what angular fre-
quency is its gain greatest, and what is the gain there? At what angular
frequency is the gain least, and what is the gain there?

262 CHAPTER 8. FILTERS

2. A shelving filter has a pole at 0.9 and a zero at 0.8. What are: the DC
gain; the gain at Nyquist; the approximate transition frequency?

3. Suppose a complex recirculating filter has a pole at P . Suppose further
that you want to combine its real and imaginary output to make a single,
real-valued signal equivalent to a two-pole filter with poles at P and P .
How would you weight the two outputs?

Chapter 9

Fourier analysis and
resynthesis

Among the applications of filters discussed in Chapter 8, we saw how to use
heterodyning, combined with a low-pass filter, to find the amplitude and phase
of a sinusoidal component of a signal (page 257). In this chapter we will re-
fine this technique into what is called Fourier analysis. In its simplest form,
Fourier analysis takes as input any periodic signal (of period N) and outputs
the complex-valued amplitudes of its N possible sinusoidal components. These
N complex amplitudes can theoretically be used to reconstruct the original
signal exactly. This reconstruction is called Fourier resynthesis.

In this chapter we will start by developing the theory of Fourier analysis
and resynthesis of periodic sampled signals. Then we will go on to show how to
apply the same techniques to arbitrary signals, whether periodic or not. Finally,
we will develop some standard applications such as the phase vocoder.

9.1 Fourier analysis of periodic signals

Suppose X[n] is a complex-valued signal with period N , a positive integer.
(We are using complex-valued signals rather than real-valued ones because the
mathematics will turn out simpler. Keeping the convention of Chapters 7 and
8, upper-case variables such as “X” denote complex numbers and lower case
ones like “w” denote real ones.) Because of the period N , the values of X[n]
for n = 0, . . . , N − 1 determine X[n] for all integer values of n.

Suppose further that X[n] can be written as a sum of sinusoids of frequency
0, 2π/N , 4π/N , . . ., 2(N − 1)π/N . These are the partials, starting with the
zeroth, for a signal of period N . We stop after the Nth partial because the next
one would have frequency 2π, equivalent to frequency 0, which is already on the
list.

Given the values of X, we wish to find the complex amplitudes of the partials.
Suppose we want the kth partial, where 0 ≤ k < N . The frequency of the partial

263

264 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

is 2πk/N . We can get its amplitude by modulating X downward 2πk/N radians
per sample in frequency, so that the kth partial is modulated to frequency zero.
Then we pass the signal through a low-pass filter with such a low cutoff frequency
that nothing but the zero-frequency partial remains. Such a filter will essentially
average the N samples of its periodic input. In short, to measure a sinusoidal
component of a periodic signal, modulate it down to DC and then average over
one period.

Let ω = 2π/N be the fundamental frequency for the period N , and let U be
the unit-magnitude complex number with argument ω:

U = cos(ω) + i sin(ω)

The kth partial of the signal X[n] is of the form:

Pk[n] = Ak

[
Uk
]n

where AK is the complex amplitude of the partial, and the frequency of the
partial is:

6 (Uk) = k 6 (U) = kω

We’re assuming for the moment that the signal X[n] can actually be written as
a sum of the n partials, or in other words:

X[n] = A0

[
U0
]n

+ A1

[
U1
]n

+ · · · + AN−1

[
UN−1

]n

By the heterodyne-filtering argument above, we expect to be able to measure
each Ak by multiplying by the sinusoid of frequency −kω and averaging over a
period:

Ak =
1

N

([
U−k

]0
X[0] +

[
U−k

]1
X[1] + · · · +

[
U−k

]N−1
X[N − 1]

)

This is such a useful formula that it gets its own notation. The Fourier transform
of a signal X[n], over N samples, is defined as:

FT {X[n]} (k) = V 0X[0] + V 1X[1] + · · · + V N−1X[N − 1]

where V = U−k. The Fourier transform is a function of the variable k, equal
to N times the amplitude of the input’s kth partial. So far k has taken integer
values but the formula makes sense for any value of k if we define V more
carefully as:

V = cos(−kω) + i sin(−kω)

where, as before, ω = 2π/N is the (angular) fundamental frequency associated
with the period N .

9.1. FOURIER ANALYSIS OF PERIODIC SIGNALS 265

9.1.1 Periodicity of the Fourier transform

If X[n] is, as above, a signal that repeats every N samples, the Fourier transform
of X[n] also repeats itself every N units of frequency, that is,

FT {X[n]} (k + N) = FT {X[n]} (k)

for all real values of k. This follows immediately from the definition of the
Fourier transform, since the factor

V = cos(−kω) + i sin(−kω)

is unchanged when we add N (or any multiple of N) to k.

9.1.2 Fourier transform as additive synthesis

Now consider an arbitrary signal X[n] that repeats every N samples. (Previ-
ously we had assumed that X[n] could be obtained as a sum of sinusoids, but we
haven’t yet found out whether every periodic X[n] can be obtained that way.)
Let Y [k] denote the Fourier transform of X for k = 0, ..., N − 1:

Y [k] = FT {X[n]} (k)

=
[
U−k

]0
X[0] +

[
U−k

]1
X[1] + · · · +

[
U−k

]N−1
X[N − 1]

=
[
U0
]k

X[0] +
[
U−1

]k
X[1] + · · · +

[

U−(N−1)
]k

X[N − 1]

In the second version we rearranged the exponents to show that Y [k] is a sum
of complex sinusoids, with complex amplitudes X[n] and frequencies −nω for
n = 0, . . . , N − 1. In other words, Y [k] can be considered as a waveform in its
own right, whose mth component has strength X[−m]. We can also express the
amplitude of the partials of Y [k] using its own Fourier transform. Equating the
two gives:

1

N
FT {Y [k]} (m) = X[−m]

(The expression X[−m] makes sense because X is a periodic signal). This means
in turn that X[−m] can be obtained by summing sinusoids with amplitudes
Y [k]/N . Replacing m with its negative gives:

X[m] =
1

N
FT {Y [k]} (−m)

=
[
U0
]m

X[0] +
[
U1
]m

X[1] + · · · +
[
UN−1

]m
X[N − 1]

This shows that any periodic X[n] can indeed be obtained as a sum of sinusoids.
Further, it explicitly shows how to reconstruct X[n] from its Fourier transform
Y [k], if we know its value for the integers k = 0, . . . , N − 1.

266 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

9.2 Properties of Fourier transforms

In this section we will investigate what happens when we take the Fourier trans-
form of a (complex) sinusoid. The simplest situation is a sinusoid of frequency
zero (DC). After we derive the Fourier transform of that, we will develop some
properties of Fourier transforms that allow us to apply that result to more gen-
eral sinusoids.

9.2.1 Fourier transform of DC

Now let X[n] = 1 for all n (this repeats with any desired integer period N > 1).
From the preceding discussion, we expect to find that

FT {X[n]} (k) =

{
N k = 0
0 k = 1, . . . , N − 1

We will often need to know the answer for non-integer values of k however, and
for this there is nothing better to do than to calculate the value directly:

FT {X[n]} (k) = V 0X[0] + V 1X[1] + · · · + V N−1X[N − 1]

where V (which depends on k) is as before. This is a geometric sum, and as
long as V 6= 1 we get:

FT {X[n]} (k) =
V N − 1

V − 1

We now symmetrize the top and bottom in the same way as we earlier did in
Section 7.3. To do this let:

ξ = cos(πk/N) + i sin(πk/N)

so that ξ2 = V . Then taking appropriate powers of ξ out of the numerator and
denominator gives:

FT {X[n]} (k) = ξN−1 ξN − ξ−N

ξ − ξ−1

It’s easy now to simplify the numerator:

ξN − ξ−N = (cos(πk) + i sin(πk)) − (cos(πk) − i sin(πk)) = 2i sin(πk)

and similarly for the denominator, giving:

FT {X[n]} (k) =
(

cos(πk(N − 1)/N) + i sin(πk(N − 1)/N)
) sin(πk)

sin(πk/N)

Putting it all together, whether V = 1 or not, we have

FT {X[n]} (k) =
(

cos(πk(N − 1)/N) + i sin(πk(N − 1)/N)
)

DN (k)

9.2. PROPERTIES OF FOURIER TRANSFORMS 267

real

imaginary

0 -5 5
k

Figure 9.1: The Fourier transform of a signal consisting of all ones. Here N=100,
and values are shown for k ranging from -5 to 10. The result is complex-valued
and shown as a projection, with the real axis pointing up the page and the
imaginary axis pointing away from it.

where DN (k), known as the Dirichlet kernel, is defined as

DN (k) =

{

N k = 0
sin(πk)

sin(πk/N) k 6= 0, −N < k < N

Figure 9.1 shows the Fourier transform of X[n], with N = 100. The trans-
form repeats every 100 samples, with a peak at k = 0, another at k = 100, and
so on. The figure endeavors to show both the magnitude and phase behavior
using a 3-dimensional graph projected onto the page. The phase term

cos(πk(N − 1)/N) + i sin(πk(N − 1)/N)

acts to twist the values of FT {X[n]} (k) around the k axis with a period of
approximately two. The Dirichlet kernel DN (k), shown in Figure 9.2, controls
the magnitude of FT {X[n]} (k). It has a peak, two bins wide, around k = 0.
This is surrounded by one-bin-wide sidelobes, alternating in sign and gradually
decreasing in magnitude as k increases or decreases away from zero. The phase
term rotates by almost π radians each time the Dirichlet kernel changes sign,
so that the product of the two stays roughly in the same complex half-plane for
k > 1 (and in the opposite half-plane for k < −1). The phase rotates by almost
2π radians over the peak from k = −1 to k = 1.

268 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

frequency (bins)
0 -5 5

Figure 9.2: The Dirichlet kernel, for N = 100.

9.2.2 Shifts and phase changes

Section 7.2 showed how time-shifting a signal changes the phases of its sinusoidal
components, and Section 8.4.3 showed how multiplying a signal by a complex
sinusoid shifts its component frequencies. These two effects correspond to iden-
tities involving the Fourier transform.

First we consider a time shift. If X[n], as usual, is a complex-valued signal
that repeats every N samples, let Y [n] be X[n] delayed d samples:

Y [n] = X[n − d]

which also repeats every N samples since X does. We can reduce the Fourier
transform of Y [n] this way:

FT {Y [n]} (k) = V 0Y [0] + V 1Y [1] + · · · + V N−1Y [N − 1]

= V 0X[−d] + V 1X[−d + 1] + · · · + V N−1X[−d + N − 1]

= V dX[0] + V d+1X[1] + · · · + V d+N−1X[N − 1]

= V d
(
V dX[0] + V d+1X[1] + · · · + V d+N−1X[N − 1]

)

= V dFT {X[n]} (k)

We therefore get the Time Shift Formula for Fourier Transforms:

FT {Y [n]} (k) =
(

cos(−dkω) + i sin(−dkω)
)

FT {X[n]} (k)

So the Fourier transform of Y [n] is a phase term times the Fourier transform of
X[n]. The phase is changed by −dkω, a linear function of the frequency k.

Now suppose instead that we change our starting signal X[n] by multiplying
it by a complex exponential Zn with angular frequency α:

Y [n] = ZnX[n]

9.2. PROPERTIES OF FOURIER TRANSFORMS 269

Z = cos(α) + i sin(α)

The Fourier transform is:

FT {Y [n]} (k) = V 0Y [0] + V 1Y [1] + · · · + V N−1Y [N − 1]

= V 0X[0] + V 1ZX[1] + · · · + V N−1ZN−1X[N − 1]

= (V Z)
0
X[0] + (V Z)

1
X[1] + · · · + (V Z)

N−1
X[N − 1]

= FT {X[n]} (k +
α

ω
)

We therefore get the Phase Shift Formula for Fourier Transforms:

FT {(cos(α) + i sin(α))X[n]} (k) = FT {X[n]} (k +
αN

2π
)

9.2.3 Fourier transform of a sinusoid

We can use the phase shift formula above to find the Fourier transform of any
complex sinusoid Zn with frequency α, simply by setting X[n] = 1 in the formula
and using the Fourier transform for DC:

FT {Zn} (k) = FT {1} (k +
α

ω
)

= [cos(Φ(k) + i sin(Φ(k))] DN (k +
α

ω
)

where DN is the Dirichlet kernel and Φ is an ugly phase term:

Φ(k) = π(k +
α

ω
)(N − 1)/N)

If the sinusoid’s frequency α is an integer multiple of the fundamental fre-
quency ω, the Dirichlet kernel is shifted to the left or right by an integer. In
this case the zero crossings of the Dirichlet kernel line up with integer values of
k, so that only one partial is nonzero. This is pictured in Figure 9.3 (part a).

Part (b) shows the result when the frequency α falls halfway between two
integers. The partials have amplitudes falling off roughly as 1/k in both direc-
tions, measured from the actual frequency α. That the energy should be spread
over many partials, when after all we started with a single sinusoid, might seem
surprising at first. However, as shown in Figure 9.4, the signal repeats at a
period N which disagrees with the frequency of the sinusoid. As a result there
is a discontinuity at the beginning of each period, and energy is flung over a
wide range of frequencies.

270 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

0 -5 5
k->

0

-5

5

amplitude
(a)

(b)

Figure 9.3: Fourier transforms of complex sinusoids, with N = 100: (a) with
frequency 2ω ; (b) with frequency 1.5ω. (The effect of the phase winding term
is not shown.)

1000 200

Figure 9.4: A complex sinusoid with frequency α = 1.5ω = 3π/N , forced to
repeat every N samples. (N was arbitrarily set to 100; only the real part is
shown.)

9.3. FOURIER ANALYSIS OF NON-PERIODIC SIGNALS 271

9.3 Fourier analysis of non-periodic signals

Most signals aren’t periodic, and even a periodic one might have an unknown
period. So we should be prepared to do Fourier analysis on signals without the
comforting assumption that the signal to analyze repeats at a fixed period N .
Of course, we can simply take N samples of the signal and make it periodic;
this is essentially what we did in the previous section, in which a pure sinusoid
gave us the complicated Fourier transform of Figure 9.3 (part b).

However, it would be better to get a result in which the response to a pure
sinusoid were better localized around the corresponding value of k. We can
accomplish this using the enveloping technique first introduced in Figure 2.7
(page 40). Applying this technique to Fourier analysis will not only improve
our analyses, but will also shed new light on the enveloping looping sampler of
Chapter 2.

Given a signal X[n], periodic or not, defined on the points from 0 to N − 1,
the technique is to envelope the signal before doing the Fourier analysis. The
envelope shape is known as a window function. Given a window function w[n],
the windowed Fourier transform is:

FT {w[n]X[n]} (k)

Much ink has been spilled over the design of suitable window functions for
particular situations, but here we will consider the simplest one, named the
Hann window function (the name is usually corrupted to “Hanning” in DSP
circles). The Hann window is:

w[n] =
1

2
− 1

2
cos(2πn/N)

It is easy to analyze the effect of multiplying a signal by the Hann window
before taking the Fourier transform, because the Hann window can be written
as a sum of three complex exponentials:

w[n] =
1

2
− 1

4
Un − 1

4
U−n

where as before, U is the unit-magnitude complex number with argument 2π/N .
We can now calculate the windowed Fourier transform of a sinusoid Zn with
angular frequency α as before. The phases come out messy and we’ll replace
them with simplified approximations:

FT {w[n]Zn} (k)

= FT
{

1

2
Zn − 1

4
(UZ)n − 1

4
(U−1Z)n

}

(k)

≈ [cos(Φ(k) + i sin(Φ(k))] M(k +
α

ω
)

272 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

0 k->

amplitude

1 2
-1

M(k)

D (k)
N

N
D (k-1)

Figure 9.5: The magnitude M(k) of the Fourier transform of the Hann window
function. It is the sum of three (shifted and magnified) copies of the Dirichlet
kernel DN , with N = 100.

where the (approximated) phase term is:

Φ(k) = π(k +
α

ω
))

and the magnitude function is:

M(k) =

[
1

2
DN (k) +

1

4
DN (k + 1) +

1

4
DN (k − 1)

]

The magnitude function M(k) is graphed in Figure 9.5. The three Dirichlet
kernel components are also shown separately.

The main lobe of M(k) is four harmonics wide, twice the width of the main
lobe of the Dirichlet kernel. The sidelobes, on the other hand, have much smaller
magnitude. Each sidelobe of M(k) is a sum of three sidelobes of Dn(k), one
attenuated by 1/2 and the others, opposite in sign, attenuated by 1/4. They do
not cancel out perfectly but they do cancel out fairly well.

The sidelobes reach their maximum amplitudes near their midpoints, and
we can estimate their amplitudes there, using the approximation:

DN (k) ≈ Nsin(πk)

πk

and setting k = 3/2, 5/2, . . . gives sidelobe amplitudes, relative to the peak
height N , of:

2

3π
≈ −13dB,

2

5π
≈ −18dB,

2

7π
≈ −21dB,

2

9π
≈ −23dB, . . .

The sidelobes drop off progressively more slowly so that the tenth one is only
attenuated about 30 dB and the 32nd one about -40 dB. On the other hand,

9.3. FOURIER ANALYSIS OF NON-PERIODIC SIGNALS 273

real

imaginary

0 5 k 10

Figure 9.6: The Hann-windowed Fourier transform of a signal with two sinu-
soidal components, at frequencies 5.3 and 10.6 times the fundamental, and with
different complex amplitudes.

the Hann window sidelobes are attenuated by:

2

5π
− 1

2
[

2

3π
+

2

7π
] ≈ −32.30dB

and −42, −49, −54, and −59 dB for the next four sidelobes.
This shows that applying a Hann window before taking the Fourier transform

will better allow us to isolate sinusoidal components. If a signal has many
sinusoidal components, the sidelobes engendered by each one will interfere with
the main lobe of all the others. Reducing the amplitude of the sidelobes reduces
this interference.

Figure 9.6 shows a Hann-windowed Fourier analysis of a signal with two
sinusoidal components. The two are separated by about 5 times the fundamental
frequency ω, and for each we see clearly the shape of the Hann window’s Fourier
transform. Four points of the Fourier analysis lie within the main lobe of M(k)
corresponding to each sinusoid. The amplitude and phase of the individual
sinusoids are reflected in those of the (four-point-wide) peaks. The four points
within a peak which happen to fall at integer values k are successively one half
cycle out of phase.

To fully resolve the partials of a signal, we should choose an analysis size
N large enough so that ω = 2π/N is no more than a quarter of the frequency
separation between neighboring partials. For a periodic signal, for example, the
partials are separated by the fundamental frequency. For the analysis to fully
resolve the partials, the analysis period N must be at least four periods of the
signal.

274 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

In some applications it works to allow the peaks to overlap as long as the
center of each peak is isolated from all the other peaks; in this case the four-
period rule may be relaxed to three or even slightly less.

9.4 Fourier analysis and reconstruction of audio
signals

Fourier analysis can sometimes be used to resolve the component sinusoids in
an audio signal. Even when it can’t go that far, it can separate a signal into
frequency regions, in the sense that for each k, the kth point of the Fourier
transform would be affected only by components close to the nominal frequency
kω. This suggests many interesting operations we could perform on a signal by
taking its Fourier transform, transforming the results, and then reconstructing
a new, transformed, signal from the modified transform.

Figure 9.7 shows how to carry out a Fourier analysis, modification, and
reconstruction of an audio signal. The first step is to divide the signal into
windows, which are segments of the signal, of N samples each, usually with
some overlap. Each window is then shaped by multiplying it by a windowing
function (Hann, for example). Then the Fourier transform is calculated for the
N points k = 0, 1, . . . , N − 1. (Sometimes it is desirable to calculate the Fourier
transform for more points than this, but these N points will suffice here.)

The Fourier analysis gives us a two-dimensional array of complex numbers.
Let H denote the number of samples each window is advanced past the previous
window. Then for each m = . . . , 0, 1, . . ., the mth window consists of the N
points starting at the point mH. The nth point of the mth window is mH + n.
The windowed Fourier transform is thus equal to:

S[m, k] = FT (w(n)X[n − mH])(k)

This is both a function of time (m, in units of H samples) and of frequency (k,
as a multiple of the fundamental frequency ω). Fixing the frame number m and
looking at the windowed Fourier transform as a function of k:

S[k] = S[m, k]

gives us a measure of momentary spectrum of the signal X[n]. On the other
hand, fixing a frequency k we can look at it as the kth channel of an N -channel
signal:

C[m] = S[m, k]

From this point of view, the windowed Fourier transform separates the original
signal X[n] into N narrow frequency regions, or bands.

Having computed the windowed Fourier transform, we next apply any de-
sired modification. In the figure, the modification is simply to replace the upper
half of the spectrum by zero, which gives a highly selective low-pass filter. Two
other possible modifications, narrow-band companding and vocoding, are de-
scribed in the following sections.

9.4. FOURIER ANALYSIS AND RECONSTRUCTION OF AUDIO SIGNALS275

...
extract
windows

windows
shape

INPUT

Fourier
analysis

FT FT

ANYTHING ANYTHING

iFT iFT
Fourier
resynth-
esis

windows
shape

again

overlap-
add ...

OUTPUT

modifi-
cation

Figure 9.7: Sliding-window analysis and resynthesis of an audio signal using
Fourier transforms. In this example the signal is filtered by multiplying the
Fourier transform with a desired frequency response.

276 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

Finally we reconstruct an output signal. To do this we apply the inverse of
the Fourier transform (labeled “iFT” in the figure). As shown in Section 9.1.2
this can be done by taking another Fourier transform, normalizing, and flipping
the result backwards. In case the reconstructed window does not go smoothly
to zero at its two ends, we apply the Hann windowing function a second time.
Doing this to each successive window of the input, we then add the outputs,
using the same overlap as for the analysis.

If we use the Hann window and an overlap of four (that is, choose N a
multiple of four and space each window H = N/4 samples past the previous one),
we can reconstruct the original signal faithfully by omitting the “modification”
step. This is because the iFT undoes the work of the FT , and so we are
multiplying each window by the Hann function squared. The output is thus
the input, times the Hann window function squared, overlap-added by four. An
easy check shows that this comes to the constant 3/2, so the output equals the
input times a constant factor.

The ability to reconstruct the input signal exactly is useful because some
types of modification may be done by degrees, and so the output can be made
to vary smoothly between the input and some transformed version of it.

9.4.1 Narrow-band companding

A compander is a tool that amplifies a signal with a variable gain, depending on
the signal’s measured amplitude. The term is a contraction of “compressor” and
“expander”. A compressor’s gain decreases as the input level increases, so that
the dynamic range, that is, the overall variation in signal level, is reduced. An
expander does the reverse, increasing the dynamic range. Frequently the gain
depends not only on the immediate signal level but on its history; for instance
the rate of change might be limited or there might be a time delay.

By using Fourier analysis and resynthesis, we can do companding individu-
ally on narrow-band channels. If C[m] is one such band, we apply a gain g[m]
to it, to give g[m]C[m]. Although C[m] is a complex number, the gain is a non-
negative real number. In general the gain could be a function not only of C[m]
but also of any or all the previous samples in the channel: C[m − 1], C[m − 2],
and so on. Here we’ll consider the simplest situation where the gain is simply a
function of the magnitude of the current sample: |C[m]|.

The patch diagrammed in Figure 9.8 shows one very useful application of
companding, called a noise gate. Here the gain g[m] depends on the channel
amplitude C[m] and a noise floor which is a function f of the channel number
k. For clarity we will apply the frequency subscript k to the gain, now written
as g[m, k], and to the windowed Fourier transform S[m, k] = C[m]. The gain is
given by:

g[m, k] =

{
1 − f [k]/|S[m, k]| |S[m, k]| > f [k]
0 otherwise

Whenever the magnitude S[m, k] is less than the threshold f [k] the gain is zero
and so the amplitude S[m, k] is replaced by zero. When greater, multiplying the

9.4. FOURIER ANALYSIS AND RECONSTRUCTION OF AUDIO SIGNALS277

FT

iFT

extract and

shape windows

IN

|Z|

NOISE
FLOOR

overlap

and add

threshold
function

OUT

Figure 9.8: Block diagram for narrow-band noise suppression by companding.

278 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

amplitude by g[m, k] reduces the the magnitude downward to |S[m, k]| − f [k].
Since the gain is a non-negative real number, the phase is preserved.

In the figure, the gain is computed as a thresholding function of the ratio
x = |S[m, k]|/f [k] of the signal amplitude above the noise floor; the threshold
is g(x) = 1 − 1/x when x < 1 and zero otherwise, although other thresholding
functions could easily be substituted.

This technique is useful for removing noise from a recorded sound. We either
measure or guess values of f [k] according to a noise floor. Because of the design
of the gain function g[m, k], only amplitudes which are above the noise floor
reach the output. Since this is done on narrow frequency bands, it is sometimes
possible to remove most of the noise even while the signal itself, in the frequency
ranges where it is louder than the noise floor, is mostly preserved.

This operation is also useful as a pre-processor before applying a non-linear
operation, such as distortion, to a sound. It is often best to distort only the
most salient frequencies of the sound. Subtracting the noise-gated sound from
the original gives a residual signal which can be passed through undistorted.

9.4.2 Timbre stamping (classical vocoder)

A second application of Fourier analysis and resynthesis is a time-varying filter
capable of making one sound take on the evolving spectral envelope of another.
This is widely known in electronic music circles as a vocoder, named, not quite
accurately, after the original Bell Laboratories vocal analysis/synthesis device of
that name. The technique described here is more accurately called timbre stamp-
ing. Two input signals are used, one to be filtered, and the other to control the
filter via its time-varying spectral envelope. The windowed Fourier transform is
used both on the control signal input to estimate its spectral envelope, and on
the filter input in order to apply the filter.

A block diagram for timbre stamping is shown in Figure 9.9. As in the
previous example, the timbre stamp acts by multiplying the complex-valued
windowed Fourier transform of the filtering input by non-negative real numbers,
hence scaling their amplitudes but leaving their phases intact. Here the twist is
that we want simply to replace the magnitudes of the original, |S[m, k]|, with
magnitudes obtained from the control input (call them |T [m, k]|, say). The
necessary gain would thus be,

g[m, k] =
|T [m, k]|
|S[m, k]|

In practice it is best to limit the gain to some maximum value (which might
depend on frequency) since otherwise channels containing nothing but noise,
sidelobes, or even truncation error might be raised to audibility. So a suitable
limiting function is applied to the gain before using it.

9.4. FOURIER ANALYSIS AND RECONSTRUCTION OF AUDIO SIGNALS279

FT

iFT

|Z|

overlap

and add

function

OUT

limiting

window

PROCESS
INPUT

CONTROL
INPUT

|Z|

Figure 9.9: Block diagram for timbre stamping (AKA “vocoding”).

280 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

9.5 Phase

So far we have operated on signals by altering the magnitudes of their win-
dowed Fourier transforms, but leaving phases intact. The magnitudes encode
the spectral envelope of the sound. The phases, on the other hand, encode fre-
quency and time, in the sense that phase change from one window to a different
one accumulates, over time, according to frequency. To make a transformation
that allows independent control over frequency and time requires analyzing and
reconstructing the phase.

Figure 9.10 shows how the phase of the Fourier transform changes from
window to window, using a complex sinusoid as input. The sinusoid’s frequency
is 3ω, so that the peak in the Fourier transform is centered at k = 3. If the
initial phase is φ, then the neighboring phases can be filled in as:

6 S[0, 2] = φ + π 6 S[0, 3] = φ 6 S[0, 4] = φ + π
6 S[1, 2] = φ + Hα + π 6 S[1, 3] = φ + Hα 6 S[1, 4] = φ + Hα + π
6 S[2, 2] = φ + 2Hα + π 6 S[2, 3] = φ + 2Hα 6 S[2, 4] = φ + 2Hα + π

This gives an excellent way of estimating the frequency α: pick any channel
whose amplitude is dominated by the sinusoid and subtract two successive phase
to get Hα:

Hα = 6 S[1, 3] − 6 S[0, 3]

α =
6 S[1, 3] − 6 S[0, 3] + 2pπ

H

where p is an integer. There are H possible frequencies, spaced by 2π/H. If
we are using an overlap of 4, that is, H = N/4, the frequencies are spaced by
8π/N = 4ω. Happily, this is the width of the main lobe for the Hann window, so
no more than one possible value of α can explain any measured phase difference
within the main lobe of a peak. The correct value of p to choose is that which
gives a frequency closest to the nominal frequency of the channel, kω.

In the analysis/synthesis examples of the previous section, the phases of the
output are copied directly from the phases of an input. This is appropriate
when the output signal corresponds in time with the input signal. Sometimes
time modifications are desired, for instance to do time stretching or contrac-
tion. Alternatively the output phase might depend on more than one input, for
instance for attempting to morph between one sound and another.

In these situations, the important thing is to try to maintain the appropriate
phase relationships between successive resynthesis windows, and also between
adjacent channels. These two sets of relationships are not always compatible,
however. We will make it our first obligation to honor the relations between
successive resynthesis windows, and worry about phase relationships between
channels afterward.

Suppose we want to construct the mth spectrum S[m, k] for resynthesis
(having already constructed the previous one, number m − 1). Suppose we
wish the phase relationships between windows m − 1 and m to be those of a

9.5. PHASE 281

...

FT

incoming sinusoid
real

imaginary

windowed
FT

windowed

FT
windowed

real

imaginary

S[1, 3] S[2, 3]S[0, 3]

S[0, 3]

S[1, 3]

S[2, 3]

H

(a)

(b)

Figure 9.10: Phase in windowed Fourier analysis: (a) a complex sinusoid ana-
lyzed on three successive windows; (b) the result for a single channel (k=3), for
the three windows

282 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

...

OUTPUT

phase diff

phase accum phase accum

phase diff

T[k] T'[k]

THIS INPUT

ANOTHER INPUT

...

S[m-1, k] S[m, k] S[m+1, k]

Figure 9.11: Propagating phases in resynthesis. Each phase, such as that of
S[6, k] here, depends on the previous output phase and the difference of the
input phases.

9.5. PHASE 283

real

imaginary

S[m, k]

S[m+1, k]

T[k]

T'[k]

Figure 9.12: Phases of one channel of the analysis windows and two successive
resynthesis windows.

signal x[n], but that the phases of window number m−1 might have come from
somewhere else and can’t be assumed to be in line with our wishes.

To find out how much the phase of each channel should differ from the
previous one, we do two analysis of the signal x[n], separated by the same hop
size H that we’re using for resynthesis:

T [k] = FT (W (n)X[n])(k)

T ′[k] = FT (W (n)X[n + H])(k)

Figure 9.11 shows the process of phase accumulation, in which the output phases
each depend on the previous output phase and the phase difference for two
windowed analyses of the input. Figure 9.12 illustrates the phase relationship
in the complex plane. The phase of the new output S[m, k] should be that of
the previous one plus the difference between the phases of the two analyses:

6 S[m, k] = 6 S[m − 1, k] + (6 T ′[k] − 6 T [k])

= 6

(
S[m − 1, k]T ′[k]

T [k]

)

Here we used the fact that multiplying or dividing two complex numbers gives
the sum or difference of their arguments.

If the desired magnitude is a real number a, then we should set S[m, k] to:

S[m, k] = a ·
∣
∣
∣
∣

S[m − 1, k]T ′[k]

T [k]

∣
∣
∣
∣

−1

· S[m − 1, k]T ′[k]

T [k]

284 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

The magnitudes of the second and third terms cancel out, so that the magnitude
of S[m, k] reduces to a; the first two terms are real numbers so the argument is
controlled by the last term.

If we want to end up with the magnitude from the spectrum T as well, we
can set a = |T ′[k]| and simplify:

S[m, k] =

∣
∣
∣
∣

S[m − 1, k]

T [k]

∣
∣
∣
∣

−1

· S[m − 1, k]T ′[k]

T [k]

9.5.1 Phase relationships between channels

In the scheme above, the phase of each S[m, k] depends only on the previ-
ous value for the same channel. The phase relationships between neighboring
channels are left to chance. This sometimes works fine, but sometimes the in-
coherence of neighboring channels gives rise to an unintended chorus effect. We
would ideally like for S[m, k] and S[m, k+1] to have the same phase relationship
as for T ′[k] and T ′[k + 1], but also for the phase relationship between S[m, k]
and S[m − 1, k] to be the same as between T ′[k] and T [k].

These 2N equations for N phases in general will have no solution, but we can
alter the equation for S[m, k] above so that whenever there happens to be a so-
lution to the over-constrained system of equations, the reconstruction algorithm
homes in on the solution. This approach is called phase locking [Puc95b], and
has the virtue of simplicity although more sophisticated techniques are available
[DL97]).

The desired output phase relation is:

6 T [k + 1] − 6 T [k] = 6 S[m − 1, k + 1] − 6 S[m − 1, k]

or, rearranging:

6

{
S[m − 1, k + 1]

T [k + 1]

}

= 6

{
S[m − 1, k]

T [k]

}

In other words, the phase of the quotient S/T should not depend on k. With
this in mind, we can rewrite the recursion formula for S[m, k]:

S[m, k] = |R[k]|−1 · R[k]T ′[k]

with

R[k] =
S[m − 1, k]

T [k] · |S[m − 1, k]|
and because of the previous equation, the R[k] should all be in phase. The trick
is now to replace R[k] for each k with the sum of three neighboring ones. The
computation is then:

S[m, k] = |R′[k]|−1 · R′[k]T ′[k]

9.6. PHASE BASHING 285

with
R′[k] = R[k + 1] + R[k] + R[k − 1]

If the channels are already in the correct phase relationship, this has no effect
(the resulting phase will be the same as if only R[k] were used.) But in general
the sum will share two terms in common with its neighbor at k + 1:

R′[k + 1] = R[k + 2] + R[k + 1] + R[k]

so that the R′ will tend to point more in the same direction than the R do.
Applying this iteratively will eventually line all the R′ up to the same phase, as
long as the phase relationships between the measured spectra T and T ′ allow
it.

9.6 Phase bashing

In Section 2.3 on enveloped sampling we saw how to make a periodic waveform
from a recorded sound, thereby borrowing the timbre of the original sound but
playing it at a specified pitch. If the window into the recorded sound is made to
precess in time, the resulting timbre varies in imitation of the recorded sound.

One important problem arises, which is that if we take waveforms from
different windows of a sample (or from different samples), there is no guarantee
that the phases of the two match up. If they don’t, the result is heard as ugly-
sounding frequency deviations (since frequency modulation can be thought of
as phase slippage). This can be corrected using Fourier analysis and resynthesis
[Puc05].

Figure 9.13 shows the simplest way to use Fourier analysis to align phases
in a series of windows in a recording. We simply take the FFT of the window
and then align the phase so that it is zero for even values of k and π for odd
ones. The phase at the center of the window is thus zero for both even and
off values of k. To set the phases (the arguments of the complex amplitudes
in the spectrum) in the desired way, first we find the magnitude, which can be
considered a complex number with argument zero. Then multiplying by (−1)k

adjusts the amplitude so that it is positive and negative in alternation. Then
we take the inverse Fourier transform, without even bothering to window again
on the way back; we will probably want to apply a windowing envelope later
anyway as was shown in Figure 2.7. The results can be combined with the
modulation techniques of Chapter 6 to yield powerful tools for vocal and other
imitative synthesis.

9.7 Examples

Fourier analysis and resynthesis in Pd

Example I01.Fourier.analysis.pd (Figure 9.14 part a) demonstrates computing
the Fourier transform of an audio signal using the fft~ object:

286 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

INPUT

FT

MAGNITUDE

(-1)
k

iFT

...

...

PHASE-BASHED INPUT

Figure 9.13: Phase-bashing a recorded sound (here, a sinusoid with rising fre-
quency) to give a series of oscillator wavetables.

9.7. EXAMPLES 287

fft~

tabwrite~ $0-real

tabwrite~ $0-imaginary

osc~
(a)

*~

inlet~

rfft~

tabreceive~ $0-hann

*~ *~

sqrt~

block~ 512

+~

tabwrite~ $0-magnitudepd fft-analysis

osc~

0

* 10
tens of Hz.

<- frequency,

click here and
<- see

(b)

(c)

Figure 9.14: Fourier analysis in Pd: (a) the fft ∼ object; (b) using a subwindow
to control block size of the Fourier transform; (c) the subwindow, using a real
Fourier transform (the fft~object) and the Hann windowing function.

fft~ : Fast Fourier transform. The two inlets take audio signals representing
the real and imaginary parts of a complex-valued signal. The window size N is
given by the block size of the window. One Fourier transform is done on each
block.

The Fast Fourier transform [III03] reduces the computational cost if Fourier
analysis in Pd to only that of between 5 and 15 osc~ objects in typical configu-
rations. The FFT algorithm in its simplest form takes N to be a power of two,
which is also a constraint on block sizes in Pd.

Example I02.Hann.window.pd (Figure 9.14 parts b and c) shows how to
control the block size using a block~ object, how to apply a Hann window, and
a different version of the Fourier transform. Part (b) shows the invocation of a
subwindow which in turn is shown in part (c). New objects are:

rfft~ : real Fast Fourier transform. The imaginary part of the input is as-
sumed to be zero. Only the first N/2 + 1 channels of output are filled in (the
others are determined by symmetry). This takes half the computation time of
the (more general) fft~object.

tabreceive~ : repeatedly outputs the contents of a wavetable. Each block of
computation outputs the same first N samples of the table.

In this example, the table “$0-hann” holds a Hann window function of length
512, in agreement with the specified block size. The signal to be analyzed
appears (from the parent patch) via the inlet~ object. The channel amplitudes
(the output of the rfft~ object) are reduced to real-valued magnitudes: the real

288 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

*~

inlet~

rfft~

tabreceive~ $0-hann

*~ *~

block~ 512 4

tabreceive~ $0-gain

*~

*~ tabreceive~ $0-hann

/~ 768

*~

rifft~

outlet~

512-sample block, 4-fold overlap (hop size 128).

inlet~ now takes care of buffering and shifting for
overlapped windowing.

Hann window as before

real FT as before

read "gain" from a table in parent patch

raise to 4th power (a more convenient scale)

renormalize: divide by window size 512 and an additional
factor of 3/2 to correct for twice-Hann-windowed
overlap-add in outlet~ below.

outlet~ does overlap-adding because of block~ setting above.

Hann window again on output.

real inverse fast Fourier transform (not normalized).

Figure 9.15: Fourier analysis and resynthesis, using block~ to specify an overlap
of 4, and rifft~ to reconstruct the signal after modification.

and imaginary parts are squared separately, the two squares are added, and the
result passed to the sqrt~ object). Finally the magnitude is written (controlled
by a connection not shown in the figure) via tabwrite~ to another table, “$0-
magnitude”, for graphing.

Example I03.resynthesis.pd (Figure 9.15) shows how to analyze and resyn-
thesize an audio signal following the strategy of Figure 9.4. As before there is
a sub-window to do the work at a block size appropriate to the task; the figure
shows only the sub-window. We need one new object for the inverse Fourier
transform:

rifft~ : real inverse Fast Fourier transform. Using the first N/2 + 1 points
of its inputs (taken to be a real/imaginary pair), and assuming the appropriate
values for the other channels by symmetry, reconstructs a real-valued output.
No normalization is done, so that a rfft~/rifft~ pair together result in a
gain of N . The ifft~ object is also available which computes an unnormalized
inverse for the fft~ object, reconstructing a complex-valued output.

The block~ object, in the subwindow, is invoked with a second argument
which specifies an overlap factor of 4. This dictates that the sub-window will

9.7. EXAMPLES 289

run four times every N = 512 samples, at even intervals of 128 samples. The
inlet~ object does the necessary buffering and rearranging of samples so that
its output always gives the 512 latest samples of input in order. In the other
direction, the outlet~ object adds segments of its previous four inputs to carry
out the overlap-add scheme shown in Figure 9.4.

The 512-sample blocks are multiplied by the Hann window both at the input
and the output. If the rfft~ and rifft~ objects were connected without any
modifications in between, the output would faithfully reconstruct the input.

A modification is applied, however: we simply multiply each channel by a
(positive real-valued) gain. The complex-valued amplitude for each channel is
scaled by separately multiplying the real and imaginary parts by the gain. The
gain (which is different for each channel) comes from another table, named “$0-
gain”. The result is a graphical equalization filter; by mousing in the graphical
window for this table, you can design gain-frequency curves.

There is an inherent delay introduced by using block~ to increase the block
size (but none if it is used, as shown in Chapter 7, to reduce block size relative
to the parent window.) The delay can be measured from the inlet to the outlet
of the sub-patch, and is equal to the difference of the two block sizes. In this
example the buffering delay is 512-64=448 samples. Blocking delay does not
depend on overlap, only on block sizes.

Narrow-band companding: noise suppression

Example I04.noisegate.pd (Figure 9.16) shows an example of narrow-band com-
panding using Fourier analysis/resynthesis. (This is a realization of the block
diagram of Figure 9.8.) Part (a) of the figure shows a filter configuration similar
to the previous example, except that the gain for each channel is now a function
of the channel magnitude.

For each k, if we let s[k] denote the power in channel k, and let m[k] be
a mask level (a level presumably somewhat higher than the noise power for
channel k), then the gain in channel k is given by

{ √
s[k]−m[k]

s[k] s[k] > m[k]

0 otherwise

The power in the kth channel is thus reduced by m[k] if possible, and otherwise
replaced by zero.

The mask itself is the product of the measured average noise in each channel,
which is contained in the table “$0-mask”, multiplied by a value named “mask-
level”. The average noise is measured in a subpatch (pd calculate-mask),
whose contents are shown in part (b) of the figure. To compute the mask we
are using two new new objects:

bang~ : send a bang in advance of each block of computation. The bang

appears at the logical time of the first sample in each block (the earliest logical
time whose control computation affects that block and not the previous one),
as shown in Figure 3.2.

290 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

*~

*~ *~

rfft~

rifft~

*~

+~

/~

-~

max~ 0

q8_sqrt~

tabreceive~ $0-mask

pd calculate-mask

+~ 1e-20

/~ 1536

inlet~

0

0

float + 1

bang~

spigot

0

-~

sel 0

*~ +~

0

t f f

r make-mask

t b f

/

number of
frames

r window-msec

/ 4

tabreceive~ $0-mask

tabsend~ $0-mask

<

expr 1/($f1+1)

real FT

compute power

(call it "s")

subpatch shown in (b)

real iFT

power ("s") minus
mask ("m")

force >= 0

mask table

protect against
division by zero

sqrt((s-m)/s)
(or 0 if s < m)

normalize by 2/(3N)

power
current

hop size
in msec

weight to average
new power into mask

average current power into
last mask to get new mask.
New value is weighted 1/n.
on the nth iteration.

loop to number

of frames

(a)
(b)

r mask-level*~

Figure 9.16: Noise suppression as an example of narrow-band companding.

9.7. EXAMPLES 291

tabsend~ : the companion object for tabreceive~, repeatedly copies its input
to the contents of a table. Affects up to the first N samples of the table,

The power averaging process is begun by sending a time duration in millisec-
onds to “make-mask”. The patch computes the equivalent number of blocks b
and generates a sequence of weights: 1, 1/2, 1/3, . . . , 1/b, by which each of the
b following blocks’ power is averaged into whatever the mask table held at the
previous block. At the end of b blocks the table holds the equally-weighted
average of all b power measurements. Thereafter, the weight for averaging new
power measurements is zero, so the measured average stops evolving.

To use this patch for classical noise suppression requires at least a few seconds
of recorded noise without the “signal” present. This is played into the patch,
and its duration sent to “make-mask”, so that the “$0-mask” table holds the
average measured noise power for each channel. Then, making the assumption
that the noisy part of the signal rarely exceeds 10 times its average power (for
example), “mask-level” is set to 10, and the signal to be noise-suppressed is
sent through part (a) of the patch. The noise will be almost all gone, but
those channels in which the signal exceeds 20 times the noise power will only be
attenuated by 3dB, and higher-power channels progressively less. (Of course,
actual noise suppression might not be the most interesting application of the
patch; one could try masking any signal from any other one.)

Timbre stamp (“vocoder”)

Example I05.compressor.pd is another channel compander which is presented
in preparation for Example I06.timbre.stamp.pd, which we will describe next.
This is a realization of the timbre stamp of Figure 9.9, slightly modified.

There are two inputs, one at left to be filtered (and whose Fourier transform
is used for resynthesis after modifying the magnitudes), and one at right which
acts as a control source. In the simplest case, if the two magnitudes are f [k]
for the filter input and c[k] for the control source, we just “whiten” the filter
input, multiplying by 1/f [k], and then stamp the control magnitudes onto the
result by further multiplying by c[k]. In practice, we must limit the gain to some
reasonable maximum value. In this patch this is done by limiting the whitening
factor 1/f [k] to a specified maximum value using the clip~ object. The limit
is controlled by the “squelch” parameter, which is squared and divided by 100
to map values from 0 to 100 to a useful range.

Another possible scheme is to limit the gain after forming the quotient
c[k]/f [k]. The gain limitation may in either case be frequency dependent. It is
also sometimes useful to raise the gain to a power p between 0 and 1; if 1, this
is a timbre stamp and if 0, it passes the filter input through unchanged, and
values in between give a smooth interpolation between the two.

Phase vocoder time bender

The phase vocoder usually refers to the general technique of passing from
(complex-valued) channel amplitudes to pairs consisting of (real-valued) magni-

292 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

limit gain to

*~ *~

*~ *~

+~

*~

inlet~

rfft~

*~

*~

rfft~

rifft~

outlet~

*~

+~

modulus

*~

clip~

tabreceive~ $0-hann

r squelch

expr 0.01*$f1*$f1

+~ 1e-20

tabreceive~ $0-hann

*~

inlet~

tabreceive~ $0-hann
q8_rsqrt~

q8_sqrt~
of control

amplitude

reciprocal

modulus of

filter input

amplitude

filter input

control source

multiply the two amplitude

factors (for compression

and to apply new timbre)

/~ 1536

squelch*squelch/100

Figure 9.17: Timbre stamp.

9.7. EXAMPLES 293

*~ *~

-~

*~ *~

+~

*~ *~ *~ *~

+~

*~

*~

rfft~

rfft~

rifft~

outlet~

*~

+~

-~

*~ *~

r window-size

r window-size

block~

+~ 1e-15

*~ tabreceive~ $0-hann

expr 2/(3*$f1)

set $1 4

q8_rsqrt~

pd read-windows

tabsend~ prev-imag

tabsend~ prev-real

tabreceive~ prev-real

tabreceive~ prev-imag

*~ *~

+~

q8_rsqrt~

+~ 1e-20

*~ *~

r lock

lrshift~ 1

lrshift~ -1

lrshift~ 1

lrshift~ -1

*~
*~

+~
+~

normalize (divide by the magnitude).

Take FT of the window in back.

If "lock" is on, add two neighboring

'set' message to block
allows variable size

Read two windows, one 1/4 length

recall previous output amplitude
whose phase we'll add to measured
phase precession

The 1e-20 is to prevent overflows.

sound, with Hann window function
behind the other, of the input

Multiply its conjugate by the
normalized previous output. Result
has the magnitude of the input sound.

complex amplitudes. The result will
tend toward the channel with the
strongest amplitude.

Normalize again, taking care to salt

 each channel with 1e-15 so that we get a unit
 complex number even if everything was zero.

Now take FT of the forward window
and multiply it by the unit complex

number from above. Magnitude will
be that of the forward window and

phase will be previous output phase

plus the phase difference between the

two analysis windows, except that if

"lock" is on, they will be changed to

agree better with the inter-channel

phase relationships of the input.

Figure 9.18: Phase vocoder for time stretching and contraction.

294 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

tudes and phase precession rates (“frequencies”), and back, as described in Fig-
ure 9.11 (Section 9.5). In Example I07.phase.vocoder.pd (Figure 9.18), we use
this technique for the specific goal of time-stretching and/or time-contracting a
recorded sound under real-time control. That is, we control, at any moment in
real time, the location in the recorded sound we hear. One new object is used:

lrshift~ : Shift a block left or right according to its argument. If the argument
is positive, each block of the output is the input shifted that number of spaces
to the right, filling zeros in as needed on the left. A negative argument shifts to
the left, filling zeros in at the right.

The process starts with a sub-patch, pd read-windows, which outputs two
Hann-windowed blocks of the recorded sound, a “back” one and a “front” one
1/4 window further forward in the recording. The window shown uses the
two outputs of the sub-patch to guide the amplitude and phase change of each
channel of its own output.

The top two tabreceive~ objects recall the previous block of complex am-
plitudes sent to the rifft~ object at bottom, corresponding to S[m − 1, k] in
the discussion of Section 9.5. The patch as a whole computes S[m, k] and then
its Hann windowed inverse FT for output.

After normalizing S[m − 1, k], its complex conjugate (equal to its inverse)
is multiplied by the windowed Fourier transform of the “back” window T [k],
giving the product

R[k] =
S[m − 1, k]

T [k] · |S[m − 1, k]|
Next, depending on the value of the parameter “lock”, the computed value of
R[k] is conditionally replaced with the phase-locking version R′[k]. This is done
using lrshift~ objects, whose outputs are added into R[k] if “lock” is set to
one, or otherwise not if it is zero. The result is then normalized and multiplied
by the Hann-windowed Fourier transform of the “front” window (T ′[k]) to give
S[m, k].

Three other applications of Fourier analysis/resynthesis, not pictured here,
are provided in the Pd examples. First, Example I08.pvoc.reverb.pd shows how
to make a phase vocoder whose output recirculates as in a reverberator, except
that individual channels are replaced by the input when it is more powerful
than what is already recirculating. The result is a more coherent-sounding
reverberation effect than can be made in the classical way using delay lines.

Example I09.sheep.from.goats.pd demonstrates the (imperfect) technique of
separating pitched signals from noisy ones, channel by channel, based on the
phase coherence we should expect from a Hann-windowed sinusoid. If three
adjacent channels are approximately π radians out of phase from each other,
they are judged to belong to a sinusoidal peak. Channels belonging to sinusoidal
peaks are replaced with zero to extract the noisy portion of the signal, or all
others are replaced with zero to give the sinusoidal portion.

Example I10.phase.bash.pd returns to the wavetable looping sampler of Fig-
ure 2.7, and shows how to align the phases of the sample so that all components
of the signal have zero phase at points 0, N , 2N , and so on. In this way, two

9.7. EXAMPLES 295

copies of a looping sampler placed N samples apart can be coherently cross-
faded. A synthetic, pitched version of the original soundfile can be made using
daisy-chained cross-fades.

Exercises

1. A signal x[n] is 1 for n = 0 and 0 otherwise (an impulse). What is its
Fourier transform as a function of k?

2. For what integer values of k is the Fourier transform of the N -point Hann
window function nonzero?

3. Suppose an N-point Fourier transform is done on a complex sinusoid of
frequency 2.5ω where ω = 2π/N is the fundamental frequency. What
percentage of the signal energy lands in the main lobe, channels k = 2
and k = 3? If the signal is Hann windowed, what percentage of the
energy is now in the main lobe (which is then channels 1 through 4)?

296 CHAPTER 9. FOURIER ANALYSIS AND RESYNTHESIS

Chapter 10

Classical waveforms

Up until now we have primarily taken three approaches to synthesizing repetitive
waveforms: additive synthesis (Chapter 1), wavetable synthesis (Chapter 2), and
waveshaping (Chapters 5 and 6). This chapter introduces a fourth approach,
in which waveforms are built up explicitly from line segments with controllable
endpoints. This approach is historically at least as important as the others, and
was dominant during the analog synthesizer period, approximately 1965-1985.
For lack of a better name, we’ll use the term classical waveforms to denote
waveforms composed of line segments.

The waveforms include the sawtooth, triangle, and rectangle waves pictured
in Figure 10.1, among many other possibilities. The salient features of these
waveforms are either discontinuous jumps (changes in value) or corners (changes
in slope). In the figure, the sawtooth and rectangle waves have jumps (once
per cycle for the sawtooth, and twice for the rectangle), and constant slope
elsewhere (negative for the sawtooth wave, zero for the rectangle wave). The
triangle wave has no discontinuous jumps, but the slope changes discontinuously
twice per cycle.

To use classical waveforms effectively, it is useful to understand how the
shape of the waveform is reflected in its Fourier series. (To compute these
we need background from Chapter 9, which is why this chapter appears here
and not earlier.) We will also need strategies for digitally synthesizing classical
waveforms. These waveforms will prove to be much more susceptible to foldover
problems than any we have treated before, so we will have to pay especially close
attention to its control.

In general, our strategy for predicting and controlling foldover will be to
consider first those sampled waveforms whose period is an integer N . Then
if we want to obtain a waveform of a non-integral period (call it τ , say) we
approximate τ as a quotient N/R of two integers. Conceptually at least, we can
then synthesize the desired waveform with period N , and then take only one of
each R samples of output. This last, down-sampling step is where the foldover
is produced, and a careful analysis of it will help us control it.

297

298 CHAPTER 10. CLASSICAL WAVEFORMS

(a)

(b)

(c)

Figure 10.1: Classical waveforms: (a) the sawtooth, (b) the triangle, and (c)
the rectangle wave, shown as functions of a continuous variable (not sampled).

10.1. SYMMETRIES AND FOURIER SERIES 299

10.1 Symmetries and Fourier series

Before making a quantitative analysis of the Fourier series of the classical wave-
forms, we pause to make two useful observations about symmetries in waveforms
and the corresponding symmetries in the Fourier series. First, a Fourier series
might consist only of even or odd-numbered harmonics; this is reflected in sym-
metries comparing a waveform to its displacement by half a cycle. Second, the
Fourier series may contain only real-valued or pure imaginary-valued coefficients
(corresponding to the cosine or sine functions). This is reflected in symmetries
comparing the waveform to its reversal in time.

In this section we will assume that our waveform has an integer period N ,
and furthermore, for simplicity, that N is even (if it isn’t we can just up-sample
by a factor of two). We know from Chapter 9 that any (real or complex valued)
waveform X[n] can be written as a Fourier series (whose coefficients we’ll denote
by A[k]):

X[n] = A[0] + A[1]Un + · · · + A[N − 1]U (N−1)n

or, equivalently,

X[n] = A[0] + A[1](cos(ωn) + i sin(ωn)) + · · ·

+A[N − 1](cos(ω(N − 1)n) + i sin(ω(N − 1)n))

where ω = 2π/N is the fundamental frequency of the waveform, and

U = cos(ω) + i sin(ω)

is the unit-magnitude complex number whose argument is ω.
To analyze the first symmetry we delay the signal X[n] by a half-cycle. Since

UN/2 = −1 we get:

X[n + N/2] = A[0] − A[1]Un + A[2]U2n ± · · ·

+A[N − 2]U (N−2)n − A[N − 1]U (N−1)n

In effect, a half-cycle delay changes the sign of every other term in the Fourier
series. We combine this with the original series in two different ways. Letting
X ′ denote half the sum of the two:

X ′[n] =
X[n] + X[n + N/2]

2
= A[0] + A[2]U2n + · · · + A[N − 2]U (N−2)n

and X ′′ the difference:

X ′′[n] =
X[n] − X[n + N/2]

2
= A[1]Un + A[3]U3n + · · · + A[N − 1]U (N−1)n

we see that X ′ consists only of even-numbered harmonics (including DC) and
X ′′ only of odd ones.

Furthermore, if X happens to be equal to itself shifted a half cycle, that is,
if X[n] = X[n + N/2], then (looking at the definitions of X ′ and X ′′) we get

300 CHAPTER 10. CLASSICAL WAVEFORMS

X ′[n] = X[n] and X ′′[n] = 0. This implies that, in this case, X[n] has only
even numbered harmonics. Indeed, this should be no surprise, since in this case
X[n] would have to repeat every N/2 samples, so its fundamental frequency is
twice as high than normal for period N .

In the same way, if X[n] = −X[n + N/2], then X can have only odd-
numbered harmonics. This allows us easily to split any desired waveform into
its even- and odd-numbered harmonics. (This is equivalent to using a comb
filter to extract even or odd harmonics; see Chapter 7.)

To derive the second symmetry relation we compare X[n] with its time
reversal, X[−n] (or, equivalently, since X repeats every N samples, with X[N −
n]). The Fourier series becomes:

X[−n] = A[0] + A[1](cos(ωn) − i sin(ωn)) + · · ·
+A[N − 1](cos(ω(N − 1)n) − i sin(ω(N − 1)n))

(since the cosine function is even and the sine function is odd). In the same way
as before we can extract the cosines by forming X ′[n] as half the sum:

X ′[n] =
X[n] + X[−n]

2
= A[0] + A[1] cos(ωn) + · · · + A[N − 1] cos(ω(N − 1)n)

and X ′′[n] as half the difference divided by i:

X ′′[n] =
X[n] − X[−n]

2i
= A[1] sin(ωn) + · · · + A[N − 1] sin(ω(N − 1)n)

So if X[n] satisfies X[−n] = X[n] the Fourier series consists of cosine terms
only; if X[−n] = −X[n] it consists of sine terms only; and as before we can
decompose any X[n] (that repeats every N samples) as a sum of the two.

10.1.1 Sawtooth waves and symmetry

As an example, we apply the shift symmetry (even and odd harmonics) to a
sawtooth wave. Figure 10.2 (part a) shows the original sawtooth wave and part
b shows the result of shifting by a half cycle. The sum of the two (part c) drops
discontinuously whenever either one of the two copies does so, and traces a line
segment whenever both component sawtooth waves do; so it in turn becomes a
sawtooth wave, of half the original period (twice the fundamental frequency).
Subtracting the two sawtooth waves gives a waveform with slope zero except
at the discontinuities. The discontinuities coming from the original sawtooth
wave jump in the same direction (negative to positive), but those coming from
the shifted one are negated and jump from positive to negative. The result is a
case of the rectangle wave in which the two component segments have the same
duration.

This symmetry was used to great effect in the design of Buchla analog syn-
thesizers in the 1970s; instead of offering a single sawtooth generator, Buchla
designed an oscillator that outputs the even and odd harmonic portions sepa-
rately, so that cross-fading between the two allows a continuous control over the
relative strengths of the even and odd harmonics in the analog waveform.

10.1. SYMMETRIES AND FOURIER SERIES 301

(b)

(c)

(d)

(a)

Figure 10.2: Using a symmetry relation to extract even and odd harmonics from
a sawtooth wave: (a) the original sawtooth wave; (b) shifted by 1/2 cycle; (c)
their sum (another sawtooth wave at twice the frequency); (d) their difference
(a square wave).

302 CHAPTER 10. CLASSICAL WAVEFORMS

(a)

(b)

(c)

A
N 1

A
2

Figure 10.3: Dissecting a waveform: (a) the original waveform with two discon-
tinuities; (b and c) the two component sawtooth waves.

10.2 Dissecting classical waveforms

Among the several conclusions we can draw from the even/odd harmonic de-
composition of the sawtooth wave (Figure 10.2), one is that a square wave can
be decomposed into a linear combination of two sawtooth waves. We can carry
this idea further, and show how to compose any classical waveform having only
jumps (discontinuities in value) but no corners (discontinuities in slope) as a
sum of sawtooth waves of various phases and amplitudes. We then develop the
idea further, showing how to generate waveforms with corners (either in addi-
tion to, or instead of, jumps) using another elementary waveform we’ll call the
parabolic wave.

Suppose first that a waveform of period N has discontinuities at j different
points, L1, . . . , Lj , all lying on the cycle between 0 and N , at which the waveform
jumps by values d1, . . . , dj . A negative value of d1, for instance, would mean
that the waveform jumps from a higher to a lower value at the point L1, and a
positive value of d1 would mean a jump from a lower to a higher value.

For instance, Figure 10.3 (part a) shows a classical waveform with two jumps:
(L1, d1) = (0.3,−0.3) and (L2, d2) = (0.6, 1.3). Parts (b) and (c) show sawtooth
waves, each with one of the two jumps. The sum of the two sawtooth waves
reconstructs the waveform of part (a), except for a possible constant (DC) offset.

The sawtooth wave with a jump of one unit at the point zero is given by

s[n] = n/N − 1/2

10.2. DISSECTING CLASSICAL WAVEFORMS 303

N

1/12

(N/2, -1/24)

Figure 10.4: The parabolic wave.

over the period 0 ≤ n ≤ N − 1, and repeats for other values of n. A sawtooth
wave with a jump at (L, d) is given by s′[n] = ds[n − L]. The sum of all the
component sawtooth waves is:

x[n] = d1s[n − L1] + · · · + djs[n − Lj]

The slopes of the segments of the waveform of part (a) of the figure are all
the same, equal to the sum of the slopes of the component sawtooth waves:

−d1 + · · · + dj

N

Square and rectangle waves have horizontal line segments (slope zero); for this
to happen in general the jumps must add to zero: d1 + · · · + dj = 0.

To decompose classical waveforms with corners we use the parabolic wave,
which, over a single period from 0 to N , is equal to

p[n] =
1

2
(
n

N
− 1

2
)
2

− 1

24

as shown in Figure 10.4. It is a second-degree (quadratic) polynomial in the
variable n, arranged so that it reaches a maximum halfway through the cycle at
n = N/2, the DC component is zero (or in other words, the average value over
one cycle of the waveform is zero), and so that the slope changes discontinuously
by −1/N at the beginning of the cycle.

To construct a waveform with any desired number of corners (suppose they
are at the points Mi, . . . ,Ml, with slope changes to equal c1, . . . , cl), we sum up
the necessary parabolic waves:

x[n] = −Nc1p[n − M1] − · · · − Nclp[n − Ml]

An example is shown graphically in Figure 10.5.
If the sum x[n] is to contain line segments (not segments of curves), the n2

terms in the sum must sum to zero. From the expansion of x[n] above, this
implies that c1 + · · · + cl = 0. Sums obtained from existing classical waveforms
(as in the figure) will always satisfy this condition because the changes in slope,
over a cycle, must all add to zero for the waveform to connect with itself.

304 CHAPTER 10. CLASSICAL WAVEFORMS

(a)

(b)

(c)

Figure 10.5: Decomposing a triangle wave (part a) into two parabolic waves (b
and c).

10.3 Fourier series of the elementary waveforms

In general, given a repeating waveform X[n], we can evaluate its Fourier series
coefficients A[k] by directly evaluating the Fourier transform:

A[k] =
1

N
FT {X[n]}(k)

=
1

N

[

X[0] + U−kX[1] + · · · + U−(n−1)kX[n − 1]
]

but doing this directly for sawtooth and parabolic waves will require massive
algebra (somewhat less if we were willing resort to differential calculus). Instead,
we rely on properties of the Fourier transform to relate the transform of a signal
x[n] with its first difference, defined as x[n]−x[n−1]. The first difference of the
parabolic wave will turn out to be a sawtooth, and that of a sawtooth will be
simple enough to evaluate directly, and thus we’ll get the desired Fourier series.

In general, to evaluate the strength of the kth harmonic, we’ll make the
assumption that N is much larger than k, or equivalently, that k/N is negligible.

We start from the Time Shift Formula for Fourier Transforms (page 268)
setting the time shift to one sample:

FT {x[n − 1]} = [cos(kω) − i sin(kω)]FT {x[n]}
≈ (1 + iωk)FT {x[n]}

Here we’re using the assumption that, because N is much larger than k, ωk =
2πk/N is much smaller than unity and we can make approximations:

cos(ωk) ≈ 1 , sin(ωk) ≈ ωk

10.3. FOURIER SERIES OF THE ELEMENTARY WAVEFORMS 305

which are good to within a small error, on the order of (k/N)2. Now we plug
this result in to evaluate:

FT {x[n] − x[n − 1]} ≈ iωkFT {x[n]}

10.3.1 Sawtooth wave

First we apply this to the sawtooth wave s[n]. For 0 ≤ n < N we have:

s[n] − s[n − 1] = − 1

N
+

{
1 n = 0
0 otherwise

Ignoring the DC offset of − 1
N , this gives an impulse, zero everywhere except one

sample per cycle. The summation in the Fourier transform only has one term,
and we get:

FT {s[n] − s[n − 1]}(k) = 1, k 6= 0, −N < k < N

We then apply the difference formula backward to get:

FT {s[n]}(k) ≈ 1

iωk
=

−iN

2πk

valid for integer values of k, small compared to N , but with k 6= 0 . (To get the
second form of the expression we plugged in ω = 2π/N and 1/i = −i.)

This analysis doesn’t give us the DC component FT {s[n]}(0), because we
would have had to divide by k = 0. Instead, we can evaluate the DC term
directly as the sum of all the points of the waveform: it’s approximately zero
by symmetry.

To get a Fourier series in terms of familiar real-valued sine and cosine func-
tions, we combine corresponding terms for negative and positive values of k.
The first harmonic (k = ±1) is:

1

N

[
FT {s[n]}(1) · Un + FT {s[n]}(−1) · U−n

]

≈ −i

2π

[
Un − U−n

]

=
sin(ωn)

π

and similarly the kth harmonic is

sin(kωn)

kπ

so the entire Fourier series is:

s[n] ≈ 1

π

[

sin(ωn) +
sin(2ωn)

2
+

sin(3ωn)

3
+ · · ·

]

306 CHAPTER 10. CLASSICAL WAVEFORMS

(0,1)

(N/2, -1)

N

Figure 10.6: Symmetric triangle wave, obtained by superposing parabolic waves
with (M, c) pairs equal to (0, 4/N) and (N/2,−4/N).

10.3.2 Parabolic wave

The same analysis, with some differences in sign and normalization, works for
parabolic waves. First we compute the difference:

p[n] − p[n − 1] =
(n

N − 1
2)

2 − (n−1
N − 1

2)
2

2

=
(n

N − N
2N)

2 − (n
N − N−2

2N)
2

2

=
2n
N2 − 1

N + 1
N2

2

≈ −s[n]/N.

So (again for k 6= 0, small compared to N) we get:

FT {p[n]}(k) ≈ −1

N
· −iN

2πk
· FT {s[n]}(k)

≈ −1

N
· −iN

2πk
· −iN

2πk

=
N

4π2k2

and as before we get the Fourier series:

p[n] ≈ 1

2π2

[

cos(ωn) +
cos(2ωn)

4
+

cos(3ωn)

9
+ · · ·

]

10.3.3 Square and symmetric triangle waves

To demonstrate how to obtain Fourier series for classical waveforms in general,
consider first the square wave,

x[n] = s[n] − s[n − N

2
]

10.3. FOURIER SERIES OF THE ELEMENTARY WAVEFORMS 307

(N-L, -1)

(L, 1)

Figure 10.7: Non-symmetric triangle wave, with vertices at (M, 1) and (N −
M,−1).

equal to 1/2 for the first half cycle (0 <= n < N/2) and −1/2 for the rest. We
get the Fourier series by plugging in the Fourier series for s[n] twice:

x[n] ≈ 1

π

[

sin(ωn) +
sin(2ωn)

2
+

sin(3ωn)

3
+ · · ·

−sin(ωn) +
sin(2ωn)

2
− sin(3ωn)

3
± · · ·

]

=
2

π

[

sin(ωn) +
sin(3ωn)

3
+

sin(5ωn)

5
+ · · ·

]

The symmetric triangle wave (Figure 10.6) given by

x[n] =
4

N
p[n] − 4

N
p[n − N

2
]

similarly comes to

x[n] ≈ 4

π2

[

cos(ωn) +
cos(3ωn)

9
+

cos(5ωn)

25
+ · · ·

]

10.3.4 General (non-symmetric) triangle wave

A general, non-symmetric triangle wave appears in Figure 10.7. Here we have
arranged the cycle so that, first, the DC component is zero (so that the two
corners have equal and opposite heights), and second, so that the midpoint of
the shorter segment goes through the point (0, 0).

The two line segments have slopes equal to 1/M and −2/(N − 2M), so the
decomposition into component parabolic waves is given by:

x[n] =
N2

MN − 2M2
(p[n + M] − p[n − M])

(here we’re using the periodicity of p[n] to replace p[n−(N −M)] by p[n+M]).)

308 CHAPTER 10. CLASSICAL WAVEFORMS

The most general way of dealing with linear combinations of elementary
(parabolic and/or sawtooth) waves is to go back to the complex Fourier series,
as we did in finding the series for the elementary waves themselves. But in this
particular case we can use a trigonometric identity to avoid the extra work of
converting back and forth. Just plug in the real-valued Fourier series:

x[n] =
N2

2π2(MN − 2M2)
[cos(ω(n − M)) − cos(ω(n + M))

+
cos(2ω(n − M)) − cos(2ω(n + M))

4
+ · · ·

]

Now we use the identity,

cos(a) − cos(b) = 2 sin(
b − a

2
) sin(

a + b

2
)

so that, for example,

cos(ω(n − M)) − cos(ω(n + M)) = 2 sin(2πM/N) sin(ωn)

(Here again we used the definition of ω = 2π/N .) This is a simplification since
the first sine term does not depend on n, and hence is just an amplitude term.
Applying the identity to all the terms of the expansion for x[n] gives:

x[n] = a[1] sin(ωn) + a[2] sin(2ωn) + · · ·

where the amplitudes of the components are given by:

a[k] =
1

π2(M/N − 2(M/N)
2
)
· sin(2πkM/N)

k2

Notice that the result does not depend separately on the values of M and N ,
but only on their ratio, M/N (this is not surprising because the shape of the
waveform depends on this ratio). If we look at small values of k:

k <
1

4M/N

the argument of the sine function is less than π/2 and using the approximation
sin(θ) ≈ θ we find that a[k] drops off as 1/k, just as the partials of a sawtooth
wave. But for larger values of k the sine term oscillates between 1 and -1, so
that the amplitudes drop off irregularly as 1/k2.

Figure 10.8 shows the partial strengths with M/N set to 0.03; here, our
prediction is that the 1/k dependence should extend to k ≈ 1/(4 · 0.03) ≈ 8.5,
in rough agreement with the figure.

Another way to see why the partials should behave as 1/k for low values of k
and 1/k2 thereafter, is to compare the period of a given partial with the length
of the short segment, 2M . For partials numbering less than N/4M , the period

10.4. PREDICTING AND CONTROLLING FOLDOVER 309

is at least twice the length of the short segment, and at that scale the waveform
is nearly indistinguishable from a sawtooth wave. For partials numbering in
excess of N/2M , the two corners of the triangle wave are at least one period
apart, and at these higher frequencies the two corners (each with 1/k2 frequency
dependence) are resolved from each other. In the figure, the notch at partial 17
occurs at the wavelength N/2M ≈ 1/17, at which wavelength the two corners
are one cycle apart; since the corners are opposite in sign they cancel each other.

10.4 Predicting and controlling foldover

Now we descend to the real situation, in which the period of the waveform cannot
be assumed to be arbitrarily long and integer-valued. Suppose (for definiteness)
we want to synthesize tones at 440 Hz. (A above middle C), and that we are
using a sample rate of 44100 Hz, so that the period is about 100.25 samples.
Theoretically, given a very high sample rate, we would expect the fiftieth partial
to have magnitude 1/50 compared to the fundamental and a frequency about
20 kHz. If we sample this waveform at the (lower) sample rate of 44100, then
partials in excess of this frequency will be aliased, as described in Section 3.1.
The relative strength of the folded-over partials will be on the order of -32
decibels—quite audible. If the fundamental frequency is raised further, more
and louder partials reach the Nyquist frequency (half the sample rate) and begin
to fold over.

Foldover problems are much less pronounced for waveforms with only corners
(instead of jumps) because of the faster dropoff of higher partial frequencies; for
instance, a triangle wave at 440 Hz. would get twice the dropoff, or -64 decibels.
In general, though, waveforms with discontinuities are a better starting point
for subtractive synthesis (the most popular classical technique). In case you
were hoping, subtractive filtering can’t remove foldover once it is present in an
audio signal.

10.4.1 Over-sampling

As a first line of defense against foldover, we can synthesize the waveform at
a much higher sample rate, apply a low-pass filter whose cutoff frequency is
set to the Nyquist frequency (for the original sample rate), then down-sample.
For example, in the above scenario (44100 sample rate, 440 Hz. tone) we could
generate the sawtooth at a sample rate of 16 ·44100 = 705600 Hz. We need only
worry about frequencies in excess of 705600−20000 = 685600 Hz. (so that they
fold over into audible frequencies; foldover to ultrasonic frequencies normally
won’t concern us) so the first problematic partial is 685600/440 = 1558, whose
amplitude is -64dB relative to that of the fundamental.

This attenuation degrades by 6 dB for every octave the fundamental is raised,
so that a 10 kHz. sawtooth only enjoys a 37 dB drop from the fundamental
to the loudest foldover partial. On the other hand, raising the sample rate
by an additional factor of two reduces foldover by the same amount. If we

310 CHAPTER 10. CLASSICAL WAVEFORMS

1 2 4 8 16 32

0

-10

-20

-30

-40

-50

magnitude

2

a/k

b/k

partial number (k)

(dB)

Figure 10.8: Magnitude spectrum of a triangle wave with M/N = 0.03. The
two line segments show 1/k and 1/k2 behavior at low and high frequencies.

10.4. PREDICTING AND CONTROLLING FOLDOVER 311

really wish to get 60 decibels of foldover rejection—all the way up to a 10 kHz.
fundamental—we will have to over-sample by a factor of 256, to a sample rate
of about 11 million Hz.

10.4.2 Sneaky triangle waves

For low fundamental frequencies, over-sampling is an easy way to get adequate
foldover protection. If we wish to allow higher frequencies, we will need a more
sophisticated approach. One possibility is to replace discontinuities by ramps,
or in other words, to replace component sawtooth waves by triangle waves, as
treated in the previous section, with values of M/N small enough that the result
sounds like a sawtooth wave, but large enough to control foldover.

Returning to Figure 10.8, suppose for example we imitate a sawtooth wave
with a triangle wave with M equal to two samples, so that the first notch falls
on the Nyquist frequency. Partials above the first notch (the 17th partial in the
figure) will fold over; the worst of them is about 40 dB below the fundamental.
On the other hand, the partial strengths start dropping faster than those of a
true sawtooth wave at about half the Nyquist frequency. This is acceptable in
some, but not all, situations.

The triangle wave strategy can be combined with over-sampling to improve
the situation further. Again in the context of Figure 10.8, suppose we over-
sample by a factor of 4, and set the first notch at the original sample rate. The
partials up to the Nyquist frequency (partial 8, at the fundamental frequency
shown in the figure) follow those of the true sawtooth wave fairly well. Foldover
sets in only at partial number 48, and is 52 dB below the fundamental. This
overall behavior holds for any fundamental frequency up to about one quarter
the sample rate (after which M exceeds N/2). Setting the notch frequency to
the original sample rate is equivalent to setting the segment of length 2M to
two samples.

10.4.3 Transition splicing

In the point of view developed in this chapter, the energy of the spectral com-
ponents of classical waves can be attributed entirely to their jumps and corners.
This is artificial, of course: the energy really emanates from the entire wave-
form. Our derivation of the spectrum of the classical waveforms uses the jumps
and corners as a bookkeeping device, and this is possible because the entire
waveform is determined by their positions and magnitudes.

Taking this ruse even further, the problem of making band-limited versions
of classical waveforms can be attacked by making band-limited versions of the
jumps and corners. Since the jumps are the more serious foldover threat, we
will focus on them here, although the approach described here works perfectly
well for corners as well.

To construct a band-limited step function, all we have to do is add the
Fourier components of a square wave, as many as we like, and then harvest the
step function at any one of the jumps. Figure 10.9 shows the partial Fourier

312 CHAPTER 10. CLASSICAL WAVEFORMS

Figure 10.9: A square wave, band-limited to partials 1, 3, 5, 7, 9, and 11.
This can be regarded approximately as a series of band-limited step functions
arranged end to end.

sum corresponding to a square wave, using partials 1, 3, 5, 7, 9, and 11. The
cutoff frequency can be taken as 12ω (if ω is the fundamental frequency).

If we double the period of the square wave, to arrive at the same cutoff
frequency, we would add twice as many Fourier partials, up to number 23, for
instance. Extending this process forever, we would eventually see the ideal
band-limited step function, twice per (arbitrarily long) period.

In practice we can do quite well using only the first two partials (one and
three times the fundamental). Figure 10.10 (part a), shows a two-partial approx-
imation of a square wave. The cutoff frequency is four times the fundamental;
so if the period of the waveform is eight samples, the cutoff is at the Nyquist
frequency. Part (b) of the figure shows how we could use this step function
to synthesize, approximately, a square wave of twice the period. If the cutoff
frequency is the Nyquist frequency, the period of the waveform of part (b) is 16
samples. Each transition lasts 4 samples, because the band-limited square wave
has a period of eight samples.

We can make a band-limited sawtooth wave by adding the four-sample-long
transition to a ramp function so that the end of the transition function meets
smoothly with the beginning of the next one, as shown in part (c) of the figure.
There is one transition per period, so the period must be at least four samples;
the highest fundamental frequency we can synthesize this way is half the Nyquist
frequency. For this or lower fundamental frequency, the foldover products all
turn out to be 60 dB or lower than the strength of the fundamental.

Figure 10.11 shows how to generate a sawtooth wave with a spliced transi-
tion. The two parameters are f , the fundamental frequency, and b, the band
limit, assumed to be at least as large as f . We start with a digital sawtooth
wave (a phasor) ranging from -0.5 to 0.5 in value. The transition will take place
at the middle of the cycle, when the phasor crosses 0. The wavetable is traversed
in a constant amount of time, 1/b, regardless of f . The table lookup is taken to
be non-wraparound, so that inputs out of range output either -0.5 or 0.5.

At the end of the cycle the phasor discontinuously jumps from -0.5 to 0.5,
but the output of the transition table jumps an equal and opposite amount,
so the result is continuous. During the portion of the waveform in which the

10.4. PREDICTING AND CONTROLLING FOLDOVER 313

(a)

(b)

(c)

Figure 10.10: Stretching a band-limited square wave: (a) the original waveform;
(b) after splicing in horizontal segments; (c) using the same step transition for
a sawtooth wave.

314 CHAPTER 10. CLASSICAL WAVEFORMS

OUT

0.5

-0.5

-0.5 0.5

f

b/f

0.5

-0.5

Figure 10.11: Block diagram for making a sawtooth wave with a spliced transi-
tion.

10.5. EXAMPLES 315

wrap~

-~ 0.5

-~ 0.5

remove DC bias

+~ -~

phasor~

out of

phase

1/2 cycle

sum and difference

sawtooth wave

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

-- PHASES (percent) --

AMPLITUDES (percent)

+~

+~

phasor~

(a)

(b)

|
(OUT)

Figure 10.12: Combining sawtooth waves: (a) adding and subtracting sawtooth
waves 1/2 cycle out of phase, to extract even and odd harmonics; (b) combining
three sawtooth waves with arbitrary amplitudes and phases.

transition table is read at one or the other end-point, the output describes a
straight line segment.

10.5 Examples

Combining sawtooth waves

Example J01.even.odd.pd (Figure 10.12, part a) shows how to combine saw-
tooth waves in pairs to extract the even and odd harmonics. The resulting
waveforms are as shown in Figure 10.3. Example J02.trapezoids.pd (part b of
the figure) demonstrates combining three sawtooth waves at arbitrary phases
and amplitudes; the resulting classic waveform has up to three jumps and no
corners. The three line segments are horizontal as long as the three jumps add
to zero; otherwise the segments are sloped to make up for the the unbalanced
jumps so that the result repeats from one period to the next.

Example J03.pulse.width.mod.pd (not shown) combines two sawtooth waves,
of opposite sign, with slightly different frequencies so that the relative phase

316 CHAPTER 10. CLASSICAL WAVEFORMS

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

wrap~

-~ 0.5

-~

/ 100

0

/ 100

0

*~

-- PHASES (percent) --

AMPLITUDES (percent)

+~

+~

phasor~

0

frequency

*~ *~ *~

*~ 0.5

-~ 0.0833

*~ 0.5 *~ 0.5

-~ 0.0833 -~ 0.0833

(OUT)
|

Figure 10.13: Combining parabolic waves to make a waveform with three cor-
ners.

changes continuously. Their sum is a rectangle wave whose width varies in
time. This is known as pulse width modulation (“PWM”).

Example J04.corners.pd (Figure 10.13) shows how to add parabolic waves
to make a combined waveform with three corners. Each parabolic wave is com-
puted from a sawtooth wave (ranging from -0.5 to 0.5) by squaring it, multi-
plying by 0.5, and subtracting the DC component of -1/12, or -0.08333. The
patch combines three such parabolic waves with controllable amplitudes and
phases. As long as the amplitudes sum to zero, the resulting waveform consists
of line segments, whose corners are located according to the three phases and
have slope changes according to the three amplitudes.

Strategies for bandlimiting sawtooth waves

Example J05.triangle.pd (Figure 10.14, part a) shows a simple way to make
a triangle wave, in which only the slope of the rising and falling segment are

10.5. EXAMPLES 317

/ 100

0

/ 100

0phasor~

0

frequency

*~ *~ -1

+~ 1

*~

min~

up down 0

phasor~

*~

-~

*~

0

min~

0

/ 100

0

* -1

clip~ 0 1

slope of rise segment

frequency

Duty cycle

make the phasor cross zero at
the desired point of the cycle.

slope of decay segment

multiply by desired slope, negating
so that the segment points downward

minimum of rise and decay segments
(makes a triangle wave)

clip between 0 and 1 to make the

(OUT)
|

slopes

sustain and silent regions.

(a) (b)

|
(OUT)

Figure 10.14: Alternative techniques for making waveforms with corners: (a),
a triangle wave as the minimum of two line segments; (b). clipping a triangle
wave to make an “envelope”.

318 CHAPTER 10. CLASSICAL WAVEFORMS

specified. A phasor supplies the rising shape (its amplitude being the slope), and
the same phasor, subtracted from one, gives the decaying shape. The minimum
of the two linear functions follows the rising phasor up to the intersection of the
two, and then follows the falling phasor back down to zero at the end of the
cycle.

A triangle wave can be clipped above and below to make a trapezoidal wave,
which can be used either as an audio-frequency pulse or, at a lower fundamen-
tal frequency, as a repeating ASR (attack/sustain/release) envelope. Patch
J06.enveloping.pd (Figure 10.14 part b) demonstrates this. The same rising
shape is used as in the previous example, and the falling shape differs only in
that its phase is set so that it falls to zero at a controllable point (not necessar-
ily at the end of the cycle as before). The clip~ object prevents it from rising
above 1 (so that, if the intersection of the two segments is higher than one, we
get a horizontal “sustain” segment), and also from falling below zero, so that
once the falling shape reaches zero, the output is zero for the rest of the cycle.

Example J07.oversampling.pd shows how to use up-sampling to reduce foldover
when using a phasor~ object as an audio sawtooth wave. A subpatch, running
at 16 times the base sample rate, contains the phasor~ object and a three-
pole, three-zero Butterworth filter to reduce the amplitudes of partials above
the Nyquist frequency of the parent patch (running at the original sample rate)
so that the output won’t fold over when it is down-sampled at the outlet~

object. Example J08.classicsynth.pd demonstrates using up-sampled phasors as
signal generators to make an imitation of a classic synthesizer doing subtractive
synthesis.

Example J09.bandlimited.pd shows how to use transition splicing as an al-
ternative way to generate a sawtooth wave with controllable foldover. This has
the advantage of being more direct (and usually less compute-intensive) than
the up-sampling method. On the other hand, this technique depends on using
the reciprocal of the fundamental frequency as an audio signal in its own right
(to control the amplitude of the sweeping signal that reads the transition table)
and, in the same way as for the PAF technique of Chapter 6, care must be taken
to avoid clicks if the fundamental frequency changes discontinuously.

Exercises

1. A phasor~ object has a frequency of 441 Hz. (at a sample rate of 44100
Hz.) What is the amplitude of the DC component? The fundamental?
The partial at 22050 Hz. (above which the partials fold over)?

2. A square wave oscillates between 1 and -1. What is its RMS amplitude?

3. In Section 10.3 a square wave was presented as an odd waveform whose
Fourier series consisted of sine (and not cosine) functions. If the square
wave is advanced 1/8 cycle in phase, so that it appears as an even function,
what does its Fourier series become?

10.5. EXAMPLES 319

4. A rectangle wave is 1 for 1/4 cycle, zero for 3/4 cycles. What are the
strengths of its harmonics at 0, 1, 2, 3, and 4 times the fundamental?

320 CHAPTER 10. CLASSICAL WAVEFORMS

Index

∗ ∼ , 20

bang ∼ , 289

block ∼ , 212

bp ∼ , 256

catch ∼ , 109

clip ∼ , 140

cos ∼ , 54

cpole ∼ , 260

czerorev ∼ , 260

czero ∼ , 260

dac ∼ , 20

delay , del , 79

delread ∼ , 207

delwrite ∼ , 207

div , 115

env ∼ , 84

expr , 56

fft ∼ , 287

fiddle ∼ , 137

ftom , 24

hip ∼ , 52, 256

inlet , 104

inlet ∼ , 104

line , 82

line ∼ , 23

loadbang , 56

lop ∼ , 256

lrshift ∼ , 294

makenote , 115

mod , 115
moses , 80

mtof , 24

noise ∼ , 256

notein , 85
osc ∼ , 20

outlet , 104

outlet ∼ , 104

pack , 50

pipe , 79

poly , 115

receive , 24

receive ∼ , 56

rfft ∼ , 287

rifft ∼ , 288

rpole ∼ , 260

rzerorev ∼ , 260

rzero ∼ , 260
r , 24
r ∼ , 56

samphold ∼ , 56

select , sel , 80

send , 25

send ∼ , 56

snapshot ∼ , 84

stripnote , 85

switch ∼ , 212
s , 25
s ∼ , 56

tabosc4 ∼ , 49

321

322 INDEX

tabread4 ∼ , 50

tabreceive ∼ , 287

tabsend ∼ , 291

tabwrite ∼ , 50

throw ∼ , 112

trigger , t , 85

unpack , 109

until , 172

vcf ∼ , 256

vd ∼ , 209

vline ∼ , 82
wrap ∼ , 56

abstraction, 104
additive synthesis, 17

examples, 109, 112
ADSR envelope generator, 91
aliasing, 62
all-pass filter, 193
amplitude, 3, 5

complex, 179
amplitude, measures of, 5
amplitude, peak, 5
amplitude, RMS, 5
angle of rotation, 190
argument (of a complex number),

177
arguments

creation, 18
audio signals, digital, 3

band-pass filter, 226
bandwidth, 149, 227
beating, 26
box, 17

GUI, 18
message, 17
number, 18
object, 18

carrier frequency, 134, 150
carrier signal, 124
center frequency, 149, 227
cents, 9

Chebychev polynomials, 142
class, 18
classical waveforms, 297
clipping, 29
clipping function, 129
coloration, 194
comb filter, 183

recirculating, 185
compander, 276
complex conjugate, 231
complex numbers, 176
compound filter, 232
continuous spectrum, 123
control, 63
control stream, 65

numeric, 66
creation arguments, 18

debouncing, 71
decibels, 6
delay

compound, 76
in Pd, 79
on control streams, 76
simple, 76

delay network
linear, 180

delay, audio, 180
detection

of events, 71
digital audio signals, 3
Dirichlet kernel, 267
discrete spectrum, 121
distortion, 129
Doppler effect, 200
duty cycle, 42
dynamic, 8
dynamic range, 276

echo density, 194
elementary filter

non-recirculating, 229
recirculating, 232

encapsulation, 104
envelope follower, 71, 252
envelope generator, 12, 91

INDEX 323

ADSR, 91
resetting, 97

equalization, 227
event, 65

feedback, 162
filter, 183, 223

all-pass, 193, 249
band-pass, 226
Butterworth, 241
compound, 232
elementary non-recirculating, 229
elementary recirculating, 232
high-pass, 224
low-pass, 224
peaking, 227
shelving, 227

first difference, 304
foldover, 62
formant, 149
Fourier analysis, 263
Fourier transform, 264

fast (FFT), 287
phase shift formula, 269
time shift formula, 268
windowed, 271

frequency domain, 180
frequency modulation, 26, 134
frequency response, 183
frequency, angular, 3
fundamental, 14

gain, 183
granular synthesis, 36
GUI box, 18

half step, 9
Hannin window function, 154
Hanning window function, 271
harmonic signal, 121
harmonics, 14
high-pass filter, 224

imaginary part of a complex num-
ber, 176

impulse, 181, 305

impulse response, 185
index

of modulation, 134
waveshaping, 128, 142

inharmonic signal, 123
interference, 175
intermodulation, 132

Karplus-Strong synthesis, 213

logical time, 63
low-pass filter, 224

magnitide (of a complex number),
177

merging control streams, 76
in Pd, 80

message box, 17
messages, 19, 79
MIDI, 9
modulating signal, 124
modulation

frequency, 26, 134
ring, 124

modulation frequency, 134
muting, 97

noise gate, 276
noisy spectrum, 123
number box, 18
numeric control stream

in Pd, 79
Nyquist theorem, 61

object box, 18
octave, 9
oscillator, 10

parabolic wave, 302
parent, 104
partials, 123
passband, 224
patch, 10, 17
peaking filter, 227
period, 14
phase locking, 284
phase-aligned formant (PAF), 160

324 INDEX

Pitch/Frequency Conversion formu-
las, 9

polar form (of a complex number),
177

pole-zero plot, 235
polyphony, 100
power, 5
pruning control streams, 76

in Pd, 80

quality, 249

real part of a complex number, 176
real time, 63
rectangle wave, 297
rectangular form (of a complex num-

ber), 177
reflection, 191
resynchronizing control streams, 76

in Pd, 80
ring modulation, 124
ripple, 224

sample number, 3
sample rate, 3
sampling, 34

examples, 113
sawtooth wave, 30, 297
settling time, 247
shelving filter, 227
sidebands, 124
sidelobe, 267
sidelobes, 156
signals, digital audio, 3
spectral envelope, 36, 123
spectrum, 121
square wave, 300
stable delay network, 185
stopband, 226
stopband attenuation, 226
subpatch, 104
subpatches, 104
switch-and-ramp technique, 98
synthesis

subtractive, 250

tags, 103

tasks, 100
threshold detection, 71
timbre stamping, 278
timbre stretching, 39, 151
time domain, 180
time invariance, 180
time sequence, 65
toggle switch, 25
transfer function, 96, 128, 223
transient generator, 91
transition band, 226
triangle wave, 297

unit generators, 9
unitary delay network, 190

vocoder, 278
voice bank, 100
von Hann window function, 154, 271

wave packet, 156
waveshaping, 128
wavetable lookup, 29

non-interpolating, 30
wavetables

transposition formula for loop-
ing, 35

transposition formula, momen-
tary, 35

window, 5, 274
window function, 271
window size, 205

Bibliography

[Bal03] Mark Ballora. Essentials of Music Technology. Prentice Hall, Upper
Saddle River, New Jersey, 2003.

[Ble01] Barry Blesser. An interdisciplinary synthesis of reverberation view-
points. Journal of the Audio Engineering Society, 49(10):867–903,
2001.

[Bou00] Richard Boulanger, editor. The Csound book. MIT Press, Cambridge,
Massachusetts, 2000.

[Cha80] Hal Chamberlin. Musical applications of microprocessors. Hayden,
Rochelle Park, N.J., 1980.

[Cho73] John Chowning. The synthesis of complex audio spectra by means
of frequency modulation. Journal of the Audio Engineering Society,
21(7):526–534, 1973.

[Cho89] John Chowning. Frequency modulation synthesis of the singing voice.
In Max V. Mathews and John R. Pierce, editors, Current Directions
in Computer Music Research, pages 57–64. MIT Press, Cambridge,
1989.

[DJ85] Charles Dodge and Thomas A. Jerse. Computer music : synthesis,
composition, and performance. Schirmer, New York, 1985.

[DL97] Mark Dolson and Jean Laroche. About this phasiness business. In
Proceedings of the International Computer Music Conference, pages
55–58, Ann Arbor, 1997. International Computer Music Association.

[GM77] John M. Grey and James A. Moorer. Perceptual evaluations of syn-
thesized musical instrument tones. Journal of the Acoustical Society
of America, 62:454–462, 1977.

[Har87] William M. Hartmann. Digital waveform generation by fractional
addressing. Journal of the Acoustical Society of America, 82:1883–
1891, 1987.

325

326 BIBLIOGRAPHY

[III03] Julius Orion Smith III. Mathematics of the Discrete Fourier Trans-
form (DFT), with Music and Audio Applications. W3K Publishing,
Menlo Park, California, 2003.

[KS83] Kevin Karplus and Alex Strong. Digital synthesis of plucked-string
and drum timbres. Computer Music Journal, 7(2):43–55, 1983.

[Leb77] Marc Lebrun. A derivation of the spectrum of fm with a complex
modulating wave. Computer Music Journal, 1(4):51–52, 1977.

[Leb79] Marc Lebrun. Digital waveshaping synthesis. Journal of the Audio
Engineering Society, 27(4):250–266, 1979.

[Mat69] Max V. Mathews. The Technology of Computer Music. MIT Press,
Cambridge, Massachusetts, 1969.

[Moo90] F. Richard Moore. Elements of Computer Music. Prentice Hall,
Englewood Cliffs, second edition, 1990.

[PB87] T. W. Parks and C.S. Burrus. Digital filter design. Wiley, New York,
1987.

[Puc95a] Miller S. Puckette. Formant-based audio synthesis using nonlinear
distortion. Journal of the Audio Engineering Society, 43(1):224–227,
1995.

[Puc95b] Miller S. Puckette. Phase-locked vocoder. In IEEE ASSP Workshop
on Applications of Signal Processing to Audio and Acoustics, 1995.

[Puc01] Miller S. Puckette. Synthesizing sounds with specified, time-varying
spectra. In Proceedings of the International Computer Music Con-
ference, pages 361–364, Ann Arbor, 2001. International Computer
Music Association.

[Puc05] Miller S. Puckette. Phase bashing for sample-based formant synthe-
sis. In Proceedings of the International Computer Music Conference,
pages 733–736, Ann Arbor, 2005. International Computer Music As-
sociation.

[Reg93] Phillip A. Regalia. Special filter design. In Sanjit K. Mitra and
James F. Kaiser, editors, Handbook for digital signal processing, pages
907–978. Wiley, New York, 1993.

[RM69] Jean-Claude Risset and Max V. Mathews. Analysis of musical in-
strument tones. Physics Today, 22:23–40, 1969.

[RMW02] Thomas D. Rossing, F. Richard Moore, and Paul A. Wheeler. The
Science of Sound. Addison Wesley, San Francisco, third edition, 2002.

[Roa01] Curtis Roads. Microsound. MIT Press, Cambridge, Massachusetts,
2001.

BIBLIOGRAPHY 327

[Sch77] Bill Schottstaedt. Simulation of natural instrument tones using fre-
quency modulation with a complex modulating wave. Computer Mu-
sic Journal, 1(4):46–50, 1977.

[Ste96] Kenneth Steiglitz. A Digital Signal Processing Primer. Addison-
Wesley, Menlo Park, California, 1996.

[Str85] John Strawn, editor. Digital Audio Signal Processing. William Kauf-
mann, Los Altos, California, 1985.

[Str95] Allen Strange. Electronic music; systems, techniques, and controls.
W. C. Brown, Dubuque, Iowa, 1995.

