
Reality Check - a framework for preserving real-time electronic music
realizations

Miller Puckette
UCSD/IRCAM

Preprint - under review

ABSTRACT

A framework is proposed for protecting an ongoing music
production using a continuous integration (CI) para-digm.
An enabling technology named Reality Check is described,
which has been applied so far to two existing and one in-
progress electronic music production. The benefits are at
least two-fold: the pieces that are included in the CI system
can be monitored for their continued viability; and also,
the various software components used in their realization
can use the pieces as unit tests to ensure their own contin-
ued back-compatiblity.

1. INTRODUCTION

Live electronic music has a durability problem. Any re-
alization more than a few years old is likely to require
maintenance to adjust for changes in hardware or software.
Pieces of live electronic music often fall into disuse for
lack of the resources necessary to keep them current. To-
gether with fixed-medium music, pieces of live electronic
music can become unavailable because of deterioration of
physical media, unavailability of equipment that can read
the media, and/or difficulty of deciphering proprietary file
formats and disk filesystems. In addition to these prob-
lems, live electronic music faces unique challenges.

Even if we suppose that we can access the primary digital
materials used in a live realization, it can easily happen that
essential software components used in a live electronic re-
alization simply disappear or become unusable because of
an operating system update or a lost copy protection key.
Moreover, a dependency of this sort might not be evident
at the time a piece is first realized - it might be hidden in a
system library, plug-in, or configuration file stored some-
where else than the digital archive that supposedly consti-
tutes the realization.

The purpose of this paper is twofold: first, to introduce
a new software framework called Reality Check that aims
to help keep both an electronic realization and its support-
ing software available over time; and second, to argue for a
cultural change among practitioners of live electronic mu-
sic that can help slow the processes by which the live music
repertory degrades over time.

A further affordance of this work lies in its contribution
to DAFNE+, a project supported by the European Com-

Copyright: ©2024 Miller Puckette et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

mission to apply blockchain technology toward the devel-
opment and versioning of collaborative artistic projects.
One major problem facing this project is that items on (or
pointed to from) a blockchain are fixed digital documents
that could easily fall into the same time traps as any other
such document. In particular, if a live electronic realiza-
tion is built up over a long collaborative process among
several stakeholders, the problem of ensuring the contin-
ued usefulness of the data itself is multiplied. For exam-
ple, an NFT describing a realization of a piece of elec-
tronic music is worthless if the realization doesn’t work. If
blockchain technologies are ever to become relevant to the
real art world their contents will have to offer more than
GIF animations.

It will certainly not be possible for any one effort, such as
this one, to permanently solve the problem of realization
rot. In many situations it will simply not be possible to use
the tools or ideas described here. But even to somewhat
mitigate the problems we now face will be well worth the
effort.

In the sections that follow we first give a brief description
of recent related work; then give a functional description of
Reality Check and its use both in existing and one ongo-
ing musical production. Finally we discuss the cultural and
practical issues that arise in adopting Reality Check (or an-
other such framework) in the development and production
of live electronic music realizations.

2. A STATE OF AFFAIRS

The rich literature that bemoans the constant falling into
obsolescence of pieces in the live electronic music reper-
tory is too extensive to even outline here[1]. Both hard-
ware and software slide perpetually into the oubliette as
new, more exciting hardware and software appear. New
techniques and tools energize composers as they pursue
new and unexplored musical possibilities. But pieces of
“new” electronic music, once no longer so fresh, are for-
gotten even as they are replaced by ever newer ones. There
is clearly a problem here.

A bespoke circle of hell opens up for those who turn to
specialized hardware to overcome the limitations of stan-
dardized hardware. Until about 1990, for example, general-
purpose processors could not approach the speeds neces-
sary to generate anything beyond the most simple elec-
tronic sounds in real time. Composers, both in institutions
and as individuals, turned to off-the-shelf synthesizers and
sound processors. At IRCAM for example, there was even
the idea that composers who wrote for “personal systems”
such as computer-controlled MIDI synthesizers would find

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


their work much more easily portable outside the walls of
the lab and, perhaps, longer-lasting as a result. The re-
ality has been the opposite. Pieces from the late 1980s
by Michael Jarrell and André Dalbavie[2] were not only
never performed without IRCAM’s direct involvement but
quickly became obsolete, even despite their occasional re-
vivals after much hard work on the part of later generations
of computer music producers.

One might think that we are now free of such problems,
since the audio signal processing required in real-time elec-
tronic music performance is normally well within the ca-
pacity of a modern CPU and can thus be realized portably.
But no such luck: the new vogue for applying machine
learning in real time means that some of the work is of-
ten offloaded onto “graphics processors” using specialized
packages and programming languages that will certainly
go the same way as the Yamaha TX816s of the 1980s. New
papers along the lines of Akkerman’s will continue to ap-
pear.

The last couple of decades has seen the appearance of
a few constructive responses to the overall problem, such
as GAMELAN[3], ASTREE[4], and Integra[5]. None of
these appear to be still available online. It appears that
they have fallen into one or both of the following two traps.
First, there has been a tendency to provide supporting soft-
ware for the development of the piece itself (as opposed to
its preservation). Integra, for example, provided an entire
infrastructure including sequencing and specific types of
audio effects. There is a tacit assumption that these tools
would expand over time to meet the needs of an ever wider
range of musical tasks, but instead, the existing structure
was not one into which a great number of composers wanted
to fit their work, and so there were not very many pieces
produced within it.

This leads to the second problem, which is that of main-
tenance of the infrastructure itself. To muster the will to
maintain a system such as Integra requires a critical mass
of composers or other workers who are invested in the
project. Such a mass seems not to have gathered, perhaps
as a result of the first issue cited above.

As an alternative to building a framework for realizing
new works, we propose that live electronic music realiza-
tions, both new and old, be placed into a CI framework in
order to toughen them against the ravages of time. This
has the advantage of not imposing a particular structure
upon any given realization, other than its ability to be vir-
tualized in order to run automated tests on it. In princi-
ple at least, not only can the structure of a piece (whether
through-written, improvised, generative, or other) be freely
determined by its creator, but also the software used can be
chosen by the artist.

There nonetheless remains an important obstacle: any
tools used in the live performance must be regenerable in
some way, either by virtualizing a binary image or, much
preferably, by compiling from open source. A complete
realization of a piece should contain not only all docu-
ments specific to it but also the wherewithal to regenerate
all the software that needs to run in real time. This includes
not only the environment (Max, Pure Data, Supercollider,
Csound, or whatever) but also any dependencies such as
plug-ins or “externs”.

This is not a trivial demand. A composer under the time

pressure imposed by a looming concert date will under-
standably want to grab a favorite old tube compressor em-
ulator that might be ready to hand. Such plug-ins are of-
ten encrypted and copy-protected, and there is little hope
that any given one will be runnable once the mom-and-
pop software house it came from inevitably withers away.
Not just for CI-readiness but also in general, a composer
or realizer must always choose between expediency and
long-term viability.

In the following section we introduce Reality Check, one
such possible CI system. It is implemented in Pure Data
(Pd) and has been available in preliminary form on the web
since 2020. The occasion for introducing it to a wider au-
dience today is a new, large-scale music production that is
using Reality Check as its CI system, in the hopes of guar-
anteeing its long-term viability.

3. REALITY CHECK

Reality Check is implemented as a Pd patch that can test
other Pd patches (presumed to be realizations of musical
pieces) to verify that they generate the correct output given
a standardized input. The standardized input consists of
a soundfile, and a text file containing all MIDI, network
packet, and GUI (mouse and keyboard) events. To prepare
the test, we generate a standardized output soundfile by
running the piece with the standardized input.

At any later time we may then present the standardized
input to the realization patch to verify that it still produces
the same output, to within a predetermined tolerance (by
default, one ten-millionth of maximum amplitude). If the
test passes, this verifies not only that the realization patch
is correct, but also that the real-time environment is still
capable of playing the piece correctly.

A simplified block diagram is shown schematically in fig-
ure 1. The right-hand side of the figure shows the setup for
a live performance of the piece. In the performance, micro-
phones and other sensors (MIDI controllers and mouse or
keyboard events) are sent in real time to a Pd patch which
generates audio output to be played in the concert hall.
During a performance of the piece (or perhaps a rehearsal
or even a studio mock-up), all these inputs, and optionally
the audio output, are recorded.

To set up the CI system, the realization patch is then run,
virtually, in the interior of Reality Check, supplying it with
the recorded inputs and in turn recording its audio outputs.
The realization patch runs in a sub-process using the pd˜
object. If desired, extra output points may be inserted in
the realization patch to allow finer-grained testing. This
process results in an output soundfile, typically containing
several audio channels.

At any subsequent time the realization patch can then be
tested as shown at left in the figure. The recorded audio
and control inputs are again played by the Reality Check
patch into the realization patch, but this time the output
is compared, sample by sample, with the earlier recorded
output. If the two agree, the piece has been shown to be
running correctly. If not, something has gone wrong and
maintenance is needed.

Problems can come from at least three different sources:
the underlying hardware and operating system, the appli-
cation software, and the composer. Upgrades to the hard-



TESTING THE PIECE

PATCH

PLAYING THE PIECE

==

reference
input

reference
output

test
output

test
report

Figure 1. Reality Check block diagram.

ware and operating system should be made at a time when
the older, working system is still available and running
on a different computer. If the CI test succeeds on the
older system but fails on the new one, this must be cor-
rected in the application software. In the simplest case
the software simply doesn’t run on the new system and
needs recompiling—for which we will need the sources to
all the software at play. Most of the software components
will doubtless be maintained separately, but the maintainer
must be prepared for some software components eventu-
ally to be orphaned. The upkeep of all orphaned compo-
nents then becomes part of the task of maintaining the re-
alization.

Second, the application software may have become avail-
able in a new version that isn’t strictly compatible with the
one used in the realization. The temptation here would be
to keep up the older software version, but this is dangerous,
since the maintainer may end up in the position of main-
taining an orphaned version of the software. The more
forward-looking solution would be to use the existence of
the CI test itself to apply gentle persuasion to the upstream
software developers to maintain compatibility. As we will
see below, this can be a practical approach in the case of
widely used open-source software.

Finally, the composer might want to bring changes to bear
on the piece itself. There are at least two classes of al-
terations that might be desired. First, the piece might be
customized for a new concert hall or a new performer. A
new concert hall might require reworking the spatialization
of the patch’s audio output. In the example currently under
development, we are anticipating this by using the IRCAM
spatializer software (“SPAT”) as a separate process, con-
sidered as part of the specific performance production and
not of the realization of the piece itself.

For another example, a performer might play along with
one or more pre-recorded samples or tracks of the same
instrument, and it might be desirable that the recordings be
replaced by those of each new performer. This and similar
adaptations can be made without bringing them back into
the CI system.

On the other hand, often a composer decides to revise
timings or levels or other parameters that are baked into the
realization itself, either during rehearsals for a new perfor-
mance or in a post-mortem studio session. In this case it
is appropriate to re-introduce the changes into the CI sys-

tem. And while for the later delight of musicologists we
will want ot keep both the new and old versions, we can
probably leave off maintaining the older version in the CI
system in favor of the newer one.

4. TEST CASE

A production is underway for an opera, to premiere in
2025, that will certainly put this whole framework under
an excellent stress test. The software components being
used are Pure Data, Antescofo[6, 7], the vstplugin˜ Pd
external object[8], and the Synful VST3 plugin[9]. Two
of these systems are open-source and the other two, An-
tescofo and Synful, are in the process of being released in
open source as well. As suggested above, the output of
the realization patch is not spatialized but is instead real-
ized as 32 audio tracks that are passed on to IRCAM’s spa-
tialization software. For purposes of testing the 32 tracks
are optionally mixed down by a reference spatializer inside
the Pd patch that is only adapted for a specific 6-channel
speaker arrangement. There are currently only four au-
dio inputs but as the production unfolds this will grow to
about twenty. A twenty-channel DAW project will serve as
a mock-up of the inputs before the actual production, and
a bounce of the 20 outputs of the DAW will serve as the
initial reference input for Reality Check.

Conceptually, the realization of the piece consists of a
Pd patch that is already stable, plus a growing Antescofo
script that constitutes the electronic “score”. Since the An-
tescofo script is still under continuous development, it was
deemed desirable to also make a test script that exercises
all the elements of the patch systematically. CI tests have
been built that separately verify the patch using the test
script, and also verify the script for the piece itself, which
last test is updated as the piece takes shape.

Along with the ongoing production, we are starting a CI
regime in which the piece, along with three other pre-exist-
ing ones, are run automatically at regular intervals, thus
flagging any problems that crop up. This CI system will
have to be periodically updated in the future as hardware,
operating systems, and software components evolve.

This regime has already borne fruit by catching, on two
occasions, regressions in Pd that were since corrected, as
well as calling attention to variations in floating-point round-
ing that are not yet resolved.



5. OBSERVATIONS AND CONCLUSIONS

A CI system such as this one can only work if some per-
son or institution will take on the task of maintaining it.
In our particular case, the host institution has a team of
several permanent computer music designers who under-
stand from years of bitter experience why this will be a
good thing to do. Furthermore, we hope that once the
procedures described here become widely used inside our
own house that other centers that maintain repertories of
live electronic music will adopt this or a similar methodol-
ogy. If adoption is widespread enough, software develop-
ers will be able to take advantage of separately maintained
CI repertories as a very useful collection of unit tests that
their own software can benefit from to maintain backward
compatibility.

For Reality Check or any other CI system to work in this
way requires that the software components used be able to
run in a virtual environment (such as inside pd˜) and also
be deterministically able to guarantee exact reproducibility
of audio output from one run to another, given identical in-
puts. This is apparently the case for the components used
in our main test case, as shown by the fact that the CI sys-
tem currently passes the realization. Precisely which real-
time computer music environments offer this possibility is
not known.

This requirement of determinism does not forbid the use
of stochastic processes in a realization, provided they rely
on pseudo-random number generators, as are almost uni-
versally used in computer music software. It would nonethe-
less be forbidden, for instance, to use the current date or
room temperature as a random seed; such a seed would
have to be fixed. Certain other non-deterministic opera-
tions are also forbidden, such as measuring CPU time or
querying the current OS version.

There is also the issue of truncation errors that arise from
rounding in floating-point computations. In the pieces be-
ing tested so far these give variations in the audio output
that are very small in magnitude and fall beneath the de-
clared error threshold in the CI system. But running an un-
stable process such as a Lorenz attractor would give rise to
wide divergences in output for different rounding schemes.
This is currently a problem for the developers of Pd, An-
tescofo, and Synful to attend to.

We have nonetheless shown that a CI system can be de-
vised that helps in the maintenance of live electronic mu-
sic realizations. The system not only flags problems, but
its very existence is an invitation to composers to develop
their music in CI-controllable form, using deterministic
and reproducible software components. It is already also
useful as a tool for software maintainers to catch and cor-
rect any incompatibilities that might crop up in progressive
versions of their programs.

Acknowledgments

This work is supported by IRCAM and by the DAFNE+
project under Horizon Europe Grant Agreement number
101061548.

6. REFERENCES

[1] S. Lemouton, “The electroacoustic repertoire: Is there
a librarian?” array., pp. 7–14, 2020.

[2] M. Akkerman, “’This hardware is now obsolete.’
Marc-André Dalbavie’s Diadèmes.” in Proceedings of
the International Computer Music Conference. Ann
Arbor: International Computer Music Association,
2017.

[3] A. Vincent, A. Bonardi, and J. Barthélemy,
“Pourrons-nous préserver la musique avec dispositif
électronique?” in Sciences humaines et patrimoine
numérique, 2010, pp. 1–1.

[4] A. Bonardi, “Rejouer une œuvre avec l’électronique
temps réel: enjeux informatiques et musicologiques,”
2015.

[5] J. Rudi and J. Bullock, “The Integra project,” in Pro-
ceedings of the 2011 Electroacoustic Music Society
Conference, 2011.

[6] A. Cont, “ANTESCOFO: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer
Music.” in International Computer Music Conference
(ICMC), 2008, pp. 33–40.

[7] J.-L. Giavitto, J.-M. Echeveste, A. Cont, and P. Cuvil-
lier, “Time, Timelines and Temporal Scopes in the An-
tescofo DSL v1. 0,” in International Computer Music
Conference (ICMC), 2017.

[8] C. Ressi, “[vstplugin˜]–A Pd external for hosting VST
plugins,” Revista Vórtex, vol. 9, no. 2, pp. 20–20, 2021.

[9] E. Lindemann, “Music synthesis with reconstructive
phrase modeling,” IEEE Signal Processing Magazine,
vol. 24, no. 2, pp. 80–91, 2007.


	 1. Introduction
	 2. A state of affairs
	 3. Reality Check
	 4. Test case
	 5. Observations and conclusions
	 6. References

