
Pure Data: another integrated computer music environment

Miller S. Puckette

Department of Music, UCSD, La Jolla, Ca. 92039-0326 msp@ucsd.edu

c

1996 Kunitachi College of Music. Reprinted from Proceedings, Second Intercollege Computer

Music Concerts, Tachikawa, pp. 37-41.

May 7, 1997

Abstract

A new software system, called Pure Data, is in the

early stages of development. Its design attempts to

remedy some of the de�ciencies of the Max program

while preserving its strengths. The most important

weakness of Max is the di�culty of maintaining com-

pound data structures of the type that might arise

when analyzing and resynthesizing sounds or when

recording and modifying sequences of events of many

di�erent types. Also, it has proved hard to integrate

non-audio signals (video, for instance, and also au-

dio spectra) into Max's rigid \tilde object" system.

Finally, the whole issue of maintaining two separate

copies of all data structures (one to edit and one to

access in real time) has caused much confusion and

di�culty. Pd's working prototype attempts to sim-

plify the data structures in Max to make them more

readily combined into novel user-de�ned data struc-

tures. Also, the relationship between the graphical

process and the real-time one (which is handled in

one way on the Macintosh and another way on the

ISPW) is replaced by yet a third solution.

1 Introduction

The design of real-time computer music systems has

been a subject of active research since the RTSKED

program [1]. By 1986 several authors were propos-

ing formal or semi-formal real-time protocols, some-

times in the guise of complete systems for doing

real-time computer music [2], [3]. The question of

making software systems which were really usable

by non-computer scientists was addressed by the

Max program [4]. Max was an attempt to make

a screen-based patching language that could imi-

tate the modalities of a patchable analog synthesizer.

Many other graphical \patching languages" had been

proposed that did not su�ciently address the real-

time control aspect; and many other researchers had

by then proposed much more sophisticated real-time

control strategies without presenting a clear and fun-

to-use graphical interface; Max was in essence a com-

promise that got part way toward both goals.

As soon as Philippe Manoury's Pluton was realized

using Max (thus proving Max to be an interesting

environment for real-time computer music), a stream

of criticisms of Max started to appear. Max wasn't

originally intended as a programming language; yet

many users treated it as one. As such Max had obvi-

ous shortcomings, some of which are reported in [5].

Also, the original version of Max, being written for

a Mac Plus computer, didn't address the question of

computer-generated audio, remaining instead in the

realm of MIDI. This was addressed in [6], but only

for special hardware.

The question of how to use Max to amass and use

data arose in IRCAM during the design phase of the

ISPW. A new software idea, called Animal, was pro-

posed and implemented [7]. Many ideas in Pd owe

their origin to the Animal program.

1



0 1 2 3

N=2048

N=32
−2

−3

−4

−5

N=2048

N=32

Blackman

Figure 1: Sample Pd-generated graph.

2 Design

Pd's �rst application has been to prepare the �gures

for an upcoming signal processing paper by Puck-

ette and Brown. Commercially available software for

graphing data proved unsuitable for this application.

(The same can often be said of music software!) The

�rst exercise for Pd has been to render graphs such

as in Figure 1. There is as yet no editor for these

graphs. The source for the one shown follows:

#N canvas noise-sim-bla;

#X font -*-helvetica-medium-r-*-*-*-300-*;

#X text 13 3 Blackman;

#X graph noise-sim-bla.plot;

#X xticks 2 0.2 5;

#X xlabel -5.2 0 1 2 3 4;

#X yticks -5 .1 10;

#X ylabel -0.85 -2 -3 -4 -5 -6;

#X style 7 0 point;

... [6 more "style" lines omitted]...

#X text .2 -1.9 N=32;

#X text .3 -4.7 N=2048;

#X pop;

#X pop;

The format is very much like the Max �le format,

which features embedded descriptions of patchers. As

with Max, the message system is used in the same

way to restore saved documents as in message passing

for real-time computer music control and synthesis.

In this example, the new \canvas" object is the

window, which names itself #X. The third command

to #X is to create a graph, which then receives its

own messages before the �rst \pop" message resets

#X to point to the original canvas. Text can be added

either to the graph (in the graph's own coordinates,

like \N=32") or to the canvas (in centimeters, like

the string \Blackman"). The data to be graphed are

taken from a �le in this case, but support is also

included for embedding the data in the Pd �le.

Canvasses, which currently can hold only text and

graph objects, will soon support the 0.26-style Max

boxes and interconnections, and also a framework

for collections, which will generalize Max's explode

feature. Pd will therefore incorporate three window

types of Max (patch, table, explode) into a single new

window type.

3 Templates

In Pd, the notion of a \patch" as in Max, and the

notion of a dialog (for searching, for instance, or for

setting the range of a slider) are uni�ed. (There is

one exception: the �le selection panels will be normal

dialogs, not patches.) If, for instance, we \open" a

Max-style number box, a template window appears

as in Figure 2.

Another example of a template would correspond

to a point of the graph of Figure 1; its two entries

would be for the \x" and \y" values of the point. In

this case, it would be permissible to add a �eld to the

template, which would add the corresponding �eld to

all the points belonging to that template. This could

either be the points of one of the curves of the graph,

all the points of the graph, or all the points of several

graphs.

Templates di�er from the \abstractions" of Max

in that the template is not re-instantiated for each

invocation; a single template acts as a non-modal di-

alog window for all instances of the data structure it

controls. If an anonymous data structure (a one-o�

member of a heterogenous sequence, in e�ect a Max

message as in a Max qlist) is opened, a made-to-order

2



inttype:

show: text

top: 100

bottom: 0

numbox

Figure 2: The template for a number box.

template is created to show it.

To support templates, a new \�eld" object is in-

troduced. Fields di�er from numbers in having \�eld

names" as in Figure 2. Max-style patchable objects

can query a template patch for the onset of a �eld of a

given name, so patches can traverse data structures

through their templates. Also, any data structure

(which could be called a \Pure Datum") can become

a Max message handled in the usual way.

4 DSP

Max/FTS, which was the predecessor of Pd, had a

severely limited notion of audio signals, which has

proven too restrictive for working with frequency-

domain or non-audio signals. In Pd, users may create

DSP \blocks" in which sample rate and vector size

vary. This is done using two new \tilde" objects,

clock~ and reclock~. The �rst of these allows the

user to attach a symbolic name to a speci�c combi-

nation of sample rate and vector size. This notion

replaces the switch~ mechanism of Max/FTS; any

clock~ can be turned on and o�. The reclock~ ob-

ject simply converts a signal to any desired clock. For

example, preparing a signal for overlap-4 FFT analy-

sis is simply re-clocking to a clock with the necessary

properties; the overlap-add step for converting back

into the time domain is accomplished by re-clocking

to the \usual" clock.

Pd Pd−gui

tcl

Max

Figure 3: Pd implementation.

Pure Data also will get rid of one major annoyance

in Max, which is the necessity of specifying signal~

objects to provide constant inputs; Pd will allow tilde

objects to query their connections; if no signals are

connected to a signal input but a 
oating-point outlet

is connected, a scalar-input version of the tilde object

will be called if available; otherwise, a signal~ object

will be provided automatically.

5 Implementation

Pd is in two parts, as shown in Figure 3. The \real"

Pd, shown at left, does real-time computations using

a Max/FTS-like message interpreter and scheduler.

All Pd documents reside in the address space of Pd.

The other process, named Pd-gui, talks to the com-

puter's window system through the \tk" toolkit [8].

This should allow portability to the X, MS, and Mac-

intosh window systems, although the current proto-

type runs only on SGI hardware.

The real-time/non-real-time divide works very dif-

ferently from that of Max/FTS; the \editor" resides

in the real-time Pd layer, not in Pd-gui (in Max/FTS

the four di�erent editors all reside in the GUI layer,

Max.) This choice re
ects an important change that

has occurred in computer hardware in the last ten

years: multiprocessors like the 4X and ISPW are now

giving way to uniprocessors (at least in computer mu-

sic applications.) This year we can expect to see a

uniprocessing computer announced which will equal

the six-processor ISPW in speed, at less than half the

cost. For the ISPW, it was necessary to make the doc-

ument (the \patch") reside in the graphical layer, be-

cause otherwise there would be six documents. This

caused nightmarish problems in keeping the two data

3



sets (Max's and FTS's) coherent. In Pd, we sidestep

this problem by putting all calculations, both editing

moves and real-time audio rendering, in a single pro-

gram. Pd is therefore badly suited to multiprocessing

but more in line with current hardware developments

than Max/FTS.

Pd should provide near patch-level compatibility

with Max 0.26 from IRCAM, and near source com-

patibility with 0.26 externs. Most of the di�erences

will be minor design changes (argument types of li-

brary functions, for example) which can easily be

aliased in an \include" �le. At the patch level, cer-

tain objects such as FFT~ will be replaced, and the

nefarious downsampling argument to line~ and sig~

will probably be replaced with the symbolic name of

a clock~ object. Pd will probably read Max patches

but only save �les in the Pd format. The C source

code will be made freely available to the public.

6 Conclusion

It is too early to say whether or not Pd will re-

place Max as a real-time computer music environ-

ment. The success of Max re
ects a lucky con
uence

of many events: the rise of the Macintosh, the arrival

at IRCAM of di Giugno's 4X machine (which pro-

vided the problem that Max had to solve), David Zi-

carelli's brilliant work in getting Max published (not

to mention his almost rewriting the entire program,

much to its improvement), and the contributions of

Zack Settel, Cort Lippe, Philippe Manoury, Chris

Dobrian, David Wessel, and literally dozens of others

to the design, documentation, and creative abuse of

the program. The success or failure of Pd will ride

as much on its �nding a similar community as on its

design speci�cs.

References

[1] Mathews, M. and J. Pasquale, 1981. \RTSKED,

a Scheduled Performance Language for the Cru-

mar General Development System." Proceedings

of the 1981 International Computer Music Con-

ference. San Francisco: Computer Music Asso-

ciation, p. 286.

[2] Anderson, D. and R. Kuivila, 1986. \A Model

of Real-Time Computation for Computer Mu-

sic." Proceedings of the 1986 International Com-

puter Music Conference. San Francisco: Com-

puter Music Association, pp. 35-41.

[3] Boynton, L. et al., 1986. \MIDI-LISP: A LISP-

Based Music Programming Environment for the

MacIntosh." Proceedings of the 1986 Interna-

tional Computer Music Conference. San Fran-

cisco: Computer Music Association, pp. 183-

186.

[4] Puckette, M., 1988. \The Patcher." Proceedings

of the 1986 International Computer Music Con-

ference. San Francisco: Computer Music Asso-

ciation, pp. 420-429.

[5] Lewis, G., 1992. ref-lewis \A Max Forum", Ar-

ray 13/1, pp. 19-20.

[6] Puckette, M., 1991. \FTS: A Real-time Monitor

for Multiprocessor Music Synthesis." Computer

Music Journal 15(3): 58-67.

[7] Lindemann, E., 1991. \ANIMAL { a Rapid Pro-

totyping Environment for Computer Music Sys-

tems." Computer Music Journal 15(3): pp. 78-

100.

[8] Osterhout, J. K., 1994. Tcl and the Tk toolkit.

Reading, Massachusetts: Addison-Wesley.

4


